Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Methyl 3',5'-dimethoxybiphenyl-4carboxylate

#### Manu Lahtinen,<sup>a</sup> Kalle Nättinen<sup>b</sup> and Sami Nummelin<sup>c</sup>\*

<sup>a</sup>University of Jyväskylä, Department of Chemistry, PO Box 35, FI-40014 JY, Finland, <sup>b</sup>VTT Technical Research Centre of Finland, Tampere, FIN-33101, Finland, and <sup>c</sup>Molecular Materials, Department of Applied Physics, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland Correspondence e-mail: sami.nummelin@aalto.fi

Received 12 February 2013; accepted 24 February 2013

Key indicators: single-crystal X-ray study; T = 123 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.111; data-to-parameter ratio = 13.0.

In the title compound,  $C_{16}H_{16}O_4$ , the dihedral angle between the benzene rings is 28.9 (2)°. In the crystal, molecules are packed in layers parallel to the *b* axis in which they are connected *via* weak intermolecular C-H···O contacts. Faceto-face  $\pi$ - $\pi$  interactions also exist between the benzene rings of adjacent molecules, with centroid–centroid and plane-toplane shift distances of 3.8597 (14) and 1.843 (2) Å, respectively.

#### **Related literature**

For related structures, see: Lahtinen *et al.* (2013); Van Eerdenbrugh *et al.* (2010). For the nature of hydrogen bonding, see: Steiner (2002). For synthesis details and related supramolecular structures based on biphenyls, see: Percec *et al.* (2006, 2007). For related synthetic biphenyl structures, see: Rosen *et al.* (2008); Percec *et al.* (2004); Wolfe *et al.* (1999). For polyester functionalized dendrons and dendrimers, see: Nummelin *et al.* (2000). For a general review on self-assembling dendrons and dendrimers, see: Rosen *et al.* (2009).



#### **Experimental**

Crystal data  $C_{16}H_{16}O_4$   $M_r = 272.29$ Triclinic,  $P\overline{1}$  a = 6.0990 (9) Å b = 7.1622 (16) Å

c = 16.2408 (18) Å

 $\alpha = 96.589 (14)^{\circ}$ 

 $\beta = 91.472 \ (11)^{\circ}$ 

 $\gamma = 112.493 (18)^{\circ}$   $V = 649.27 (19) \text{ Å}^{3}$  Z = 2Cu  $K\alpha$  radiation  $\mu = 0.82 \text{ mm}^{-1}$  T = 123 K $0.29 \times 0.19 \times 0.04 \text{ mm}$ 



#### Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: analytical *CrysAlis PRO*; Agilent, 2010) *T*<sub>min</sub> = 0.924, *T*<sub>max</sub> = 0.983

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.040$ | 184 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.111$               | H-atom parameters constrained                              |
| S = 1.05                        | $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2395 reflections                | $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$ |

3989 measured reflections

 $R_{\rm int} = 0.025$ 

2395 independent reflections

2025 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                | D-H  | $H \cdots A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------------|------|--------------|-------------------------|---------------------------|
| $C6 - H6 \cdots O2^{i}$         | 0.95 | 2.89         | 3.7702 (19)             | 154                       |
| $C7 - H7 \cdots O4^{ii}$        | 0.95 | 2.85         | 3.4607 (19)             | 123                       |
| $C12 - H12 \cdots O4^{ii}$      | 0.95 | 2.71         | 3.644 (2)               | 170                       |
| C16−H16· · · O14 <sup>iii</sup> | 0.95 | 2.65         | 3.514 (2)               | 151                       |
| $C1 - H1A \cdots O4^{iv}$       | 0.98 | 2.73         | 3.665 (2)               | 159                       |
| $C19-H19A\cdotsO18^{v}$         | 0.98 | 2.65         | 3.538 (2)               | 151                       |
|                                 |      |              |                         |                           |

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 2, -z + 2; (iii) -x, -y + 1, -z + 1; (iv) x + 1, y, z; (v) -x + 1, -y, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *OLEX2*.

SN acknowledges the Academy of Finland for financial support (No. 138850).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2616).

#### References

- Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Lahtinen, M., Nättinen, K. & Nummelin, S. (2013). Acta Cryst. E69, 0383.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Nummelin, S., Skrifvars, M. & Rissanen, K. (2000). *Top. Curr. Chem.* **210**, 1–67.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Percec, V., Golding, G. M., Smidrkal, J. & Weichold, O. (2004). J. Org. Chem. 69, 3447–3452.
- Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). *Chem. Eur. J.* **12**, 6216–6241.
- Percec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). *Chem. Eur. J.* 13, 3989–4007.
  Basser, B. M., Hunge, C. & Berges, V. (2008). *One. Lett.* 12, 2567–2600.
- Rosen, B. M., Huang, C. & Percec, V. (2008). *Org. Lett.* **12**, 2597–2600. Rosen, B. M., Wilson, C. J., Wilson, D. A., Peterca, M., Imam, M. R. & Percec,
- Kosen, B. M., wilson, C. J., wilson, D. A., Peterca, M., mann, M. R. & Percec,
  V. (2009). *Chem. Rev.* 109, 6275–6540.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
- Van Eerdenbrugh, B., Fanwick, P. E. & Taylor, L. S. (2010). Acta Cryst. E66, 02609.
- Wolfe, J. P., Singer, R. A., Yang, B. H. & Buchwald, S. L. (1999). J. Am. Chem. Soc. 121, 9550–9561.

# supplementary materials

Acta Cryst. (2013). E69, o460 [doi:10.1107/S1600536813005333]

### Methyl 3',5'-dimethoxybiphenyl-4-carboxylate

### Manu Lahtinen, Kalle Nättinen and Sami Nummelin

#### Comment

Biphenyls represent a new class of arylmethyl ethers and esters that serve as building blocks for the construction of amphiphilic dendrons. These dendrons, synthesized in a multi-step reaction sequence, self-assemble into hollow and non-hollow supramolecular dendrimers that further self-organize into periodic assemblies (Percec *et al.* 2006, 2007). The key synthetic step is the C—C bond formation between the aromatic rings. This is accomplished with metal catalyzed cross-coupling reaction (Percec *et al.* 2004, 2006; Rosen *et al.* 2008, Wolfe *et al.* 1999). As a contribution to a structural study of biphenyl ester derivatives we report here the title compound methyl-(3',5'-dimethoxy-biphenyl)-4-carboxylate (I).

Compound (I) crystallizes in triclinic space group *P*-1 (No. 2) without any solvent molecules, and having a single molecule in an asymmetric unit (Fig. 1). The intramolecular dihedral angle between the phenyl rings is 28.9 (2)°, similar to that of reported for analogous methyl 3',4',5'-trimethoxybiphenyl-4- carboxylate (Lahtinen *et al.* 2013). The molecules are packed in antiparallel arrangement (Fig. 2). Weak intermolecular  $\pi$ - $\pi$  interactions (face-to-face) exist between adjacent aromatic rings having centroid-centroid and plane to plane shift distances of 3.8597 (14) and 1.843 (2) Å, respectively. Whereas weak CH- $\pi$  interaction occurs between a methoxy group and nearby phenyl ring with a d(D…centroid) of 3.8303 (19) Å. Additionally, weak intermolecular CH…O hydrogen bonds occur between aromatic H atoms and neighboring methoxy O atoms with d(D…A) varying between 3.4607 (19), and 3.7702 (19) Å. Moreover, weak hydrogen bond exist between the carbonyl oxygen and aromatic ring hydrogen (C12—H12…O4) with d(D…A) of 3.644 (2) Å. The methyl ester and the two methoxy groups show characteristic geometries, typical bond distances and angles for these groups (see Tables) and are in planar orientation towards their host rings.

#### Experimental

3',5'-dimethoxy-biphenyl-4-carboxylic acid (15.50 g, 60.00 mmol) was dissolved in methanol (300 ml) and sulfuric acid (3 ml). The solution was stirred under reflux for 16 h and then allowed to cool down to room temperature. Water (600 ml) was added, the resulting precipitate was collected by suction filtration. The solid was washed with water, dried in *vacuo* affording the title compound as a white crystalline solid (15.69 g, 96%). Single-crystals were obtained from a slow evaporation of ethanol.

#### Refinement

Hydrogen atoms were calculated to their positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

#### **Computing details**

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO* (Agilent, 2010); data reduction: *CrysAlis PRO* (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009) and Mercury



(Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

### Figure 1

The molecular structure and labelling of the title compound. The displacement ellipsoids are drawn with 50% probability.



### Figure 2

Packing scheme along *a*-axis.



#### Figure 3

Weak CH…O (blue lines), CH… $\pi$  and  $\pi$ … $\pi$  interactions occurring in the structure.

#### Methyl 3',5'-dimethoxybiphenyl-4-carboxylate

Crystal data

C<sub>16</sub>H<sub>16</sub>O<sub>4</sub>  $M_r = 272.29$ Triclinic,  $P\overline{1}$  a = 6.0990 (9) Å b = 7.1622 (16) Å c = 16.2408 (18) Å a = 96.589 (14)°  $\beta = 91.472$  (11)°  $\gamma = 112.493$  (18)° V = 649.27 (19) Å<sup>3</sup>

#### Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas)<br/>diffractometerRadiation source: SuperNova (Cu) X-ray<br/>SourceMirror monochromatorDetector resolution: 10.3953 pixels mm<sup>-1</sup>ω scansAbsorption correction: analytical<br/>CrysAlis PRO; Agilent, 2010)

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.040$  $wR(F^2) = 0.111$ S = 1.052395 reflections 184 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 288  $D_x = 1.393 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.5418 \rightarrow Cell parameters from 2092 reflections  $\theta = 5.5 - 76.0^{\circ}$   $\mu = 0.82 \text{ mm}^{-1}$  T = 123 KPlate, colourless  $0.29 \times 0.19 \times 0.04 \text{ mm}$ 

 $T_{\min} = 0.924, T_{\max} = 0.983$ 3989 measured reflections 2025 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.025$  $\theta_{\max} = 69.0^{\circ}, \theta_{\min} = 5.5^{\circ}$  $h = -5 \rightarrow 7$  $k = -8 \rightarrow 8$  $l = -19 \rightarrow 19$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0591P)^2 + 0.1033P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.19$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.25$  e Å<sup>-3</sup>

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ х V Z04 0.72065 (19) 0.88715 (17) 1.15112 (6) 0.0256(3)O2 1.01438 (18) 0.78669 (16) 1.11239 (6) 0.0245(3)018 0.46733 (19) 0.23876 (16) 0.56673 (6) 0.0256(3)014 0.1145(2)0.71333 (18) 0.59191 (7) 0.0301 (3) C3 0.8129(3) 0.8161 (2) 1.09788 (9) 0.0205(3)C6 0.5135(3)0.7715(2)0.98314(9)0.0210(3)H6 0.4281 0.8202 1.0223 0.025\* C17 0.4269(3)0.3845(2)0.61901 (9) 0.0213(3)C13 0.2432(3)0.6276(2)0.63282(9)0.0220(3)C7 0.4295 (3) 0.7185(2)0.89982 (9) 0.0212(3)H7 0.025\* 0.2877 0.7335 0.8827 C11 0.4573(2)0.5869(2)0.75182(9)0.0201(3)C5 0.7225(3)0.7530(2)1.00911 (9) 0.0202(3)C12 0.3244 (3) 0.6839(2) 0.71684 (9) 0.0214 (3) 0.026\* H12 0.2899 0.7865 0.7497 C16 0.2934(3)0.4787(2)0.58389(9)0.0226(3)0.2370 0.4417 0.027\* H16 0.5269 C8 0.6439(2)0.84072(9)0.0196(3)0.5486(2)C9 0.7577(3)0.6253(2)0.86810 (9) 0.0223(3)Н9 0.027\* 0.8427 0.5753 0.8292 C20 0.0211(3)0.5067(3)0.4362(2)0.70285(9)H20 0.5948 0.3689 0.025\* 0.7268 C10 0.8431 (3) 0.6785(2) 0.95095 (9) 0.0222(3)H10 0.027\* 0.9851 0.6639 0.9682 C1 1.1197 (3) 1.19672 (9) 0.0255(3)0.8460(2)H1A 1.2785 0.8419 1.1987 0.038\* H1B 1.0194 0.7518 1.2325 0.038\* H1C 1.1328 0.9848 1.2163 0.038\* C19 0.6415 (3) 0.1676 (3) 0.59536(10) 0.0271 (3) H19A 0.6742 0.0828 0.5495 0.041\* H19B 0.5810 0.0866 0.6406 0.041\* H19C 0.7884 0.2845 0.6156 0.041\* C15 0.0299 (3) 0.8481 (3) 0.64007 (10) 0.0279(4)H15A -0.06380.8943 0.6035 0.042\* 0.1656 H15B 0.9662 0.6678 0.042\* -0.07000.7764 0.6820 0.042\* H15C

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$   | $U^{13}$    | <i>U</i> <sup>23</sup> |
|-----|------------|------------|------------|------------|-------------|------------------------|
| 04  | 0.0290 (6) | 0.0305 (6) | 0.0189 (5) | 0.0141 (5) | 0.0027 (4)  | -0.0002 (4)            |
| O2  | 0.0254 (6) | 0.0301 (6) | 0.0191 (5) | 0.0135 (5) | -0.0029 (4) | -0.0018 (4)            |
| O18 | 0.0309 (6) | 0.0269 (6) | 0.0208 (5) | 0.0150 (5) | -0.0011 (4) | -0.0025 (4)            |
| O14 | 0.0377 (6) | 0.0365 (6) | 0.0232 (6) | 0.0235 (5) | -0.0032 (5) | 0.0010 (5)             |
| C3  | 0.0208 (7) | 0.0181 (7) | 0.0214 (7) | 0.0059 (6) | 0.0011 (6)  | 0.0039 (6)             |
| C6  | 0.0231 (7) | 0.0198 (7) | 0.0201 (7) | 0.0084 (6) | 0.0038 (6)  | 0.0012 (6)             |
| C17 | 0.0219 (7) | 0.0198 (7) | 0.0201 (7) | 0.0064 (6) | 0.0033 (6)  | 0.0008 (6)             |
| C13 | 0.0217 (7) | 0.0231 (8) | 0.0218 (7) | 0.0087 (6) | 0.0004 (6)  | 0.0051 (6)             |
| C7  | 0.0213 (7) | 0.0232 (8) | 0.0199 (7) | 0.0094 (6) | 0.0013 (6)  | 0.0036 (6)             |
| C11 | 0.0181 (7) | 0.0202 (7) | 0.0194 (7) | 0.0044 (6) | 0.0026 (6)  | 0.0034 (6)             |
| C5  | 0.0221 (7) | 0.0182 (7) | 0.0187 (7) | 0.0060 (6) | 0.0019 (6)  | 0.0029 (5)             |
| C12 | 0.0211 (7) | 0.0221 (8) | 0.0202 (7) | 0.0079 (6) | 0.0013 (6)  | 0.0015 (6)             |
| C16 | 0.0246 (8) | 0.0237 (8) | 0.0180 (7) | 0.0081 (6) | 0.0006 (6)  | 0.0017 (6)             |
| C8  | 0.0202 (7) | 0.0169 (7) | 0.0199 (7) | 0.0050 (6) | 0.0021 (6)  | 0.0029 (5)             |
| C9  | 0.0223 (7) | 0.0254 (8) | 0.0192 (7) | 0.0099 (6) | 0.0033 (6)  | 0.0006 (6)             |
| C20 | 0.0208 (7) | 0.0211 (7) | 0.0210 (7) | 0.0077 (6) | 0.0007 (6)  | 0.0031 (6)             |
| C10 | 0.0195 (7) | 0.0242 (8) | 0.0229 (8) | 0.0091 (6) | 0.0011 (6)  | 0.0019 (6)             |
| C1  | 0.0276 (8) | 0.0288 (8) | 0.0190 (7) | 0.0107 (7) | -0.0046 (6) | 0.0008 (6)             |
| C19 | 0.0272 (8) | 0.0302 (8) | 0.0258 (8) | 0.0147 (7) | 0.0010 (6)  | -0.0017 (6)            |
| C15 | 0.0299 (8) | 0.0294 (8) | 0.0284 (8) | 0.0164 (7) | 0.0004 (6)  | 0.0021 (6)             |

Atomic displacement parameters  $(Å^2)$ 

### Geometric parameters (Å, °)

| O4—C3       | 1.2107 (18) | C11—C20   | 1.397 (2)   |
|-------------|-------------|-----------|-------------|
| O2—C3       | 1.3436 (17) | C5—C10    | 1.392 (2)   |
| O2—C1       | 1.4427 (17) | C12—H12   | 0.9500      |
| O18—C17     | 1.3694 (17) | C16—H16   | 0.9500      |
| O18—C19     | 1.4308 (18) | C8—C9     | 1.399 (2)   |
| O14—C13     | 1.3676 (18) | С9—Н9     | 0.9500      |
| O14—C15     | 1.4278 (18) | C9—C10    | 1.386 (2)   |
| C3—C5       | 1.485 (2)   | C20—H20   | 0.9500      |
| С6—Н6       | 0.9500      | C10—H10   | 0.9500      |
| C6—C7       | 1.391 (2)   | C1—H1A    | 0.9800      |
| C6—C5       | 1.391 (2)   | C1—H1B    | 0.9800      |
| C17—C16     | 1.389 (2)   | C1—H1C    | 0.9800      |
| C17—C20     | 1.393 (2)   | C19—H19A  | 0.9800      |
| C13—C12     | 1.399 (2)   | C19—H19B  | 0.9800      |
| C13—C16     | 1.389 (2)   | C19—H19C  | 0.9800      |
| С7—Н7       | 0.9500      | C15—H15A  | 0.9800      |
| С7—С8       | 1.396 (2)   | C15—H15B  | 0.9800      |
| C11—C12     | 1.400 (2)   | C15—H15C  | 0.9800      |
| C11—C8      | 1.487 (2)   |           |             |
|             |             |           |             |
| C3—O2—C1    | 115.97 (11) | C7—C8—C11 | 121.35 (13) |
| C17—O18—C19 | 117.27 (11) | С7—С8—С9  | 117.57 (13) |
| C13—O14—C15 | 117.93 (12) | C9—C8—C11 | 121.09 (13) |
| O4—C3—O2    | 123.42 (13) | С8—С9—Н9  | 119.4       |
|             |             |           |             |

| O4—C3—C5        | 125.19 (13)  | C10—C9—C8       | 121.19 (13)  |
|-----------------|--------------|-----------------|--------------|
| O2—C3—C5        | 111.38 (12)  | С10—С9—Н9       | 119.4        |
| С7—С6—Н6        | 120.0        | C17—C20—C11     | 120.10 (13)  |
| С5—С6—Н6        | 120.0        | C17—C20—H20     | 119.9        |
| C5—C6—C7        | 119.98 (13)  | C11—C20—H20     | 119.9        |
| O18—C17—C16     | 115.76 (13)  | C5-C10-H10      | 119.7        |
| O18—C17—C20     | 123.83 (13)  | C9—C10—C5       | 120.53 (14)  |
| C16—C17—C20     | 120.40 (13)  | C9—C10—H10      | 119.7        |
| O14—C13—C12     | 124.10 (13)  | O2—C1—H1A       | 109.5        |
| O14—C13—C16     | 114.75 (13)  | O2—C1—H1B       | 109.5        |
| C16—C13—C12     | 121.14 (13)  | O2—C1—H1C       | 109.5        |
| С6—С7—Н7        | 119.2        | H1A—C1—H1B      | 109.5        |
| C6—C7—C8        | 121.62 (13)  | H1A—C1—H1C      | 109.5        |
| С8—С7—Н7        | 119.2        | H1B—C1—H1C      | 109.5        |
| C12—C11—C8      | 120.57 (13)  | O18—C19—H19A    | 109.5        |
| C20—C11—C12     | 119.93 (14)  | O18—C19—H19B    | 109.5        |
| C20—C11—C8      | 119.50 (13)  | O18—C19—H19C    | 109.5        |
| C6—C5—C3        | 119.12 (13)  | H19A—C19—H19B   | 109.5        |
| C6—C5—C10       | 119.11 (14)  | H19A—C19—H19C   | 109.5        |
| C10—C5—C3       | 121.77 (13)  | H19B—C19—H19C   | 109.5        |
| C13—C12—C11     | 119.01 (13)  | O14—C15—H15A    | 109.5        |
| C13—C12—H12     | 120.5        | O14—C15—H15B    | 109.5        |
| C11—C12—H12     | 120.5        | O14—C15—H15C    | 109.5        |
| C17—C16—C13     | 119.41 (14)  | H15A—C15—H15B   | 109.5        |
| C17—C16—H16     | 120.3        | H15A—C15—H15C   | 109.5        |
| C13—C16—H16     | 120.3        | H15B—C15—H15C   | 109.5        |
|                 |              |                 |              |
| O4—C3—C5—C6     | -1.2 (2)     | C12—C11—C8—C7   | 28.9 (2)     |
| O4—C3—C5—C10    | 177.90 (14)  | C12—C11—C8—C9   | -150.86 (14) |
| O2—C3—C5—C6     | 179.48 (13)  | C12—C11—C20—C17 | 0.9 (2)      |
| O2—C3—C5—C10    | -1.4 (2)     | C16—C17—C20—C11 | -1.4 (2)     |
| O18—C17—C16—C13 | 179.66 (13)  | C16-C13-C12-C11 | -0.4 (2)     |
| O18—C17—C20—C11 | -179.97 (13) | C8—C11—C12—C13  | 179.45 (13)  |
| O14—C13—C12—C11 | -179.23 (13) | C8—C11—C20—C17  | -178.56 (13) |
| O14—C13—C16—C17 | 178.85 (13)  | C8—C9—C10—C5    | -0.3 (2)     |
| C3—C5—C10—C9    | -178.42 (14) | C20-C17-C16-C13 | 1.0 (2)      |
| C6—C7—C8—C11    | 179.75 (13)  | C20-C11-C12-C13 | 0.0 (2)      |
| C6—C7—C8—C9     | -0.4 (2)     | C20-C11-C8-C7   | -151.58 (14) |
| C6—C5—C10—C9    | 0.7 (2)      | C20-C11-C8-C9   | 28.6 (2)     |
| C7—C6—C5—C3     | 178.20 (13)  | C1—O2—C3—O4     | -0.2 (2)     |
| C7—C6—C5—C10    | -0.9 (2)     | C1—O2—C3—C5     | 179.10 (12)  |
| C7—C8—C9—C10    | 0.2 (2)      | C19—O18—C17—C16 | 167.89 (13)  |
| C11—C8—C9—C10   | 179.99 (13)  | C19—O18—C17—C20 | -13.5 (2)    |
| C5—C6—C7—C8     | 0.8 (2)      | C15—O14—C13—C12 | -9.0 (2)     |
| C12—C13—C16—C17 | -0.1(2)      | C15—O14—C13—C16 | 172.12 (13)  |

#### D—H···A $D \cdots A$ D—H···A *D*—Н $H \cdots A$ C6—H6…O2<sup>i</sup> 0.95 2.89 3.7702 (19) 154 $C7 - H7 \cdots O4^{ii}$ 0.95 2.85 3.4607 (19) 123 C12—H12…O4<sup>ii</sup> 0.95 2.71 3.644 (2) 170 C16-H16-014<sup>iii</sup> 0.95 2.65 3.514 (2) 151 C1—H1A···O4<sup>iv</sup> 0.98 159 2.73 3.665 (2) C19—H19A…O18<sup>v</sup> 0.98 2.65 3.538 (2) 151

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+2, -*z*+2; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*; (v) -*x*+1, -*y*, -*z*+1.