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Abstract: Benthic macroinvertebrates and sediments can act as good indicators of environmental
quality. The aim of this study was to assess the accumulation of chemical elements in the Gomphidae
(Odonata) collected in the Blyde River. Seven sites were sampled for river sediments assessment
and five sites for larvae (naiads) of Gomphidae bioaccumulation analysis. The tissue samples were
analysed using inductively coupled plasma optical emission spectrometry (ICP-OES). The results
showed high levels of all of the tested elements except Cd in the sediment. The mean concentrations
of As, Cu and Cr exceeded the standard guideline values, whereas Pb and Zn were below the
standard guideline values. In the insect body tissue, the concentrations of most elements were higher
than in the sediments. The elements with the highest concentrations were Mn, Zn, Cu, and As.
The bioaccumulation factor (BF) showed a tendency for bioaccumulation for almost all of the selected
elements in the insect. The BF value was high for Cu, Mn, Sb, and Zn (BF > 1). The high concentrations
of elements in the insect body tissue may pose a risk to fish that consume them, and subsequently
to humans when fish from the river are consumed. It is therefore important to monitor the river to
reduce pollution to prevent health risks in humans, especially in communities that rely on the river
for water and food.
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1. Introduction

Globally, rivers and streams are threatened by anthropogenic pollution, such as toxic elements,
due to intensive land-use and inadequate environmental management practices [1–3]. Though most
elements occur naturally in the biogeochemical cycle, many are released into inland waters as
industrial, mining, agricultural, and domestic effluents, and may be harmful to aquatic systems [4].
River sediments serve as a habitat for various benthic macroinvertebrates and can serve as a sink
for elements such as heavy metals. The burrowing activity of some benthic organisms leads to their
chronic exposure to sediments contaminated with chemical elements [5].

Some elements are essential micronutrients for living organisms, while some (e.g., Cd, Cr and
Pb) are toxic to living organisms, even at low concentrations. The toxicity of elements in aquatic
ecosystems is complex and dependent on their bioavailability. Due to their prevalence and toxicity,
heavy metal contamination in aquatic ecosystems poses a serious environmental threat [6–8]. This may
lead to a decline in freshwater ecosystem functioning and biodiversity [9]. The available elements in
the environment (sediment and water) can be assimilated into living tissues through direct uptake
and the food chain, and if accumulated at unacceptable concentrations can affect the aquatic biota [10].
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When the contaminants are incorporated into the food chain, it poses a toxicity risk to the organisms
that consume them: fish, fish-eating birds, mammals and humans [11].

Many benthic organisms represent a link for the transfer of elements from the sediments to
upper trophic levels. Macroinvertebrates play a major ecological role in conveying energy from lower
trophic levels upwards. They serve as food for many predatory organisms in the water including fish,
which are a vital food for many rural communities, especially low-income groups [12]. Humans who
regularly consume contaminated fish are at risk to genotoxic, carcinogenic, and non-carcinogenic
health impairment from long-term exposure to toxic contaminants [13,14]. Thus, it has become
increasingly important to assess the levels of chemical elements in the body tissues of aquatic organisms
as an indicator of metal and metalloid pollution in aquatic systems and to determine whether the food
(e.g., fish) from impacted river systems are suitable for human consumption [15].

The Blyde River is one of the main tributaries of the Olifants River System. The river serves as
a source of drinking water and food (fish) to the rural communities living in the catchment. The larvae
(naiads) of dragonflies (Gomphidae, order Odonata) were selected for the study. They are good
ecological indicators and reflect the quality of aquatic systems [16,17]. The larvae are important
predators in aquatic ecosystems and prey on benthic and planktonic invertebrates [18] and also serve as
food for many fish species. The aim of the study was to assess the concentration of chemical elements
(bioaccumulation) in the larvae of Gomphidae and to predict the potential risk of transfer of toxic
elements to fish species.

2. Materials and Methods

2.1. Study Area

The Blyde River rises on the western slopes of the north-south trending Drakensberg Mountains
and flows northwards towards the escarpment edge where it is dammed. From the dam, the Blyde River
cascades down a steep series of rapids to its lower reaches, where the river again flows northwards to join
the Olifants River at the town of Hoedspruit in Limpopo Province [19]. The Blyde River sub-catchment
is approximately 2000 km2 in size. Geologically, the northern part of the sub-catchment is made up
of crystalline gneissic and granitic rocks of the Basement Complex, underlying the catchment [19].
The sub-catchment lies partly on the escarpment and, as a result, experiences considerably higher
rainfall than the other sub-catchments in the Olifants River Basin, with mean annual precipitation
sometimes exceeding 1000 mm [19]. During the last decade, there has been an increase in human
activities in the area, especially agriculture, which are likely to cause environmental pollution in the
freshwater systems.

The river is subjected to various sources of anthropogenic pollution, including domestic waste
(S1 and S2), agricultural runoff (S3 and S5), and industrial waste (Site 4), while S6 and S7 are nature
reserves (Table 1). The sampling sites were spread along the Blyde River until near the confluence with
the Olifants River. The study sites ranged between 24◦30′59.46” S 30◦47′56.14” E and 24◦15′30.38” S
30◦50′13.22” E (Figure 1).

Table 1. Location, description of activities, vegetation cover and substrate type (%).

Site Activity Vegetation Cover Cobbles Sand Silt Mud

S1 Domestic 70% (mainly shrubs and trees) 50 20 20 10

S2 Domestic/agriculture 60% (mainly shrubs, grass, and a few trees) 30 30 20 20

S3 Agriculture (mainly mangoes and citrus) 90% (mainly trees and shrubs) 40 30 20 10

S4
Industries (mainly local furniture
manufacturing, automotive services and
fruit processing factories)

20% (mainly shrubs and grass) 30 20 30 20

S5 Agriculture (mainly mangoes and citrus) 70% (mainly trees and shrubs) 20 20 30 30

S6 Nature reserve (little human activity) 80% (mainly trees, shrubs and grass) 20 20 30 30

S7 Nature reserve (little human activity) 50% (mainly shrubs and grass, and a few trees) 30 30 20 20
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Figure 1. Map of the study area, showing the locations of the seven sampling sites of the Blyde River. 

2.2. Sampling and Analysis 

Sediment samples were collected at seven sites along the Blyde River during the months of 
February, April, July and October, in 2018. The samples were collected in acid pre-treated 
polyethylene bottles. The sediment was frozen prior to chemical analysis. Gomphidae larvae were 
sampled using a 30 by 30 cm SASS net with a 500 µm mesh size [20]. The samples collected at S3 and 
S7 were not sufficient for chemical analysis. Sediments and macroinvertebrate samples were then 
analysed for elements at an accredited (ISO 17025) chemical laboratory (WATERLAB (PTY) LTD, 
Pretoria, South Africa). The samples were put in acid-washed polypropylene pre-weighed vials and 
dried at 60 °C for 24 h, and a mixture of HNO3 and HCl was added. Subsequently, the samples were 
digested in an oven [21]. The digested samples were cooled at room temperature, filtered using filter 
papers, and collected in beakers. The following metals and metalloids were then analysed in batches 
with blanks using inductively coupled plasma–optical emission spectrometry (ICP-OES; Perkin 
Elmer, Optima 2100 DV, Pretoria, South Africa): Arsenic (As), Antimony (Sb), Cadmium (Cd), 
Chromium (Cr), Copper (Cu), Lead (Pb), Manganese (Mn), Nickel (Ni) and Zinc (Zn). The analytical 
accuracy was determined using certified standards (De Bruyn Spectroscopic Solutions 500 MUL20 - 
50 STD2) and recoveries were within 10% of certified values. The detection limits were: As—0.001 
mg/kg, Cd—0.0001 mg/kg, Cr—0.001 mg/kg, Cu—0.001 mg/kg, Mn—0.0025 mg/kg, Ni—0.001 
mg/kg, Pb—0.001 mg/kg, Sb—0. 001 mg/kg, and Zn—0.001mg/kg. 

2.3. Statistical Analysis 

The mean and standard deviation of four samples at each site from the respective concentrations 
of the elements in the sediments were calculated. Analysis of variance (ANOVA) was performed 
using SPSS to determine whether there were significant differences among the different sites for the 
concentrations of the elements. Pearson’s correlation matrix was used to identify the relationship 

Figure 1. Map of the study area, showing the locations of the seven sampling sites of the Blyde River.

2.2. Sampling and Analysis

Sediment samples were collected at seven sites along the Blyde River during the months
of February, April, July and October, in 2018. The samples were collected in acid pre-treated
polyethylene bottles. The sediment was frozen prior to chemical analysis. Gomphidae larvae were
sampled using a 30 by 30 cm SASS net with a 500 µm mesh size [20]. The samples collected at S3
and S7 were not sufficient for chemical analysis. Sediments and macroinvertebrate samples were
then analysed for elements at an accredited (ISO 17025) chemical laboratory (WATERLAB (PTY)
LTD, Pretoria, South Africa). The samples were put in acid-washed polypropylene pre-weighed
vials and dried at 60 ◦C for 24 h, and a mixture of HNO3 and HCl was added. Subsequently,
the samples were digested in an oven [21]. The digested samples were cooled at room temperature,
filtered using filter papers, and collected in beakers. The following metals and metalloids were then
analysed in batches with blanks using inductively coupled plasma–optical emission spectrometry
(ICP-OES; Perkin Elmer, Optima 2100 DV, Pretoria, South Africa): Arsenic (As), Antimony (Sb),
Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Manganese (Mn), Nickel (Ni) and Zinc (Zn).
The analytical accuracy was determined using certified standards (De Bruyn Spectroscopic Solutions
500 MUL20 - 50 STD2) and recoveries were within 10% of certified values. The detection limits
were: As—0.001 mg/kg, Cd—0.0001 mg/kg, Cr—0.001 mg/kg, Cu—0.001 mg/kg, Mn—0.0025 mg/kg,
Ni—0.001 mg/kg, Pb—0.001 mg/kg, Sb—0.001 mg/kg, and Zn—0.001mg/kg.

2.3. Statistical Analysis

The mean and standard deviation of four samples at each site from the respective concentrations
of the elements in the sediments were calculated. Analysis of variance (ANOVA) was performed
using SPSS to determine whether there were significant differences among the different sites for the
concentrations of the elements. Pearson’s correlation matrix was used to identify the relationship
between the metals. The ability of benthic macroinvertebrates to accumulate chemical elements was
quantified through the bioaccumulation factors (BF) according to Klavinš et al. [22]
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The bioaccumulation factor is calculated using the following formula:

BF = Corg/Csediment

where Corg is the element mass fraction in the organism (mg kg−1 dry weight) and Csediment is the
element concentration of the sediment (mg kg−1 dry weight).

3. Results and Discussion

The mean concentrations of the elements in the sediment samples at the different sites are shown
in Table 2. The concentrations of As, Cu and Sb varied significantly among the different sites (p < 0.05).
The variations in the concentrations of the elements among sites could be due to the type of effluents
washed into the river from the catchment. The highest concentrations of As, Cu, Sb, and Zn were
recorded at S3. The highest concentrations of Cr, Mn and Ni were recorded at S5, and the highest
concentrations of Cd at S6.

The high concentrations of most of the chemical elements may be due to direct or indirect land
surface runoff of agricultural fields at S3 and the release of urban sewage and industrial effluents at
S5 [23,24]. Furthermore, the grain-size distribution of the sediments at different sites could have also
contributed to the type and concentrations of the elements. The proportion of finer particles at S5
was higher than that of coarse grains and may have contributed to the high concentration of chemical
elements. Thus, as the grain size decreases, the metal content increases [25,26]. The mean concentration
of As was greater than the CCME [27] guideline value of 13 mg kg−1, dw at all the sites. The high
As concentration at S3 might have been coming from pesticides and fertilizers used in agricultural
fields [28,29]. The mean concentrations of Cr exceeded the guideline value of 37.3 mg kg−1, dw at all the
sites. Chromium and its salts are used in pigments and paints, in fungicides, and in chrome alloy and
chromium metal production [30]. In this study, the main source of Cr in the sediment was mainly from
agricultural activities. The concentration of Cu exceeded the guideline value of 37.3 mg kg−1, dw at all
the sites except S7. The high concentration of Cu in the study sites could be attributed to agricultural
activities (pesticides, herbicides and fungicides) and to municipal wastewater and discharges from
the catchment.
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Table 2. Concentrations (mg kg−1) of chemical elements at different sites in the Blyde River sediment samples.

Element
S1 S2 S3 S4 S5 S6 S7 SQG

AVE ± SD AVE ±SD AVE ±SD AVE ±SD AVE ±SD AVE ±SD AVE ±SD

As 29.04 19.6 57.2 59.2 107.57 49.3 51.03 40.5 44.88 46.6 50.79 46.0 6.23 3.6 5.9
Cd ND - 0.04 0.05 0.09 0.1 0.01 0.02 0.11 0.18 0.41 0.7 ND - 0.6
Cr 56.33 15.5 48.9 16.8 98.24 42.5 80.44 50.3 108.0 73.8 41.5 12.8 76.1 449 37.3
Cu 36.74 20.4 82.0 90.2 274.34 148.3 73.99 50.8 63.46 52.8 63.62 62.1 15.23 8.9 35.7
Mn 494.6 69.1 748.7 530.4 1175 490.5 949.8 635 1298.8 776 685.31 263 984.3 404 -
Ni 137.4 118 126.9 111.2 166.4 104.8 115.1 101 281.69 329 109.9 104 288.1 301 -
Pb 4.94 0.57 7.23 1.68 16.13 4.1 7.18 1.83 7.36 1.1 7.49 2.1 6.57 0.75 35
Sb 1.48 1.1 8.19 7.71 24.74 6.7 6.3 5.6 7.24 7.0 7.11 5.4 0.4 0.69 -
Zn 29.19 24.2 30.1 22.19 75.68 62.2 48.26 25.0 38.58 23.6 42.83 38.7 45.58 40.9 123

AVE: Average; SD: standard deviation; ND—not detected. SQG: Sediment quality guideline (CCME).
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The correlation matrix showed a very strong relationship between Cr and Ni (0.868), Cu and Zn
(0.897), and Pb and Zn (0.766), at a significance level of 0.01. There was a strong relationship between
As and Cr (0.635), Cd and Cu (0.760), Cr and Mn (0.679), Ni and Mn (0.750), and Cd and Zn (0.727) at
a significance level of 0.05 (Table 3). These results indicated that these elements originated from similar
pollution sources. The absence of a correlation among some of the elements suggests that they are
not controlled by a single factor [31]. The high concentrations of these elements in the sediments may
pose an ecological risk to the aquatic biota, especially bottom-dwelling organisms. The concentration
of Cd was very low in the river. The relatively low levels of the elements at the downstream sites
(S6 and S7) is attributed to the nature conservation practices at these two sites. This is an indication
that the conservation practice is having a positive impact on the downstream of the river.

Table 3. The correlation coefficients between chemical elements of the sediments in the Blyde River.

Element Sb As Cd Cr Cu Pb Mn Ni Zn

Sb 1 0.217 0.103 0.099 −0.271 −0.389 0.574 0.452 −0.289
As 1 0.111 0.635 0.259 −0.342 0.597 0.386 −0.161
Cd 1 −0.452 0.760 0.368 −0.110 −0.552 0.727
Cr 1 −0.086 −0.500 0.679 0.868 −0.392
Cu 1 0.586 −0.202 −0.386 0.897
Pb 1 −0.531 −0.628 0.766
Mn 1 0.750 −0.467
Ni 1 −0.556
Zn 1

The tissue of Gomphidae (Odonata) was analysed for these chemical elements; As, Cd, Cr, Cu,
Mn, Ni, Pb, Sb and Zn. Aquatic insects can accumulate pollutants such as heavy metals from stream
sediments and from food [32,33]. There were significant differences in the concentrations of Mn, Ni,
Pb and Zn recorded in the body tissues of the insect larvae (p < 0.05). The concentrations of the elements
in the body tissues varied among the sites, with the highest concentrations of all the elements with the
exception of Mn and Ni were at S1. The concentrations of most of the elements in the aquatic insect
were about five to 10 times those of the sediments. The larvae bioaccumulated lower concentrations
at the downstream site, S6 (Table 4). The highest bioaccumulation of elements was at S1, instead of
S3 or S5, which had the highest concentrations of most of the elements in the sediments and could
partly be due to the local bioavailability of these elements.

Table 4. Concentration of chemical elements (Mean ± S.E) in the tissue of Gomphidae (Odonata) larvae
at different sites of the Blyde River (S.E: standard deviation).

Element S1 S2 S4 S5 S6

As 32.26 ± 0.0 19.81 ± 2.4 12.32 ± 0.0 16.59 ± 3.5 7.3 ± 3.3
Cd 0.56 ± 0.0 0.28 ± 0.03 0.17 ± 0.0 0.09 ± 0.03 0.25 ± 0.25
Cr 13.81 ± 0.0 4.59 ± 1.78 2.05 ± 0.0 5.55 ± 2.2 1.82 ± 0.53
Cu 187.13 ± 0.0 101.07 ± 28.1 78.18 ± 0.0 61.1 ± 29.2 52.9 ± 26.6
Mn 3173 ± 0.0 2106 ± 395 3068 ±0.0 3637 ± 1038 563.2 ± 33.6
Ni 11.13 ± 0.0 8.17 ± 2.79 9.99 ± 0.0 29.47 ± 10.3 6.23 ± 5.7
Pb 1.9 ± 0.0 0.55 ± 0.1 0.33 ± 0.0 1.11 ± 0.6 0.38 ± 0.05
Sb 3.54 ± 0.0 0.97 ± 0.05 1.46 ± 0.07 2.18 ± 0.95 1.03 ± 0.17
Zn 362.2 ± 0.0 168.2 ± 3.9 183.8 ± 0.0 108.7 ± 57.6 102.3 ± 41.2

Most of the elements detected in high concentrations in the sediments and in the insect larvae
are widely used in several fertilizers as a source of micronutrients. The larvae of Odonata are known
to tolerate heavy metals [34]. The concentrations of Cd, Cu, Zn and Mn were found in higher
concentrations (>50%) in the insect tissue than in the sediment. Meanwhile, the concentrations of As,
Cr, Ni, Pb and Sb were higher in the sediments than in the tissue of the larvae (Figure 2). The elements
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in high concentrations in the sediments, such as Mn, Cu and Zn, were highly bioaccumulated in
the insects. In this study, the transfer of Cr, Ni and Sb into the body tissue of the insect larvae was
relatively less efficient, whereas Cu, Mn and Zn showed relatively high transfer efficiency. In aquatic
insects, the concentrations of Cd, Ni, Cr, As, Pb, Cu, Ti, Zn and Mn change with size, life cycle stages,
and different bioaccumulation patterns [35]. For example, Caddisflies have been found to accumulate
Pb, regulate Zn and Cu, while Stoneflies accumulate Pb and regulate Zn [36].Int. J. Environ. Res. Public Health 2020, 17, x  7 of 9 
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Figure 2. Composition of chemical elements in the sediments and the tissue of Gomphidae larvae.

The bioaccumulation factor (BF) of the elements in the insect larvae of Gomphidae from the Blyde
River are shown in Figure 3. The BF value was >1 for Cu, Mn, Sb and Zn, thus these elements may
be transferred to fish, and then to humans who consume fish from the river. The BF was high at
the upstream sites, S1 and S2, indicating a high bioavailability of the elements for the insect larvae,
whereas the lowest BF was at S6 (downstream site), with relatively low concentrations of the elements in
the sediments. The results show that the larvae of Gomphidae accumulate chemical elements from the
environment and they can be used to detect metal and metalloid pollution in aquatic environments [37].
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4. Conclusions

The metal and metalloid analysis of the river sediments showed variations in their concentrations
among the sites. The effects of these elements may have consequences not only on aquatic insects,
but also on higher trophic levels, such as fish and humans. In the insect body tissue, the concentrations of
most of the chemical elements were higher than in the sediments, meaning that the insects accumulated
the elements from the sediments. The study suggests that the concentrations of many of the elements
studied are too high in the sediment and the larval tissue; it is therefore necessary to monitor and
control chemical pollution in the river. Further study is required to assess the level of accumulation in
the different functional groups of macroinvertebrates and to determine the transfer of toxic elements
through the food chain.
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