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A B S T R A C T

The pursuit of translational biomarkers is complex due to the heterogeneous human pathophysiology, but critical 
for disease diagnosis, prognosis, monitoring therapeutic efficacy, and for patient stratification. In HIV-associated 
neurocognitive impairment (NCI), biomarkers that delineate the trajectory of neuropathogenesis and neuro-
cognitive sequelae are critical, particularly considering confounders such as substance use, including Metham-
phetamine (METH). METH use is a significant health concern among persons living with HIV (PWH), aggravating 
cognitive deficits and neuroinflammation despite of antiretrovirals, introducing elements in the microenviron-
ment that are fundamentally differerent in relation to non-METH users, such as high levels of dopamine (DA) 
affecting HIV-innate immune targets. Yet, current biomarkers do not detect these differences. We hypothesized 
that predefined DA-induced signatures detectable in peripheral blood leukocytes, can distinguish HIV+ METH 
users compared to HIV-negative or PWH that are non METH users. The elevated expression of CD8A, CREBBP, 
CCL5, and combinations of dopaminergic pathway transcripts clustered METH users with detectable CSF viral 
load and major depressive disorder (MDD), indicating neuroimmune-mechanistic links. Cathecol-o- 
methyltransferase (COMT) gene polymorphisms affecting DA metabolism improved the identification of PWH 
using METH with biomarkers. The results indicate that underlying immunedopaminergic mechanisms provide 
signatures and genotypes that can identify PWH that are METH users and their attributes.

1. Introduction

The pursuit of translational biomarkers is complex, arising from the 
heterogeneity inherent in human pathophysiology. Biomarkers are 
indispensable tools for disease diagnosis and prognostication and har-
bingers of therapeutic efficacy. Furthermore, they facilitate patient 
stratification in clinical research and enable the monitoring of treatment 
response. A critical yet underexplored domain within biomarker 
research is the elucidation of neuropathogenesis, particularly in the 
context of HIV-associated neurocognitive impairment (NCI). The iden-
tification of biomarkers that can delineate the trajectory of HIV patho-
genesis and its neurocognitive sequelae is paramount, especially when 
considering the confounding influence of comorbid substance use 

disorders.
Among the substances commonly misused, methamphetamine 

(Meth) is notably prevalent within cohorts of people with HIV (PWH) 
compared to people without HIV (PWoH) (Atkinson et al., 2009; Halkitis 
et al., 2001; Semple et al., 2004), acting as a catalyst for risky HIV 
transmission behaviors and exacerbating neurocognitive impairment. 
Meth exerts its influence on the central nervous system by dysregulating 
dopaminergic neurotransmission, a pathway already compromised by 
HIV and its proteins, as shown in human specimens and in various 
models of neuroHIV (Baek et al., 2020; Kesby et al., 2017, 2019; Basova 
et al., 2021; Fitting et al., 2006; Moran et al., 2012, 2013; Nath et al., 
2000). This dysregulation provides a plausible link to the elevated 
addiction rates observed among PWH. Meth and other stimulants, act on 
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the reward system by elevating the neurotransmitter dopamine (DA), 
produced by dopaminergic neurons in the brain. On the other hand, HIV 
and its proteins, suppress components of the dopaminergic system (Baek 
et al., 2020; Kesby et al., 2017, 2019; Zauli et al., 2000), in part 
explaining the high prevalence of addiction in this population.

The dysregulation in the dopaminergic system affects directly im-
mune response components, due to the expression of DA receptors on 
the surface of immune cells, particularly in cells that are HIV targets and 
contributors to the inflammatory process in the brain and elsewhere 
(Basova et al., 2018; Calderon et al., 2017; Coley et al., 2015; Gaskill 
et al., 2009, 2012), and resulting in important differences in inflam-
matory markers (Basova et al., 2023a). The brain microenvironment of 
PWH that are Meth users is fundamentally differerent in relation to 
non-METH users, including due to high levels of dopamine (DA) 
affecting HIV-innate immune targets. Immune cells in the periphery may 
express signs of response to this hyperdopaminergic environment. Yet, 
current biomarkers do not detect these differences. DA-associated im-
mune signatures may be important tools to identify inflammatory pro-
cesses due to substance use, but also to fully capture the impact of 
comorbidities in the population of PWH. DA-dependent inflammatory 
signatures may be critically related to uncontrolled viral load in sub-
stance users, particularly in populations at risk of psychosocial stress (Li 
et al., 2022; Cherenack et al., 2023). A recent review of 28 study cohorts 
has indicated that in 23 of them stimulant substance use is indepen-
dently associated with detectable viral loads despite HIV treatments 
(Ross et al., 2023). We have recently discussed the importance of syn-
demic substance use and other psychosocial and mental health stressors 
to address the challenges of achieving viral suppression (Grelotti DJM 
et al., 2024). Interestingly, an evidence-based behavioral intervention 
trial in PWH that are Meth users has been shown to be effective at 
decreasing the drug use, but also at modifying pathways and epigenetic 
signatures activated by DA in leukocytes (Carrico et al., 2024). These 
observations further highlight the importance of the 
neuro-immune-dopaminergic cross-communication in the context HIV 
infection, and further suggest that DA signatures in leukocytes are 
important tools to assess immune processes in Meth users.

Building on our previous work, which identified distinct transcrip-
tional signatures with biomarker potential in HIV-infected monocytic 
cell lines—such as S100A8 and A9, components of the pro-inflammatory 
MRP8/14 complex (Basova et al., 2023b)—this study ventures into a 
broader analysis. We employ a systems biology framework to interro-
gate an extensive gene expression dataset from leukocytes of 202 in-
dividuals, encompassing both PWH and uninfected controls, with and 
without a history of Meth use, dependence and abuse. Our objective is to 
refine the specificity of biomarkers for HIV-associated NCI by discerning 
the transcriptional changes uniquely attributable to Meth use within the 
HIV-positive population.

By leveraging gene network analysis, we aim to dissect the composite 
immune and dopaminergic signaling alterations induced by Meth in the 
milieu of HIV infection. This methodology promises to transcend the 
limitations of single-gene assessments, which are often subject to con-
founding variables, and instead provide a holistic view of the perturbed 
biological networks. The insights gleaned from this analysis are antici-
pated to not only define biomarkers and refine diagnostic criteria for 
HIV-associated NCI but also to pinpoint novel therapeutic targets for 
intervention in the co-morbid context of Meth abuse and HIV.

We have identified individual transcriptional dopaminergic signa-
tures in HIV-infected monocytic cell lines with biomarker value in 
humans, such as S100A8 and A9, which encode the pro-inflammatory 
complex MRP8/14, and can identify Meth users with detectable virus 
in the CSF (Basova et al., 2023a). We analyzed a comprehensive array of 
gene expression patterns that integrate immune and dopaminergic 
signaling using a systems biology methodology in total leukocytes from 
blood specimens derived from PWH and people without HIV (PWoH), 
chronic Meth users (i.e., meeting DSM-IV diagnostic criteria for lifetime 
methamphetamine dependence + METH abuse or dependence in the last 

18 months) (METH+) or not (METH-) to search for additional bio-
markers of HIV-associated NCI tailored to distinguish processes occur-
ring in the brain of Meth users. The approach involving gene network 
analysis, increased the power of discovery, by expanding the focus on 
disease, biological processes, and pathways affected by Meth in the 
context of HIV, narrowed to consequences to viral host interactions, 
regulation of HIV replication, inflammation in the brain and effects on 
cognitive function, offering mechanistic insights and biomarker oppor-
tunities tailored to identify NCI in the context of substance use and its 
complexity. The approach is a development from single genes suscep-
tible to confounders, towards the identification of sets of genes involved 
in processes of interest in the HIV-1 pathogenesis, discriminating the 
damaging effects of Meth.

2. Material and methods

Human cohorts, specimens and study design – Specimens were 
peripheral blood leukocytes isolated from participants that included 202 
adults enrolled by NIH-funded studies at the University of California San 
Diego’s HIV Neurobehavioral Research Program (HNRP) and Trans-
lational Methamphetamine Research Center (TMARC) under informed 
consent and approved protocols. The subset of PWH and PWoH selected 
for this study were by design males, between 35 and 44 years old, due to 
cohort characteristics and to increase statistical power. The participants 
were divided based on HIV serostatus (HIV+/− ) and Meth use 
(METH+/− ). METH+ was defined as meeting lifetime DSM-IV criteria 
for methamphetamine use or dependence, and METH dependence or 
abuse within 18 months (LT Methamphetamine Dx), with 8.2% urine 
toxicology positive/current METH users. A cross-sectional design 
assembled the following groups: HIV-METH- (n = 47), HIV+METH- (n 
= 62), HIV-METH+ (n = 39), and HIV+METH+ (n = 54). Exclusion 
criteria were a history of non-HIV-related neurological, medical, or 
psychiatric disorders that affect brain function (e.g., schizophrenia, 
traumatic brain injury, epilepsy), learning disabilities, or dementia. In-
clusion of major depressive disorder (MDD) and polysubstance use 
occurred in the cohort due to the high prevalence among Meth users and 
accounted for in the analysis models. Life time (LT) and current MDD 
and substance use diagnosis were established using computer-assisted 
Composite International Diagnostic Interview (CIDI, version 2.1. 
World Health Organization), with Lifetime MDD according to DSM-IV 
(Cattie et al., 2012; Kessler and Ustun, 2004). LT and current poly-
substance use was further examined as described (Saloner et al., 2019) 
and by urine toxicology (alcohol, cannabis, cocaine, hallucinogen, 
inhalant, methamphetamine, opioids, PCP, sedatives or any other) 
respectively, performed as standard of care by the HNRP and TMARC at 
the time of blood collection, with positivity for one or more substances 
in addition to Meth. Supplementary Table 1 shows characteristics such 
as age, health and virological parameters, and psychiatric scores. The 
cohort was 61.9% White, 21.8% Hispanic, 12.9% Black, 2.0% Asian and 
1.5% other ethnicity. At visits, neurocognitive scores were collected 
using a comprehensive neurocognitive test battery designed to optimize 
sensitivity to HIV and METH-associated deficits across seven cognitive 
domains (verbal fluency, speed of information processing, executive 
functions, learning, memory, motor) (Carey et al., 2004). Raw scores 
from individual tests were converted to demographically adjusted 
T-scores which were then converted to domain and global T-scores. 
Individual test T-scores were also converted to deficit scores, ranging 
from 0 (T-score>39, no impairment) to 5 (T-score<20, severe impair-
ment) and used to derive domain deficit scores (DDS) and a global deficit 
score (GDS), the latter which reflects the number and severity of NC 
deficits across the test battery, with a cutoff of GDS>0.5 used to classify 
NCI (Norman et al., 2011).

All participants also completed a modified version of the Lawton & 
Brody Activities of Daily Living (ADL) Scale, a self-report questionnaire 
assessing their current level of everyday functioning. The ADL Scale 
includes 13 items detailing their level of independent functioning across 
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various domains of functioning (e.g., financial and medication man-
agement (Lawton and Brody, 1969). Participants are asked to rate their 
best and current level of independence across each domain. The total 
score is the total number of activities for which there is a need for 
increased assistance, with a range of 0 (no need for increased assistance) 
to 13 (increased dependence in all activities). Participants were classi-
fied as dependent in their ADLs if they reported increased dependence 
on two or more areas of functioning (Heaton et al., 2004).

Peripheral blood was collected to isolate leukocytes and plasma, 
which were stored in liquid nitrogen and − 80 ◦C, respectively, until the 
assays were used. RT-PCR measured CSF and plasma viral loads in CLIA- 
certified laboratory. CD4 and CD8 T-lymphocyte counts were measured 
by flow cytometry for PWH. Nadir CD4 levels were taken from medical 
records and study-obtained values.

Peripheral Leukocytes specimens – For assays, archived specimens 
were thawed in fetal bovine serum, washed and viability was counted 
using disposable hemocytometers (Bulldog Bio, Portsmouth, NH). Cell 
numbers were adjusted for flow cytometry and for digital transcriptome.

Flow Cytometry - Washed cells with adjusted concentrations were 
resuspended in HBSS without phenol red, containing 2% fetal bovine 
serum and 0.2% sodium azide, and stained with pre-defined concen-
trations of subset and activation-specific antibodies. The antibodies used 
in staining were: CD4 (clone RPA-T4), CD8 (clone SK1), CD11b (clone 
M1/70), CD14 (clone M5E2), and CD16 (clone B73.1), all from Bio-
Legend (San Diego, CA). We also used an antibody against MRP8/14 
(clone Mac387, BioRad, Herculer, CA). Following incubation, cells were 
washed and resuspended in 4% Paraformaldehyde. Tubes were kept at 
4 ◦C and protected from light until acquisition using a CytoFlex S 
benchtop platform (Beckman Coulter, Indianapolis, IN), and then 
analyzed using FlowJo software (FlowJo LLC, Ashland, OR).

RNA extraction – The RNA purification from pellets was performed 
using Nucleospin RNA Mini kit with DNA separation column (Macherey- 
Nagel, Bethlehem, PA). RNA quality and levels were monitored in a 
NanoDrop spectrophotometer ND-2000 (Thermo Scientific, Waltham, 
MA), and used to adjust concentrations for subsequent assays.

Digital Multiplex Gene Expression– The nCounter gene expression 
assays (NanoString Technologies, Seattle, WA) were performed using a 
custom-made combination of Neuropathology and Neuroinflammation 
NanoString panels. Briefly, panel code-set probes were hybridized with 
150 ng of total RNA per specimen or total cell pellets over 18hr at 65 ◦C 
in a SimplyAmp Thermocycler (Applied Biosystems, Waltham, MA). 
Hybridized RNA was diluted in water and loaded into nCounter SPRINT 
cartridge (NanoString) in nCounter SPRINT Profiler, and then RNA- 
conjugated probes were counted via NanoString Sprint Profiler tech-
nology, following manufacturer’s protocols. Results from each panel 
were merged into a data file. Normalization was performed for each 
sample by dividing each sample’s raw count profiles by the geometric 
mean of 8 reference genes in nSolver, as previously described (Danaher 
et al., 2017). Genes that did not show signal in any specimen were 
excluded from subsequent systems analysis.

Statistical analysis – Gene expression scores were calculated as the 
log2 normalized expression of each transcript. Variance due to noise for 
each score was estimated in a linear mixed model. Ward’s linkage 
analysis was used to define hierarchical gene clusters to isolate bio-
markers, followed by Analysis of Variance. Fitted value models were 
used to determine variable and intercept effects. Pairwise comparisons 
and false discovery rate (FDR) adjustments were calculated for each 
group. Multiple comparisons were performed using pairwise Tukey 
HSD, with Tukey-Kramer adjustment, or Bonferroni. Predictor screening 
was used to determine specific effects of individual variables, named 
HIV and METH, and their interaction. Mixed models were used to 
identify interactive effects of comorbidities and clinical parameters on 
gene expression, as well as genotype. All statistical analysis was per-
formed in JMP Pro 15.2.0 software (SAS Institute Inc., Cary, NC, USA) 
and Prism 9.0 (GraphPad, Boston, MA).

Systems analysis and Visualization tools – Gene interactions were 

identified in Cytoscape 3.9.0 platform (www.cytoscape.org, 2020) 
(Shannon et al., 2003) using local search features in GeneMANIA plugin 
(Franz et al., 2018; Montojo et al., 2010, 2014a, 2014b; Warde-Farley 
et al., 2010) (www.genemania.org), with Homo sapiens sources from 
Reactome (Haw et al., 2011; Stein, 2004) (www.reactome.org, 2020) 
and BioGRID_ORGANISM (Oughtred et al., 2021; Stark et al., 2006) (htt 
ps://thebiogrid.org, 2020), for identification of genes associated by 
pathway, protein interactions and genetic interactions, for visualization 
of broad patterns linked to group assignment. The analysis of processes 
and pathway annotations was then performed in DAVID Bioinformatics 
Resources 6.8 (https://david.ncifcrf.gov, 2020). Genes listed in signifi-
cantly increased and decreased pathways were then placed back into 
Cytoscape 3.9.0 for visualization of narrow clusters of interest using 
GeneMANIA. Transcription factor regulation was predicted using ChEA3 
(Keenan et al., 2019) using a 54 input gene set most likely upregulated in 
the HIV + METH + group as a whole, compared to HIV-METH+. The top 
10 transcription factors ranked based on the highest number of over-
lapping targets (Supplementary Table 3) were visualized using iRegulon 
in Cytoscape 3.9.0 with merged predicted regulated targets, using only 
genes upregulated in PBLs from HIV + METH + subjects exhibiting 
COMT Met/Met genotype and not in Val/Met or Val/Val as input. 
(Basova et al., 2021; Tjitro et al., 2018).

3. Results

Peripheral leukocyte transcripts as markers of HIV, Meth, and their 
interaction with NCI were tested using a targeted digital multiplex 
custom analysis. The construction of a panel of 784 transcripts was 
guided by the knowledge of chronic inflammation and viral persistency 
linked to NCI in PWH, confounders (Mediouni et al., 2015) introduced 
by Meth due to the activation of both overlapping as well as 
non-redundant pathways leading to inflammation and potentially 
affecting the response to the virus in the brain (Basova et al., 2020, 
2022). In addition, the construction of a biomarker panel was also 
guided by reports that both HIV and Meth, independently and together, 
lead to disorders of the dopaminergic system (Baek et al., 2020; Basova 
et al., 2018, 2023a; Calderon et al., 2017; Gaskill et al., 2013).

The specimens were selected from individuals assigned as males at 
birth, with similar age, education, and race/ethnicity distribution across 
groups (Supplementary Table 1), in order to decrease the number of 
variables and confounders, and increase power. The HIV + groups 
(HIV+/METH- and HIV+/METH+) did not differ in CD4 nadir, or in 
plasma or CSF viral load (Supplementary Table 1).

As expected, HIV + groups exhibited significantly lower values of 
current CD4+ T cells, and higher CD8+ T cells (Supplementary Figure 1A
upper and lower panels, respectively). The percentage of CD11b +
monocytes was significantly decreased in the blood of HIV+/METH +
group compared to HIV-/METH- controls, but no differences were 
observed between other groups (Supplementary Figure 1B, upper 
panel). However, the percentage of activated CD11b + monocytes, 
expressing CD14 and CD16high, was significantly increased in HIV-/ 
METH + subjects (Supplementary Figure 1B, middle panel), suggesting a 
higher availability of circulating pro-inflammatory monocytes linked to 
Meth use. Interestingly, in HIV+/METH- and in HIV+/METH + sub-
jects, the percentage of this pro-inflammatory subset in the blood was as 
low as in negative controls. This could be due to higher sequestration 
into tissues. Importantly, both HIV and Meth, and the interaction be-
tween Meth use and HIV, were associated with worse global neuro-
cognitive deficits, determined by Global deficit scores (GDS), and with 
domain-specific scores for Executive, Verbal, Learning, and Motor 
Mean domain deficit scores (DDS), and number of self-reported com-
plaints associated with Instrumental Activities of Daily Living (IADL), as 
indicated in Fig. 1. The reasons for such effects, however, may differ 
between HIV and Meth use, making it critical to examine other addi-
tional molecular markers with relevance to neuroinflammation in the 
context of substance use on peripheral leukocytes. Signatures of the 
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response of leukocytes to neurotransmitters that Meth enhances, may 
offer biomarkers that can distinguish the mechanisms leading to deficits 
in these groups.

Our previous studies on PWH have indicated that disturbances in 
gene networks assigned to biological processes able to identify comor-
bidities and stratify individuals that are users of cannabis (Basova LAL 
et al., 2022), using analytical strategies that were similar to what was 
used here to sort effects of Meth chronic use detectable in PWH in-
dividuals with cognitive deficits. For that, the cohort was divided in 
groups based on HIV infection (H, + or -), and Meth use (M, + or -), as in 
H-M-, H + M-, H-M+, H + M+. The specimens were peripheral blood 
leukocytes (PBL) from PWH and controls. Co-morbidities and poly-
substance use were additional factors considered in the analysis of DA 
signatures in human PBLs, as previously described (Basova LAL et al., 
2022; Rogers et al., 2023).

All genes were normalized to 8 housekeepers prior to input. Using 
Gene Network Analysis (GNA) strategies, we found genes and biological 
processes in HIV + Meth users that matched DA signatures previously 
identified in vitro. The analysis of transcripts positively or negatively 
affected by HIV, Meth or their interactions in comparison to uninfected 
non-Meth users, indicated that functional annotations of interest to the 
cohort were significantly affected, including Neuroactive factors and 
receptors and dopaminergic response (p = 4.2 E− 36), amphetamine 
addiction (p = 2.4 E − 29) and Host-virus interactions (p = 1.2 E − 11), as 
shown in Supplementary Table 2. To identify biomarker candidates, we 
used two strategies to segregate HIV in the context of Meth: 1) Hierar-
chical clustering, patterns and predictor screening on transcriptional 
values normalized by mean expression levels, and B) Pairwise compar-
isons of internally normalized values with a focus on upregulated tran-
scripts. We sought to identify candidates with consistently significance 
and overlapping hits in both approaches. Additional candidates were 
further analyzed to consider other comorbidities and genotypes. Visu-
alizations were facilitated by Cytoscape 3.9.0.

3.1. Hierarchical clustering (Fig. 2)

In the first approach, the examination of means and error sum of 
squares in hierarchical clustering was visualized in heat maps showing 
2-way dendrograms, with hierarchical gene clusters by group (HIV- 
METH-, HIV + METH-, HIV + METH+ and HIV-METH+) (Fig. 2). 
Interestingly, we observed a strong pattern of gene transcription sup-
pression in leukocytes from HIV-METH + subjects (Fig. 2A), as seen by 
the color blue indicative of decrease in relation to the average expression 
levels, which was not observed in HIV + METH + peripheral leukocyte 

specimens. By inspecting clustering patterns, we selected clustered areas 
where normalized gene expression indicated a systematic difference in 
one non-control group of interest compared to the others (Fig. 2B–D), 
and which may more likely hold potential biomarkers and form clusters 
connected by genetic, physical, or pathway interactions, as well as co- 
expression and co-localization, suggestive of orchestrated behaviors in 
response to variables. For instance, the cluster in Fig. 3B indicated genes 
more likely to be increased by Meth, and potentially able to distinguish 
between HIV+ and HIV- Meth users. Interestingly, these proximal genes 
interact based on physical, genetic and pathway interactions, as well as 
due to co-expression, suggesting potential underlying orchestrated 
processes. Likewise, gated clusters suppressed by Meth in HIV- subjects 
but detectable in other groups (Fig. 3C) were found to interact by similar 
means, potentially contributing to converging cellular outcomes. 
Importantly, this strategy allowed the identification of genes increased 
in HIV + METH + subjects but not in other groups (Fig. 2D). The genes 
in Fig. 2D were linked to Neurodegeneration (KW_Diseases, p = 0.002), 
and with KEGG Pathway functional annotations in Apoptosis (p = 2.6E- 
9), Proteoglycans (p = 1.8E-6), HIV infection (p = 3.2E-5), VEGF 
signaling (p = 2.7E-5) and Cellular senescence (p = 1.5E-3), and due to 
their upregulation may be potential biomarkers of HIV in the context of 
Meth.

3.2. Upregulated gene networks with a focus on context (Fig. 3)

We conducted gene network analyses and visualized differences in 
the expression of DA-induced signatures detectable in human peripheral 
blood cells. Fig. 3A–D shows results of comparisons with a focus on 
context; METH effects in the context of HIV (Fig. 3A and B), HIV effects 
in the context of METH (Fig. 3C and D). In this approach, transcriptional 
values were only internally normalized with housekeeping genes but not 
further normalized for average gene expression in the whole experi-
ment, to enhance effects in individual genes.

Overall, the genes that were positively or negatively changed in HIV- 
Meth + subjects compared to HIV-METH- were linked to pathways in 
neurodegeneration (p = 6.0E-9) and dopaminergic synapse processes (p 
= 4.7E-5), including AKT3, FOS, G-protein subunits, ARRB2, CREBBP, 
CAL1 and COMT. Pathways on host-virus interactions (p = 9.8E-11), 
inflammation (p = 2.2E-6), and leukocyte adhesion (p = 4.2E-2) over-
lapped in genes involved in dopaminergic effects identified in pathway- 
based gene networks.

Fig. 3 shows the comparison between HIV + Meth+ and HIV + Meth- 
groups, which revealed transcripts with strong biomarker potential, due 
to their contribution to their distinctive transcriptional property 

Fig. 1. Cognitive Assessments. A) Global Deficit Score (GDS), B) Mean Executive, Verbal, Learning, and Motor function domain deficit scores (DDS), C) Instru-
mental Activities of Daily Living (IADL) Complaints. P values in the figure for assigned comparisons. P values from adjusted all pairwise Tukey HSD multiple 
comparisons as indicated.
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behaviors indicating targeted effects of Meth in the context of HIV. 
For visualization, pathway-based gene networks were designed from the 
100 genes most upregulated by Meth in the context of HIV (from the 
comparison between H+M+ vs H + M-, Fig. 3A and B), and by HIV in the 
context of Meth (from the comparison between H+M+ vs H-M+, Fig. 3C 
and D). Of these, 55 genes were significantly upregulated by Meth in the 
context of HIV, or H+M+ compared to H + M-, as indicated by square 
shapes, and were used in further analyses for effects of genotype in 
section 5 of results. The Cytoscape 3.9.0 software and GeneMania were 
applied, where colors indicated fold-change (shades of orange indicate 

increase, and shades of blue decrease), and shape of the nodes indicated 
statistical significance (circles p > 0.05 and squares p < 0.05 in the 
indicated comparisons). Hits with better biomarker potential for further 
testing were selected from these patterns, where genes significantly 
upregulated by Meth in the context of HIV (stronger orange and square 
shapes in Fig. 3A) were prioritized. Overlapping with Meth alone (>30% 
overlap) were genes annotated to neurodegeneration (p = 0.012), 
dopaminergic synapse (p = 1.8E-4), and inflammation (p = 0.0022). 
Host-virus interactions (p = 4.2E-11), autophagy and apoptosis (p =
6.5E-7 and 5.3E-3, respectively), splicing and positive regulation of 

Fig. 2. Hierarchical clustering and identification of biomarker patterns-associated interactions. Transcriptional values were normalized to housekeeping 
genes and then by the overall expression levels used in a Ward’s linkage analysis. Patterns were inspected visually, and gene clusters were gated for isolating sets of 
biomarkers. Interactions between gated genes were predicted in Genemania and visualized in Cytoscape 3.9.0. A) Heat maps showing 2-way dendrograms, with 
hierarchical gene clusters by group (HIV-METH-, HIV + METH-, HIV + METH+ and HIV-METH+). Rectangles indicate gated genes by patterns, magnified as follows. 
B) Genes with scrambled patterns that differ between groups, and their interactions. C) Genes transcriptionally suppressed in HIV-METH+ and their interactions. D) 
Genes upregulated in HIV + METH + compared to other groups, and their interactions.
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transcription (p = 2.2E-8), and AGE-RAGE signaling pathway (p = 1.6E- 
7), were significantly perturbed by Meth in the context of HIV. Specific 
gene signatures upregulated by Meth in the context of HIV were 
CD8A, SLA, TRIM28, RhoA, INPP4A, HDCA6 and genes involved in RNA 
metabolism and splicing, such as SRSF4 and the DEAD-box gene DDX23. 
These biomarkers were efficient at distinguishing HIV + Meth users 
from the other groups. The increase in CD8A suggests a higher number 
of cytotoxic CD8 T cells, which were confirmed by flow cytometry (not 
shown). The increase in SLA (Src-like adaptor) detectable in humans, 

suggests enhanced adaptive immune responses, confirming our previous 
findings in the macaque model of HIV and Meth (Najera et al., 2016)). In 
addition, HDAC6 (Histone deacetylase 6) and TRIM28 (Tripartite 
Motif-containing Protein 28) are involved in silencing gene transcrip-
tion, including HIV (Ait-Ammar et al., 2021).

The network with the most upregulated genes by HIV in the context 
of Meth (Fig. 3D) did not have power to distinguish the group com-
parisons (Fig. 4C). Yet, there were important genes, such as the tran-
scription factors CREBBP and PRKACA, suggestive of signaling 

Fig. 3. Gene Network Analysis (GNA) visualization of differences in the expression of DA-induced signatures detectable in human peripheral blood cells. 
DA signatures were validated by a Nanostring transcript panel. GNA strategies identified pathway-based clusters (blue connectors) visualized for the identification of 
nodes with biomarker value in H-M-, H + M-, H-M+, H+M+ subject specimens, n = 52–53/group. The 100 genes most upregulated by Meth (A, B) in the context of 
HIV, were visualized in A) HIV + METH + vs HIV + METH- and B) in HIV + METH + vs HIV-METH + comparisons. The 100 genes most upregulated by HIV (C, D) in 
the context of Meth, were visualized in C) HIV + METH + vs HIV + METH- and D) in HIV + METH + vs HIV-METH + comparisons. Shades of blue – downregulated, 
shades of orange – upregulated. Square shapes indicate p < 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.)
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downstream GPCRs, as well as RANTES/CCL5, which affects inflam-
mation and viral entry. As individual signatures, CREBBP and CCL5, 
along with other strong genes (Fig. 5) found by this and the previous 
approach were more likely to be upregulated in H+M+ specimens.

3.3. Overlapping genes between approaches and their numerical value

Within the expression patterns identified in the hierarchical clus-
tering approach (Fig. 3), we selected genes that were also identified in 
gene network analysis (Fig. 4), and which showed statistical significance 
between groups, indicating potential biomarker value for identifying 
subjects in the groups, by HIV or METH status, or by interactions.

Overall, the majority of the individual transcriptional biomarkers 
replicated the main observations in Fig. 2A, showing significant sup-
pression in uninfected Meth users compared to other groups (Fig. 4). 
These include transcripts also identified in GNA, such as AKT3 (Fig. 4A), 
FOS (Fig. 4B), and ARRB2 (Fig. 4C). On the other hand, some markers 

that were significantly suppressed in uninfected Meth users were also 
significantly upregulated in HIV + Meth users. These included CREBBP 
(Fig. 4D), CD8A (Fig. 4E), HDAC6 (Fig. 4F), ITGAX (Fig. 4H) and VEGFA 
(Fig. 4I). CCL5 expression raised special attention because it was sig-
nificant and consistently upregulated in specimens from the HIV +
METH + group compared to all the other groups, and it differed from 
other genes because it was not suppressed in uninfected Meth users 
(Fig. 4G), indicating a good biomarker value.

Despite the overall decrease in gene expression in the HIV-METH +
group, upregulation in isolated genes identified in hierarchical clus-
tering and in gene networks, proved useful to distinguish that group 
(Fig. 5). This was the case for CLU (Fig. 5A), DNM2 (Fig. 5B), IRF8 
(Fig. 5C), KRAS (Fig. 5D), MECP2 (Fig. 5E), and PRKCQ (Fig. 5F). 
Together, the genes in Figs. 4 and 5 can be important markers of METH 
use disorder alone and in the context of HIV.

Fig. 4. Individual transcripts with ability to distinguish the HIV/METH groups. Average counts per group for genes that are suppressed or unchanged in 
uninfected Meth users and show significance in ANOVA and one or more post-hoc group comparisons. A) AKT3, B) FOS, C) ARRB2, D) CREBBP, E) CD8A, F) HDAC6, 
G) CCL5, H) ITGAX, I) VEGFA. All transcripts were internally normalized to the average of 8 housekeeping genes. All genes in this figure had p < 0.05 in one-way 
ANOVA. Bonferroni’s post-hoc tests indicated in the figure for assigned comparisons, if significant.
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3.4. Signature links with outcome

Among the signatures identified in both analysis approaches (hier-
archical clustering and gene network analysis) as most elevated in 
HIV+/METH + individuals, we selected three genes for further exami-
nation in respect to important clinical variables. These genes were 
CD8A, CREBBP and CCL5, which were considered outstanding due to 
their overall highest expression levels, which may be beneficial to the 
development of detection assays for use clinical settings, and their 
ability to segregate groups. We examined whether their expression 
within groups could distinguish important outcomes, such as ability to 
control virus in plasma and CSF, as well as neurocognitive deficits or 
neuropsychiatric comorbidities (Fig. 6). Although there was an overall 
higher expression of these genes in HIV + Meth users compared to other 
groups, neither CD8A, CREBBP or CCL5 could distinguish between in-
dividuals with detectable vs. undetectable plasma or CSF viral load 
(Fig. 6A and B). NCI (as measured by GDS≥0.5) was distinguished in 
uninfected individuals by CREBBP, but not in HIV+ and/or METH +
groups (Fig. 6C). CCL5 showed significant differences between NC 
normal and impaired HIV- Meth users and in HIV + non-users, but not in 
other groups. When examining Global Mean T scores, higher expression 
of CCL5 ocurred in more impaired individuals in both HIV+/METH- and 
HIV-/METH + groups, while in the HIV+/METH + group, CCL5 was 
higher in individuals with better performance (Fig. 6D). Decreased 
levels of CREBBP distinguished individuals with current Major depres-
sive disorder (MDD) in all HIV+ and METH + groups (Fig. 6E). On the 
other hand, these genes were elevated in HIV + Meth users and also 

using any other substance (Fig. 6F).

3.5. Effects of comorbidities and COMT genotype

Val158met (rs4680) is a common single nucleotide polymorphism in 
the COMT gene which results in a change of one amino acid in the 
protein from a valine (Val) to a methionine (Met). The met allele is 
associated with approximately 40% lower enzymatic activity, leading to 
increased dopamine activity. Interestingly, the heterozygous genotype 
(Val/Met) is considered as the normal level of dopamine degradation or 
clinically non-actionable. Individuals with the Val/Val genotype display 
elevated COMT enzyme activity, thus reducing dopamine levels. In-
dividuals with the Met/Met genotype have reduced COMT enzyme ac-
tivity and thus elevated dopamine levels. We focused on a set of 55 genes 
that were significantly upregulated in METH in the context of HIV, as 
shown in Fig. 3A, and re-clustered these genes by COMT genotype 
normalized by the average expression within each group (Fig. 7). The 
goal of this approach was to test if any of the COMT genotypes could be 
responsible for driving the upregulation in HIV + METH users, and in 
relation to the attributed biological consequences of the COMT geno-
type. We found that while in METH-negative groups patterns are mixed 
for these genes (Fig. 7A and C), in METH users Met/Met genotype drives 
important distinctions. For instance, in HIV-METH+, Met/Met is asso-
ciated with lower than average gene expression for the majority of the 
genes of interest (Fig. 7B). On the other hand, in HIV + METH + sub-
jects, the Met/Met genotype was strongly linked to the upregulation of 
the same genes (Fig. 7D), suggesting that the genotype linked to higher 

Fig. 5. Individual transcripts upregulated in uninfected Meth users. Average counts per group for genes that are suppressed or unchanged in uninfected Meth 
users and show significance in ANOVA and in one or more post-hoc group comparisons. A) CLU, B) DNM2, C) IRF8, D) KRAS, E) MECP2, F) PRKCQ. All transcripts 
were internally normalized to the average of 8 housekeeping genes. All genes in this figure had p < 0.05 in one-way ANOVA. Bonferroni’s post-hoc tests indicated in 
the figure for assigned comparisons, if significant.
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DA levels in strongly influenced by METH and HIV interactions.
The examination of the upregulated patterns increased by HIV and 

METH, provided a restricted set of 55 genes that was used for making 
transcription factor usage predictions, which, while influenced by 
COMT Met/Met genotype, were potentially more strongly regulated by 
DA and modified by HIV (Fig. 7E). Using iRegulon in Cytoscape 3.9.0 
these genes’ input resulted in the prediction of transcription factors with 
overlapping and complementary regulatory actions. The 20 highest 
significance score transcription factors are indicated in Supplementary 
Table 3, with integrated scaled rank, the number of overlapping regu-
lated genes among the ones found to be affected by COMT genotype, and 
database sources. The top 10 rank were SCML4, followed by ARID5A, 
RUNX3, IKZF3, GATA2, TP53, RELB, TRAFD1, CREB1 and STAT4. The 
prediction scores can be visualized in Fig. 7F. Fig. 7G displays a network 
scatter plot representing the 20 highest rank human transcription factors 
based on their co-expression similarity constructed by Weighted Gene 
Co-expression Network Analysis (WGCNA) over human TF expression 
data, and using Allegro Edge-Repulsive Strong Clustering.

The results suggest that the success of a panel of biomarkers for the 
identification of METH users in the context of HIV is attached to 
immune-dopaminergic interactions, influenced by individual genotypes 
in areas that influence levels and signaling of dopamine. The results also 
indicate that the pathways and mechanisms affected by the immune- 
modulatory effects of dopamine in the context of METH offers oppor-
tunities to single out HIV + METH users and the relevant outcomes in 
the population.

4. Discussion

A panel of markers that detect NCI in the context of Meth use might 
help monitor and manage disease, cognitive improvements, and infec-
tion in PWH who are drug users. A broad panel can also increase the 
power of discovery, by facilitating the identification of orchestrated 
effects on genes that are not evaluated as single biomarkers, but as 
network components linked by protein-protein or genetic interactions, 
co-expression, commons protein domains, or predicted interactions, and 
associated with the response of leukocytes, particularly innate immune 
HIV targets, to neurotransmitters that are abundant in Meth users’ 
brains, such as dopamine (DA).

In this study, a transcriptional biomarker panel was used to inves-
tigate neuroimmune interactions in the context of HIV infection and 
METH use disorder in a human cohort. Our findings indicate that this 
panel can potentially distinguish lifetime METH use disorder in in-
dividuals with HIV. This is significant for monitoring the progression of 
HIV in METH users, especially those experiencing cognitive decline. This 
decline may be influenced by various factors, including the interaction 
between HIV and METH use, the impact on viral load control, and other 
health determinants that elevate classical inflammatory markers 
through distinct mechanisms. Such a panel is needed for monitoring 
progress in HIV + METH users, particularly the ones with cognitive 
decline, due to the confounder effects and interactions between the 
infection and the drug, decreased control of viral load, along with other 
health determinants increasing levels of classical inflammatory markers 
through potentially non-overlapping mechanisms.

We examined several biomarkers known to be associated with 

Fig. 6. Strongest overlapping signatures and links with cohort outcomes. Levels of CD8A, CREBBP and CCL5 transcripts were analyzed in respect to clinical 
variables of interest to the infection and to neurocognitive or psychiatric outcomes. A) Plasma viral load undetectable (Undet) and Detectable (Det); B) CSF Viral load 
(Undet/Det); C) Practice effect-corrected GDS values (GDS_pe = Normal/Impaired); D) Global Mean T scores stratified by numerical impairment levels, being higher 
values more impaired; p value from mixed models; E) Current Major Depressive Disorder (MDD); F) Polysubstance use (Current Any Diagnosis). Values represent 
Mean (Standard Error). Significant p values from multiple comparisons are indicated.
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cognitive impairment in people with HIV (PWH). Notably, the increased 
proportion of CD14+CD16+ monocytes has been shown to be predictive 
of low neuropsychiatric deficits [30] and atrophy of brain structures 
(Kallianpur et al., 2020), a finding supported by transmigration of these 
inflammatory cell subsets under high dopamine conditions (Calderon 
et al., 2017), as seen in METH users. Other markers, such as soluble 
CD14 and soluble CD163 are found in monocytes, macrophages and 
activated microglia, and can predict CNS inflammation (Ancuta et al., 
2008; Fischer-Smith et al., 2008a, 2008b) when elevated in plasma and 

CSF (Bryant et al., 2017; Burdo et al., 2010; Nowlin et al., 2015). 
However, these markers can increase in various conditions within the 
context of HIV (Burdo et al., 2011a, 2011b; Srinivasa et al., 2014; 
Walker et al., 2014), and not specifically due to substance use. There-
fore, identifying markers of neuroHIV in drug users is crucial for 
tailoring treatment and care.

The study’s demographic focus on male individuals, with consistent 
age, education, and race, presents a limitation in terms of broader 
applicability but enhances the statistical power for this cohort. We 

Fig. 7. Hierarchical clustering of genes upregulated in the HIV þ METH users in each group by COMT genotype, Visualization and Prediction of tran-
scription factor usage regulated by COMT in HIV þ METH users. A set of 55 genes upregulated in the HIV + METH + group was clustered by COMT genotype 
(Met/Met, Val/Met and Val/Val) using Ward method, with transcript counts normalized by individual groups’ average. A) HIV-METH-, B) HIV-METH+, C) HIV +
METH- and D) HIV + METH+. E) Network containing genes most strongly influenced by COMT genotype in HIV + METH+, linked by genetic interactions (green 
connectors) and physical interactions (red connectors). F) Prediction of transcription factor usage was performed using the genes in (D/E) as input in ChEA3 
(://maayanlab.cloud/chea3), with p values assigned to the 20 highest ranked. G) Regulation studies and transcription factors’ network based on their co-expression 
similarity constructed by Weighted Gene Co-expression Network Analysis (WGCNA) and Allegro Edge-Repulsive Strong Clustering in Cytoscape 3.9.0. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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observed expected differences in numbers of peripheral blood cells be-
tween groups, with HIV + individuals showing lower CD4 and higher 
CD8 cells irrespective of METH use. A notable finding was the lower 
percentage of CD11b + cells, suggesting evasion from the peripheral 
blood to tissues, including the brain, aligning with cognitive decline 
observations. This supports an inflammatory basis to neurocognitive 
impairment in PWH, particularly those using drugs (Mediouni et al., 
2015; Nath et al., 2001).

We utilized digital transcriptome methods and various analytical 
strategies to explore whether the inflammatory cells in drug users differ 
from those in non-drug users and the specific mechanisms involved. 
Ward’s linkage method for hierarchical clustering of transcripts facili-
tated the identification of gene expression patterns, revealing signatures 
of neurodegeneration, apoptosis, and vascular adhesion in the periph-
eral blood cells of HIV + METH users.

We employed Gene Network Analysis (GNA) to further validate these 
findings to identify co-expression patterns among genes, revealing sig-
nificant differences in a gene network related to neurodegeneration, 
dopaminergic synapse, and inflammation. This suggests that genes in 
dopaminergic pathways, important for neuro-immune functions, are 
potential biomarkers for inflammation in HIV + METH users.

The use of Ward’s linkage method for hierarchical clustering of 
transcripts allows an easy implementation and interpretation, applicable 
to small data sets such as the one used here (784 transcripts). Systems 
biology was used as an accessory strategy to identify the links between 
genes showing similar behaviors in hierarchical clustering, indicative of 
orchestrated changes, and confirming that signatures of neuro-
degeneration, apoptosis, and vascular adhesion can be identified in the 
peripheral blood cells of HIV + METH users compared to other groups.

An additional independent strategy was designed to further confirm 
identifying pathways relevant to the brain in blood cells. This included 
GNA to detect biological links among genes showing similar co- 
expression patterns between groups. There are multiple advantages to 
this method, given that the variability between human subjects, occur-
ring due to background, co-morbidities, and genotype, may not show 
uniform differences in the expression of single markers but detect effects 
in pathways or biological processes relevant to HIV infection, inflam-
mation, and the brain. By linking genes upregulated by METH in the 
context of HIV, or genes increased in H+M+ compared to H + M-, we 
found most significant differences in a single gene network with shared 
common elements in pathways linked to neurodegeneration, dopami-
nergic synapse, and inflammation, and supporting the idea that genes in 
dopaminergic pathways exerting important neuro-immune functions 
serve well as biomarkers of inflammation in HIV + METH users 
compared to non-METH users.

Interestingly, genes like CCL5, CREBBP and HDAC6 which increased 
in HIV + METH users, intersect in immune pathways controlled by 
GPCRs, and regulate gene transcription, cell migration, inflammation, 
and neurotoxicity. The increase in CD8A transcripts matches the 
enrichment of CD8 cells in METH users, also suggesting anti-viral re-
sponses, although their specificity remains uncertain (Wang et al., 2018; 
Bartolotti and Lazarov, 2019; Gamo et al., 2008). We have previously 
shown that bystander CD8 cells are more harmful than virus-specific 
CD8 T cells with equal cytotoxic activity (Marcondes et al., 2008, 
2015). Moreover, despite ART, virological failure is a common aspect of 
METH use (Ellis et al., 2003), with relative contribution of poor 
adherence but also a weakened immune competence (Massanella et al., 
2015). Among the vascular endothelial growth factors, VEGFA is 
strongly associated with angiogenesis, and weakly associated with cell 
migration (Rapisarda and Melillo, 2012), but with potentially protective 
effects in cognitive function, despite enhancing inflammation via 
macrophage recruitment (Cao et al., 2004a, 2004b; Cursiefen et al., 
2004). Interestingly, low VEGF plasma levels are a marker of amnestic 
mild cognitive impairment among older virally suppressed PWH 
(Serrano et al., 2021). Here, the VEGFA transcriptional upregulation in 
H + M + PBMCs did not distinguish differences in global cognitive 

scores (not shown), but correlated with lower CD11b + cells in the pe-
riphery. A decrease in peripheral leukocyte numbers despite the higher 
expression of activation markers may be suggestive of higher trafficking 
supporting tissue inflammation and may indicate higher disease 
severity, as reported in other CNS pathologies such as PD (Bhatia et al., 
2021; Garre et al., 2017; Garre and Yang, 2018). This could be related to 
VEGFA, or be regulated independently of DA by factors linked to 
inflammation in the context of HIV infection (Garre et al., 2017; Garre 
and Yang, 2018). We have recently shown that the DA-regulated 
monocytic marker MRP8/14, which segregates METH users with 
detectable CSF viral load (Basova et al., 2023a), is a marker of redis-
tribution into the CNS (Persidsky, 2015). New studies are necessary to 
measure VEGFA in plasma in the context of METH use, and respective to 
cognition, and how this relates to inflammatory cell trafficking.

The focus on a set of upregulated genes is important to biomarker 
discovery in HIV + METH users. Previous observations have indicated 
that METH causes suppression of gene transcription broadly (Basova 
et al., 2020, 2023b), with hubs of upregulation that vary between in-
dividuals, and often linked to inflammatory pathways (Basova et al., 
2022; Bortell et al., 2015). These markers upregulated by METH in the 
context of HIV, are strong candidate biomarkers to track disease prog-
ress or improvements due to treatment, virological suppression or 
abstinence of METH.

Regarding CCL5, the highest expression patterns matched NC 
impairment. However, the highest levels of CCL5 transcripts were found 
in the HIV+/METH + groups, but in individuals with better cognitive 
performance. These individuals had undetectable CSF viral load (not 
shown), indicating that one potential explanation for this result relies on 
the ability of CCL5, which is produced by immune cells in the context of 
Meth (Najera et al., 2016; Bortell et al., 2015), to block viral entry via 
the CCR5 co-receptor (Cocchi et al., 1995), or enhance the anti-viral 
response (Fransen et al., 2000).

Genes that are decreased are also important, but may be diluted by 
the overall suppression of gene transcription caused by METH, which is 
observed in humans and confirmed in experimental models (Basova 
et al., 2020, 2023b). Some genes were upregulated in HIV-negative 
METH users, but not in HIV-positive METH users. These genes were 
CLU, DNM2, KRAS, MECP2, and PRKCQ, which are rather involved in 
neurological outcomes, dopaminergic disorders and substance use. For 
instance, CLU (clusterin), is a genetic risk association with Alzheimer’s 
disease, and may have implications in anxiety and in the development of 
such disease in METH users (Bettens et al., 2015). DNM2 encodes 
dynamin 2, a protein with structural and cytoskeleton functions, also 
increased by cocaine (Freeman et al., 2010). KRAS is an oncogene that is 
curiously responsive to METH addiction treatment (Li et al., 2014). 
MECP2 (Methyl-CpG-binding protein 2) is also interesting, as a tran-
scriptional regulator that represses or activates the expression of target 
genes and playing a role in the regulation of drug addiction in the 
dopaminergic reward system (Bae et al., 2022). Similarly, PRKCQ is a 
protein kinase involved in dopaminergic neurotoxicity in the context of 
METH (Shin et al., 2019, 2021). Showing similar pattern, IRF8 has a link 
to inflammation and HIV control (Lacagnina et al., 2017; Assis et al., 
2021).

Our observations highlight the importance of considering genes that 
show patterns of upregulation as well as those that are suppressed by 
METH use. Certain genes were upregulated in HIV-negative METH users 
but not in HIV-positive users, indicating their involvement in neuro-
logical outcomes and substance use disorders.

The results indicate that co-factors such as genotype may be critical 
and complementary in efforts to distinguish the susceptible population. 
For example, the enzyme COMT, which is involved in the metabolism of 
dopamine and other catecholamines (Barr et al., 2006; Panenka et al., 
2013; Saloner et al., 2020), may account for disparities in the expression 
of transcriptional markers affected by dopamine in the context of METH. 
The stronger upregulation in biomarkers identified here was largely 
driven by individuals exhibiting the Met/Met COMT genotype, 
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associated with higher DA levels. Interestingly, in HIV- subjects that are 
METH users, the same genotype was linked to a lower than average gene 
expression, indicating that the effects on DA levels in the context of 
METH are critically modified by HIV. This data further highlights the 
complexities of the underlying mechanisms of inflammation, despite the 
similar outcomes in therms of NCI between groups. It underlines the 
need for better biomarkers tailored to detect HIV in the context of METH 
and vice-versa. The effects of COMT were detected in relation to tran-
scriptional patterns in leukocytes in the context of METH use. Genome 
Wide Association studies (GWAS) have identified links between COMT 
genotypes and bipolar disorder (Mullins et al., 2019), alcohol drinking 
(Feitosa et al., 2018), and chronic pain (Li et al., 2023), all potentially 
underlying or coexisting with substance use. However, the clustering of 
DA-regulated biomarkers is linked to the role of COMT as regulator of 
the levels of neurotransmitters that interact with immune cells (Barr 
et al., 2006; Panenka et al., 2013; Saloner et al., 2020). It remains to be 
examined if similar patterns in inflammatory markers may be detected 
in the disorders known to be linked to COMT genotypes from GWAS 
studies. Interestingly, the elevation of both CD8A and CCL5, which 
clustered in the HIV + METH + group, was strongly driven by 
concomitant alcohol use. Our observations lay the foundation for future 
studies that can better establish the connection of DA markers and 
COMT genotype, with concomitant alcohol/polysubstance use and 
METH.

The transcriptional patterns generated by COMT genotype in METH 
users allowed predictions of transcription factor usage that is affected by 
DA, and modified by HIV. SCML4 was the top ranked transcription 
factor predicted in correlation with effects of COMT genotype in METH 
and HIV. Interestingly, two of the top predicted transcription factors 
have been described in association with METH self-administration in 
rats (Khalid et al., 2023). In that model, SCLM4 was the fifth most 
downregulated gene, and RUNX3 was among the 25 most upregulated 
genes in dopaminergic regions of the brain following METH self 
administration (Khalid et al., 2023). IKZF3 is an IKAROS zink finger 
family protein acting on immune cell fitness and IL10 production 
(Ridley et al., 2020; Lazarian et al., 2021), but no reported links to 
substance use or dopamine. GATA-2, on the other hand, is expressed in 
dopaminergic areas of the brain with changes tightly linked to Parkin-
son’s disease (Scherzer et al., 2008). TP53 contributes to neurotoxic 
signaling via DA receptors (Lu et al., 2017). In a knock out mouse model, 
it has been demonstrated that TP53 plays a critical role in 
METH-mediated neurotoxicity and cell damage in dopaminergic ter-
minal areas (Hirata and Cadet, 1997), with potentially long-term dele-
terious effects. RELB and RELA are components of the NFkB 
transcription complex, with important roles in neuro-inflammation, 
including in various dopaminergic pathologies (Perkins, 1997; Lanzil-
lotta et al., 2015; Ghosh et al., 2007) and in HIV (Kiebala et al., 2010). 
TRAFD1 plays a role in regulating anti-viral responses (Sanada et al., 
2008). CREB1 is strongly affected by DA (Konradi et al., 1993; Lee et al., 
2010) and has been considered as a target in neurological disorders such 
as schizophrenia (Wang et al., 2018). These 10 highest scored tran-
scription factors may be potential regulators of processes detectable in 
PBMCs and responsive to DA signaling and genotypes affecting DA levels 
in drug users, particularly the ones that are living with HIV.

There are limitations in our study that include a restricted inclusion 
criteria due to the small number of subjects per group, and the narrow 
hypothesis embedded in a 2 by 2 design. Within this design, MDD and 
polysubstance use, particularly alcohol, are potential confounders. In 
this context, CREBBP is a particularly interesting gene because it was 
able to distinguish individuals with current MDD in all HIV+ and METH 
+ groups. Interestingly, variants of the CREBBP have been previously 
associated with MDD (Crisafulli et al., 2012), as well as changes in other 
components in the cAMP responsive pathway (Xiao et al., 2018; Blendy, 
2006), and along with NFkB responsive inflammatory genes (Mellon 
et al., 2016). The overlap of substance use and depression, via CREB 
(Pandey et al., 2005) underlies the inflammatory character of these 

disorders (Chan et al., 2019; Enache et al., 2019), also present in HIV 
(Vasantiuppapokakorn et al., 2024). Anti-inflammatory treatments have 
been previously incorporated to anti-depressant trials with positive re-
sults (Kohler-Forsberg et al., 2019). Our results suggest that transcrip-
tional levels of CREBBP can be a potential biomarker to track 
inflammatory processes linked to MDD in PWH that are Meth users.

Regarding the combinatorial role of METH and other drugs in vari-
ables such as CSF viral load, more studies need to be done. However, our 
approach improved the power of discovery of novel biomarkers that can 
identify uncontrolled CSF viral load and neuroinflammation in METH 
users by establishing an a priori focus on DA-regulated genes in leuko-
cytes. Our results indicate that the power of group segregation by a 
biomarker panel can be enhanced by the knowledge of genotypes and 
transcription factor usage predictions. The effects of DA in cells of the 
CNS and in peripheral leukocytes have different implications to disease 
outcomes due to differences in cell targets expressing DA receptors 
(neurons, immune cells, microglia, vs. lymphocytes and monocytes). 
However, as the expression of molecular phenotypes in the two com-
partments overlaps in time, the peripheral blood cells influenced by DA 
offer a window to events occurring in immune cells of the brain.

The identification of biomarkers that can track progress in substance 
users is important but also a complex problem due the multiple mech-
anisms affected by the drug, or by the virus. Both HIV and METH act by 
different means to trigger inflammation in the brain and elsewhere, 
where distinctive underlying causes converge in one outcome. In 
conclusion, the identification of biomarkers is a crucial step in under-
standing and managing the complex interplay between HIV infection, 
METH use, and their combined impact on neuroimmune functions. 
Future research, particularly longitudinal studies and interventions, and 
examination of other genotypes, will be vital for advancing our ability to 
monitor, track, and treat this challenging population effectively.
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