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Butyrophilin-like 9 expression is associated
with outcome in lung adenocarcinoma
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Abstract

Background: Lung adenocarcinoma (LUAD) is the most prevalent non-small cell lung cancer (NSCLC). Patients with
LUAD have a poor 5-year survival rate. The use of immune checkpoint inhibitors (ICIs) for the treatment of LUAD
has been on the rise in the past decade. This study explored the prognostic role of butyrophilin-like 9 (BTNL9) in
LUAD.

Methods: Gene expression profile of buytrophilins (BTNs) was determined using the GEPIA database. The effect of
BTNL9 on the survival of LUAD patients was assessed using Kaplan-Meier plotter and OncoLnc. Correlation between
BTNL9 expression and tumor-infiltrating immune cells (TILs) was explored using TIMER and GEPIA databases. Further,
the relationship between BTNL9 expression and drug response was evaluated using CARE. Besides, construction and
evaluation of nomogram based on BTNL9 expression and TNM stage.

Results: BTNL9 expression was downregulated in LUAD and was associated with a poor probability of 1, 3, 5-years overall
survival (OS). In addition, BTNL9 expression was regulated at epigenetic and post-transcriptional modification levels. Moreover,
BTNL9 expression was significantly positively correlated with ImmuneScore and ESTIMATEScore. Furthermore, BTNL9
expression was positively associated with infiltration levels of B cells, CD4+ T cells, and macrophages. Kaplan-Meier analysis
showed that BTNL9 expression in B cells and dendritic cells (DCs) was significantly associated with OS. BTNL9 expression was
significantly positively correlated with CARE scores.

Conclusions: These findings show that BTNL9 is a potential prognostic biomarker for LUAD. Low BTNL9 expression levels
associated with low infiltration levels of naïve B cells, and DCs in the tumor microenvironment are unfavorable for OS in
LUAD patients.
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Background
Lung cancer is the most common cancer and the leading
cause of cancer-related deaths globally and in China [1,
2]. Although the 5-year survival rate has increased over
the past four decades, the OS is poor (5.6–20.6%) [3].
Immunotherapies have significantly improved cancer

treatment during the past decade. For example, pembro-
lizumab used to treat naive advanced non–small-cell
lung cancer (NSCLC) shows a 5-year survival rate of
23.2 and 29.6% in patients with a PD-L1 tumor propor-
tion score ≥ of 50% [4]. Immune checkpoint inhibitors
(ICIs) block immune checkpoint signaling, thus alleviat-
ing antitumor immunity, and significantly improving five
year-OS in NSCLC.
PD-1/PD-L1 is the most widely used ICIs, whereas

other immune checkpoints, such as LAG-3, TIGIT,
TIM-3, and CTLA-4, are currently under development
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[5]. However, the biological role of immune checkpoint
buytrophilins (BTNs) [6] in the regulation of NSCLC
physiology and its underlying molecular mechanism re-
mains to be fully elucidated. BTNs, including butyrophi-
lin (BTN) and butyrophilin-like (BTLN), are related to
the B7 family of co-stimulatory molecules. This family
plays a significant role in T cell suppression, regulating
epithelial cell and T cell interplays [7]. Human BTN
genes are located in the MHC class I domain of the
short arm of chromosome 6 (6p22.1). Human BTN
genes are grouped into three subfamilies, which form
phylogenetically related groups, including BTN1, BTN2,
and BTN3. BTN1A1 belongs to the BTN1 subfamily,
BTN2A1, BTN2A2, and BTN2A3 (BTN2A3P) belong to
the BTN2 subfamily, whereas BTN3A1, BTN3A2, and
BTN3A3 belong to the BTN3 subfamily. Moreover,
butyrophilin-like proteins (BTNL: BTNL2, BTNL3,
BTNL8, BTNL9, and BTNL10) and SKINT-like
(SKINTL) are classified in the family of BTNs [7–9].
Lung adenocarcinoma (LUAD) has been the most

prevalent histopathological subtype of NSCLC in China
since 2014 [10]. In this study, we explored the relation-
ship between the expression level of BTNs and LUAD
prognosis. Significant survival-related BTNs were
screened using GEPIA [11]. Datasets used for analysis in
this study were retrieved from Gene Expression Omni-
bus [12], TIMER [13], KM plotter [14], UALCAN [15],

OncoLnc [16], Oncomine [17], TissGDB [18] databases.
The findings from this study provide information on the
relationship between immune checkpoint BTNL9 and
tumor immune response. These findings show that
BTNL9 can be used for the prognosis and development
of immunotherapy for LUAD. A flow chart of the study
design is shown in Fig. 1.

Methods
Determination of expression profiles of BTNs genes
Expression profiles of BTNs in LUAD were determined using
the GEPIA database [19]. Default settings were used with
|Log2FC| > 1 and p-value Cutoff < 0.01 used as the cutoff cri-
teria to determine differentially expressed genes. Log2(TPM+
1) was transformed for gene expression profile; jitter size was
set at 0.4 for the plot. Notably, TCGA and GTEx datasets
were included in the analysis. mRNA expression profile of
BTNL9 in different tumor types was determined using the
Oncomine database [17] using default settings with a P-value
of 0.01, a fold change of 1.5, and a top 10% gene ranking.

Survival analysis
Median gene expression was used as the cutoff point for
survival analysis. Survival analysis of BTNL9 was per-
formed using three online databases, including KM plot-
ter [14], UALCAN [15], and OncoLnc databases [16].
TissGDB is a tissue-specific gene annotation database in

Fig. 1 A flow chart of the study design
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cancer [18]. Forest plot were generated using Cox pro-
portional hazard ratio (HR), and overall survival (OS)
and relapse-free survival (RFS) of 28 cancer types were
performed using 95% CI.

Estimation of infiltration level of immune cell type and
correlation with BTNL9
TIMER is a comprehensive resource for systematically
analyzing immune infiltration in diverse cancer types
based on the TCGA dataset [13, 20]. The Gene_DE
module from TIMER was used to calculate BTNL9
mRNA expression in cross-carcinoma (*: P-value < 0.05;
**: P-value < 0.01; ***: P-value < 0.001). The expression
profile of BTNL9 in LUAD and its correlation with six
immune infiltration cells, including B cells, CD4+ T
cells, CD8+ T cells, macrophages, neutrophils, and DCs,
were analyzed using Gene and Survival module in
TIMER. Gene_Corr module was used to determine the
correlation between BTNL9 expression and B and DC
cells [21]. The immune score and stromal score of each
TCGA tumor sample were estimated using Sangerbox
(http://sangerbox.com/Index).

Predicting binding of miRNA and lncRNA to BTNL9
miRMap [22], TargetScan [23], and miRWalk [24] were
used to predict miRNAs that can bind to BTNL9. Pre-
dicted miRNAs obtained from the three databases were
further verified using the starBase database [25].

Gene set enrichment analysis (GSEA) of BTNL9 high and
low expression groups
Sangerbox is a tool developed by Hangzhou Mugu Tech-
nology Co., Ltd. GSEA was used to perform KEGG and
HALLMARK pathway analysis for the BTNL9 high and
low expression groups based on the TCGA database.

Estimating drug response for LUAD
Computational Analysis of Resistance (CARE) is a soft-
ware that uses compound screening data to identify
genome-scale biomarkers for targeted therapeutic strat-
egies. Pearson correlation analysis between the gene ex-
pression profile of the cancer sample and the CARE
scoring vector was used to group the patient as a re-
sponder or a non-responder [26].

Construction and evaluation of nomogram
We acquired TCGA LUAD RNA-seq data from the Uni-
versity of California, Santa Cruz (UCSC) Xena Browser
(https://xenabrowser.net/). After screening, samples with
missing clinical data and 0 days overall survival time
were excluded, and a total of 501 samples were included.
Next, we randomly divided the TCGA-LUAD cohort
(n = 501) in a 7 to 3 ratio into a training (n = 352) and
testing dataset (n = 149). We performed the R package

“rms” to construct a nomogram based on the TNM
stage and expression profile of BTNL9 using the training
dataset. To evaluate the usefulness of the nomogram,
the R package “ROCsurvival” was used to construct
ROC for the prediction of the 1-, 3- and 5- year OS. The
R package “ggDCA” was executed to create a decision
analysis curve to evaluate the clinical utility of the
nomogram. Finally, R package “rms” was applied to per-
form a calibration curve to evaluate the precision for
predicting 1-, 3- and 5-year OS prediction of the LUAD
cohort.

Statistical analysis
The relationship between BTNL9 expression and single
cancer cell biological behavior of LUAD was determined
using Pearson correlation analysis and Spearman’s cor-
relation analysis of the correlation between BTNL9 and
tumor mutation burden (TMB). In all the studies, P <
0.05 was considered statistically significant.

Results
The high expression level of BTNL9 was associated with
favorable survival of LUAD
Gene expression profile of BTNs, including BTN1A1,
BTN2A1, BTN2A2, BTN2A3P, BTN3A1, BTN3A2,
BTN3A3, BTNL2, BTNL3, BTNL8, BTNL9, BTNL10,
and SKINTL was evaluated in normal and tumor lung
tissues (Fig. 2A). Analysis showed that expression levels
of BTNL8 and BTNL9 were significantly lower in tumor
tissues compared with that of normal tissues (Fig. 2A).
Furthermore, the expression level of BTNL9 was signifi-
cantly negatively correlated with the clinical stage, lymph
node metastasis stage, and p53 mutation. Concurrently,
the expression level of BTNL8 was significantly nega-
tively correlated with the clinical stage and N stage (Fig.
2B). However, survival analysis showed that BTNL8 was
not significantly correlated with OS, whereas BTNL9
was significantly correlated with OS in LUAD (Fig. 2C).
Validation of the prognosis value of BTNL9 in LUAD
cohorts using PrognoScan [27] showed that BTNL9 ex-
pression was significantly correlated with RFS and OS in
the GSE31210 dataset (n = 204). In addition, the expres-
sion level of BTNL9 was significantly associated with OS
in GSE3141 cohort (n = 111) (Supplementary Table 1).
Analysis using OncoLnc, UALCAN, and KM plotter
showed that high expression of BTNL9 is significantly
associated with better OS in LUAD (Fig. 2D). Although
the two survival curves crossover occurred after 150
months (Fig. 2C), it is well beyond 5-years (60 months),
and survival curves in the verification databases didn’t
show crossover. Thus, we considered the results in this
study reliable and stable. These findings imply that
BTNL9 is a critical immune checkpoint of BTNs in
LUAD.
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 BTNL9 Expression and prognosis in LUAD. (A) BTNs expression panel in LUAD tissues compared with adjacent tissues in GEPIA database. (B) Correlation
between BTNL8 and BTNL9 expression and LUAD clinical stages, N stage, and p53mutation in the UALCAN database (BTNL8 expression compared with LUAD
clinical stages (Normal-vs-Stage1, P=1.01E-04; Normal-vs-Stage2, P=7.08E-03; Normal-vs-Stage3, P=1.36E-04; Normal-vs-Stage4, P=1.78E-08), N stage (Normal-
vs-N0, P=6.56E-04; Normal-vs-N1, P=8.27E-10; Normal-vs-N2, P=5.96E-04; Normal-vs-N3, P=1.97E-10; N0-vs-N1, P=3.27E-03; N0-vs-N3, P=6.79E-04), and p53
status (Normal-vs-T P53-Mutant, P=1.27E-06; Normal-vs-T P53-NonMutant, P=1.80E-03). BTNL9 expression comparison with LUAD clinical stages (Normal-vs-
Stage1, P=1.21E-12; Normal-vs-Stage2, P=3.60E-13; Normal-vs-Stage3, P=2.40E-12; Normal-vs-Stage4, P=2.25E-12), N stage (Normal-vs-N0, P=1.08E-12;
Normal-vs-N1, P=1.85E-12; Normal-vs-N2, P=1.02E-12; Normal-vs-N3, P=1.67E-12; N0-vs-N1, P = 1.02E-03; N2-vs-N3, P=3.01E-02), and P53 status (Normal-vs-T
P53-Mutant, P = 1.85E-12; Normal-vs-T P53-NonMutant, P=4.10E-12; T P53-Mutant-vs-T P53-NonMutant, P=1.77E-04)). (C) Correlation between BTNL8 and BTNL9
expression with overall survival of LUAD using GEPIA database. (D) Correlation between BTNL9 expression and LUAD overall survival using OncoLnc, UALCAN,
and KM plotter databases. *: P-value < 0.05; **: P-value < 0.01; ***: P-value < 0.001

Fig. 3 mRNA expression level of BTNL9 in pan-cancer and hazard ratio of relapse-free survival and overall survival in LUAD patients. (A) Increased
or decreased expression of BTNL9 in various tumors compared with adjacent tissues using the Oncomine database. (B) BTNL9 expression in pan-
cancer analysis using TCGA dataset analyzed by TIMER (*P < 0.05, **P < 0.01, ***P < 0.001). (C) BTNL9 expression and hazard ratio of relapse-free
survival, and (D) overall survival using the TissGDB database
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Furthermore, the clinical distribution of BTNL9 was
explored. TCGA-LUAD dataset was divided into the
high and low groups based on the median gene ex-
pression level of BTNL9. The clinical characteristics,
including age, gender, race, TNM staging, ECOG
score, EGFR mutations, KRAS mutations, and radio-
therapy information, were compared between the two
groups. Analysis showed no significant difference in
these clinical characteristics between the two groups
(data not shown).

Pan- cancer gene expression and prognostic value of
BTNL9
To further understand BTNL9 expression in pan-cancer,
analysis of the dataset was performed using the Onco-
mine database. The findings showed that BTNL9 expres-
sion level was significantly lower in breast cancer, one
colon cancer cohort, lung cancer, kidney cancer, and
crabtree uterus cancer than normal tissues. However,

BTNL9 expression was significantly higher in the brain
and CNS cancer, colorectal cancer, esophageal cancer,
leukemia, and lymphoma, than in normal tissue (Fig. 3A
and Supplementary Table 2). Further, the BTNL9 ex-
pression profile was explored using TCGA RNA sequen-
cing data (TIMER). The BTNL9 expression level was
significantly downregulated in Bladder Urothelial Car-
cinoma (BLCA), Breast invasive carcinoma (BRCA),
Cholangiocarcinoma (CHOL), Esophageal carcinoma
(ESCA), Glioblastoma multiforme (GBM), Head and
Neck squamous cell carcinoma (HNSC), Kidney renal
papillary cell carcinoma (KIRP), LUAD, and LUSC com-
pared with normal tissues. In contrast, BTNL9 was sig-
nificantly increased in Colon adenocarcinoma (COAD),
Kidney Chromophobe (KICH), and Kidney renal clear
cell carcinoma (KIRC) compared with normal tissues
(Fig. 3B). Analysis using the TissGDB database gave a
correlation coefficient of BTNL9 expression with
LUAD’s RFS HR of 0.87 [95% CI (0.79, 0.96)], and that

Fig. 4 Epigenetic regulation and post-translation modulation network of BTNL9 in LUAD. (A, B) Correlation between BTNL9 expression and
methyltransferases (DNMTs) such as DNMT1, DNMT2, DNMT3A, and DNMT3B in LUAD and adjacent tissues using GEPIA. (C) Predicted miRNAs
that bind to BTNL9 using miRMap, TargetScan, and miRWalk databases presented as a Venn diagram. (D) Overlapping 248 miRNAs verified using
the StarBase database, hsa-miR-30b-3p, hsa-miR- 4709-3p, and hsa-miR-6514-3p were screened. (E) Predicted LncRNAs that bind to BTNL9 were
predicted using the LncMap database. AP001462.6 was verified and screened using the LncACTdb2.0 database. (F, G) BTNL9 interacting proteins
were identified using the STRING database and edited and visualized using Cytoscape software (V3.7.2). Hub genes were screened using the
cytoHubba module in Cytoscape. (H, I) Ubibrowser database predicts that the substrate BTNL9 can be bound by E3 (MARCH8) ligases, with one
potential E3 recognizing domain and two potential E3 identifying motifs
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for the correlation between BTNL9 expression and OS
HR was 0.87 [95% CI (0.8,0.96)] (Fig. 3C, D).

Upstream and downstream regulatory network of BTNL9
A previous study reports that the expression level of
BTNL9 in LUAD is significantly lower than that in nor-
mal tissues. DNA methylation is a biological process
through which methyl groups are added to DNA mole-
cules by Methyltransferases (DNMTs). DNA methylation
of a gene promoter region functions by inhibiting gene
transcription. Correlation analysis between BTNL9 ex-
pression and DNA methylation marker DNMTs (includ-
ing DNMT1, DNMT2, DNMT3A, DNMT3B) was
conducted using the GEPIA tool. Analysis showed that
expression of BTNL9 in normal lung tissue was

positively correlated with DNMTs (r = 0.35, P = 0.0059);
however, there was no correlation with DNMTs in
LUAD (r = − 0.019, P = 0.67) (Fig. 4A, B). These findings
show that DNA methylation may be involved in the
pathogenesis of LUAD. To further explore the upstream
regulation mechanisms of the BTNL9 expression, miR-
NAs that bind to BTNL9 were predicted by using miR-
Map [22], TargetScan [23], and miRWalk [24] databases.
A total of 248 miRNAs common predicted miRNAs
from the three databases were obtained (Fig. 4C) and
used starBase [25] to validate the predicted binding miR-
NAs. Analysis showed that, hsa-miR-30b-3p, hsa-miR-
4709-3p and hsa-miR-6514-3p were significantly posi-
tively correlated with BTNL9 expression (r = 0.312, P =
5.25E-13, r = 0.277, P = 1.74E-10, and r = 0.103, P = 0.02,

Fig. 5 Low expression of BTNL9 significantly enriches proteasome and promotes tumor malignancy in LUAD. (A, B, C, D) High and low BTNL9
expression groups were presented using the Sangerbox tool and GSEA for KEGG and HALLMARK pathways. (E) the t-SNE plot shows scRNA
analysis of BTNL9 expression, and (F) molecular function of BTNL9 in LUAD using CancerSEA database shows that BTNL9 is significantly negatively
correlated with tumor invasion, metastasis, EMT, proliferation, hypoxia, and DNA damage in LUAD
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respectively, Fig. 4D). In addition, the three miRNAs
were highly expressed and significantly correlated with
higher OS of LUAD patients (HR = 0.66, P = 0.0058,
HR = 0.63, P = 0.0023, and HR = 0.73, P = 0.036, respect-
ively) (Fig. 4D). Although the two survival curves of hsa-
miR-4709-3p and hsa-miR-6514-3p crossover occurred
after 100 months, it is well beyond 5-years (60 months).
Thus, we considered the results in this study reliable.
Furthermore, 18 lncRNAs were predicted to bind to
BTNL9 using LncMap [28] database (Supplementary
Table 3). These findings were verified using
LncACTdb2.0 [29] database. LncRNA AP001462.6 was
predicted to bind to BTNL9, and the high expression
level of AP001462.6 was significantly correlated with a
high OS of LUAD patients (P = 0.049) (Fig. 4E).
Moreover, proteins implicated in binding BTNL9

were analyzed using the STRING [30] database. Ana-
lysis showed a total of 7 proteins that bind to BTNL9
(Fig. 4F). The top 2 binding proteins, including HTRA4
and TM4SF19, were predicted using the cytoHubba
module of Cytoscape [31] (Fig. 4G). HTRA4 gene en-
codes a member of the HtrA protease family. HTRA4
plays a role as a secreted oligomeric chaperone protease
to degrade misfolded secretory proteins [19]. We hy-
pothesized that low expression of BTNL9 in LUAD
might be related to degradation through ubiquitination.
Analysis using Ubibrowser [32] database showed that
E3 (MARCH8) ligases could bind the substrate BTNL9
(Supplementary Table 4). In addition, BTNL9 has a po-
tential E3 recognizing domain and two potential E3
identifying motifs (Fig. 4H, I).

Low expression of BTNL9 significantly enriches
proteasome and increases cancer malignancy
Gene Set Enrichment Analysis (GSEA) analysis for
KEGG and HALLMARK was performed using the

Sangerbox tool to explore the two groups’ biological
pathways. The findings showed that the top 3 signifi-
cantly enriched KEGG pathways in the high BTNL9
expression group were vascular smooth muscle con-
traction, phosphatidylinositol signaling system, and
abc transporters (Fig. 5A). On the other hand, the
top 4 significantly enriched KEGGs pathways in the
low BTNL9 expression group were pathways impli-
cated in Parkinson’s disease, oxidative phosphoryl-
ation, DNA replication, and proteasome pathways
(Fig. 5B). GSEA for the HALLMARK pathway showed
that the top 3 pathways associated with high BTNL9
expression were bile acid metabolism, heme metabol-
ism, and Wnt/beta-catenin signaling pathways. Fur-
ther, the top 4 pathways associated with low BTNL9
expression were E2F targets, glycolysis, myc targets
v1, and mTORC1 signaling (Fig. 5C, D). These find-
ings imply that BTNL9 is involved in LUAD meta-
bolic reprogramming.
Metabolic reprogramming is a hallmark of cancer,

and intrinsic and extrinsic factors contribute to vari-
ous metabolic phenotypes in tumors. As cancer de-
velops from pre-tumor lesions to local, clinically
obvious malignant tumors to metastatic cancer, me-
tabolism changes the phenotype and dependence [33].
Single-cell RNA (scRNA) analysis of LUAD using
CancerSEA [34] database (Fig. 5E) showed that
BTNL9 expression is significantly negatively corre-
lated with tumor malignant features including inva-
sion (r = − 0.53, P < 0.0001), metastasis (r = − 0.35, P =
0.011), EMT (r = − 0.47, P = 0.0006), proliferation (r =
− 0.37, P = 0.0086), Hypoxia (r = − 0.36, P = 0.011), and
DNA damage (r = − 0.34, P = 0.017) (Fig. 5F). This
finding implies that low expression of BTNL9 is sig-
nificantly associated with the malignant features of
LUAD.

Fig. 6 Correlation between BTNL9 and tumor-infiltrating immune cells and OS prognosis. (A) Correlation analysis between BTNL9 and TMB using
Sangerbox tool, (B) somatic mutation pattern of BTNL9 in LUAD, and (C, D, E) ESTIMATE scores. (F) Correlation between BTNL9 and TME
infiltrating immune cells analyzed using TIMER database, and (G) overall survival
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Table 1 Correlation analysis between BTNL9 and relate gene set markers of significant innate and adaptive immunity cells in TIMER
and GEPIA database

TIMER GEPIA

Immune
cell

Marker None purity Normal Cancer

Spearman’s
ρ

P Value Spearman’s
ρ

P
Value

Spearman correlation
coefficient

P
Value

Spearman correlation
coefficient

P
Value

DC CD1C 0.36 1.65E-17 0.34 1.03E-
14

−0.022 0.87 0.33 1.5E-
13

HLA-
DPA1

0.23 1.64E-07 0.20 8.47E-
06

HLA-
DPB1

0.29 8.39E-12 0.27 8.03E-
10

HLA-
DQB1

0.21 1.31E-06 0.18 8.16E-
05

HLA-
DRA

0.18 4.54E-05 0.14 0.0020

ITGAX 0.24 1.63E-08 0.22 1.10E-
06

NCR1 0.04 0.35980601 0.01 0.8450

NRP1 0.03 0.41981037 0.03 0.4973

cDC1s CD8A 0.03 0.55316497 −0.03 0.5613 −0.028 0.83 0.22 1.20E-
06

CLEC9A 0.40 1.00E-21 0.38 1.16E-
18

XCR1 0.41 2.70E-22 0.39 7.37E-
20

cDC2s CLEC12A 0.22 3.50E-07 0.18 3.61E-
05

0.18 0.16 0.45 7.1E-
25

ESAM 0.51 1.01E-35 0.50 2.89E-
33

B cell CD19 0.23 1.93E-07 0.20 5.30E-
06

0.017 9.00E-
01

0.37 8.30E-
17

FCER2 0.40 7.97E-21 0.38 2.18E-
18

MS4A1 0.34 6.45E-16 0.33 2.59E-
14

SDC1 0.07 0.0917 0.09 0.0523

Naïve B
cell

CD19 0.23 1.93E-07 0.20 5.30E-
06

0.082 0.54 0.43 8.60E-
23

CD22 0.50 2.44E-34 0.51 1.10E-
34

CD83 0.33 6.56E-15 0.31 2.09E-
12

MS4A1 0.34 6.45E-16 0.33 2.59E-
14

TCL1A 0.25 1.57E-08 0.21 1.31E-
06

Plasma B
cell

CD38 0.04 0.3699 0.08 0.0746 −0.19 0.15 0.059 0.19

TNFR
SF17

0.04 0.4053 0.08 0.0814
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Correlation between BTNL9 and infiltrating immune cell
markers
Spearman’s correlation analysis of the correlation be-
tween expression of BTNL9 and tumor mutation bur-
den (TMB) in the TCGA LUAD cohort showed that
BTNL9 is significantly negatively correlated with TMB
(P = 1.4E-9) (Fig. 6A). Analysis of somatic mutation
pattern of BTNL9 in LUAD using the SangerBox tool
showed that the mutation frequency of BTNL9 in
LUAD was 1.41% (Fig. 6B). Genetic mutations are im-
plicated in the tumor microenvironment (TME) [35];
therefore, the relationship between the expression of
BTNL9 and the immune score was determined using
the ESTIMATE algorithm in the SangerBox tool.
Analysis showed that BTNL9 was significantly posi-
tively correlated with ImmuneScore (r = 0.129, P =
0.003) and ESTIMATEScore (r = 0.106, P = 0.016).
However, the expression of BTNL9 was not signifi-
cantly correlated with StromalScore (Fig. 6C-E).
Analysis of the correlation between gene expression of

BTNL9 and infiltrating level of immune cells using
TIMER [13] database showed that BTNL9 was negatively
correlated with tumor purity (r = − 0.124, P = 5.6E-03).
On the other hand, gene expression of BTNL9 was sig-
nificantly positively correlated with B cells (r = 0.24, P =
8.88E-8), CD4+T (r = 0.283, P = 2.24E-10) and macro-
phages (r = 0.209, P = 3.35E-6) (Fig. 6F). Moreover, sur-
vival analysis showed that high expression of BTNL9 in
B cells (P = 0.000) and DC cells (P = 0.048) was corre-
lated with better OS for LUAD (Fig. 6G).
A detailed analysis of TME infiltrated DC and B cells

using the TIMER database showed that DC and its sub-
types cDCs1 and cDCs2 [36] are associated with BTNL9
expression before and after purity adjustment. GEPIA
database analysis showed that normal lung tissue was
not correlated with DC and its subtypes cDCs1 and
cDCs2. However, DC and its subtypes were significantly
positively correlated with LUAD (Table 1), implying that
DCs regulated by BTNL9 may participate in LUAD im-
mune response. B cells are heterogeneous and include
two subtypes: naïve B cells and plasma B cells [37].
TIMER analysis showed that total B cells and naïve B
cells were significantly correlated with BTNL9 expres-
sion before and after purity adjustment. However,
plasma B cells were not associated with BTNL9 expres-
sion before and after purity adjustment. GEPIA analysis
showed that total B cells and naïve B cells were not cor-
related with BTNL9 expression in normal lung tissues;
however, they were significantly positively correlated
with BTNL9 expression in LUAD tissues. Plasma B cells
showed no correlation with BTNL9 in both normal tis-
sues and LUAD tissues (Table 1), indicating that BTNL9
may play a role in promoting naïve B cell antitumor im-
mune response.

High expression of BTNL9 is associated with tyrosine
kinase inhibitors response
BTNL9 expression was significantly positively correlated
with CARE scores for several compounds retrieved from
Cancer Cell Line Encyclopedia (CCLE), Genomics of Drug
Sensitivity in Cancer (GDSC, previously named CGP), and
The Cancer Therapeutics Response Portal (CTRP) co-
horts, mainly including antiangiogenic tyrosine kinase in-
hibitors Axitinib, Nilotinib, Sorafenib, Pazopanib,
Masitinib, and Ki8751 (Fig. 7, and Table 2). These findings
show that immune checkpoint inhibitors based on BTNL9
plus antiangiogenic tyrosine kinase inhibitors could be de-
veloped as a potential chemotherapy-free combination
treatment strategy for LUAD.

Independent predictive power of BTNL9 based on
multivariate analysis
We used the R package “survival V3.2–10” to construct
a Cox model, including known important clinical vari-
ables for OS, such as TNM stage, primary therapy out-
come, and BTNL9 expression. We also used multivariate
analysis to explore whether BTNL9 expression was an
independent OS factor for TCGA-LUAD patients. The
results demonstrated that higher BTNL9 expression sig-
nificantly (p = 0.049) and independently increased OS
(HR = 0.67, 95% CI 0.45–0.99) (Table 3).

Fig. 7 BTNL9 expression is associated with drug response. BTNL9
expression was significantly positively correlated with CARE scores
for many compounds retrieved from Cancer Cell Line Encyclopedia
(CCLE), Genomics of Drug Sensitivity in Cancer (GDSC, previously
named CGP), and Cancer Therapeutics Response Portal
(CTRP) databases
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Table 2 Loss of BTNL9 expression may promote drug resistance toward many targeted therapies in CGP, CCLE, and CTRP cohorts

Drug Target t-value p-value

IOX2 EGLN1 5.91996 4.56E-09

PHA-793887 CDK9 4.92172 1.02E-06

OSI-027 MTOR 4.55428 5.99E-06

Ispinesib KIF11 4.42265 1.09E-05

Nilotinib ABL1 4.3886 1.30E-05

Axitinib PDGFRA 4.33456 1.64E-05

NG25 MAP 4 K2 4.29746 1.92E-05

Nilotinib KIT 4.26379 2.26E-05

BMS345541 IKBKB 4.12048 4.13E-05

GSK525762A BRD2 3.92075 9.50E-05

CAY10603 HDAC6 3.91591 9.69E-05

TubastatinA HDAC6 3.89552 0.000105

GSK525762A BRD4 3.83187 0.000136

CGP dataset PHA-793887 CDK1 3.4184 0.000658

Fluorouracil TYMS 3.09815 0.002008

TPCA-1 IKBKB 3.09042 0.002061

1,256,580–46-7 ALK 3.01459 0.002646

CAL-101 PIK3CD 2.99145 0.002852

Belinostat HDAC6 2.82403 0.004852

AT7519 CDK9 2.81016 0.00506

CP-466722 ATM 2.78047 0.005542

Enzastaurin PRKCB 2.76951 0.00573

SB590885 BRAF_V600E.Mutation 2.6446 0.008337

Vorinostat HDAC6 2.54112 0.011233

Nutlin-3 MDM2 −2.94731 0.003295

Dasatinib EPHA2 −3.23912 0.001305

Quizartinib FLT3 −3.33865 0.000877

1,173,900–33-8 PIK3CB −3.55986 0.00039

Linifanib FLT3 −5.1822 2.71E-07

870,483–87-7 CSF1R −9.60837 7.14E-21

CCLE dataset Panobinostat HDAC1 3.29253 0.001066

abraxane TUBB 2.83794 0.00473

Palbociclib RB1 2.64989 0.008358

Topotecan TOP1 2.45344 0.014498

Sorafenib FLT3 −4.25026 2.56E-05

CTRP dataset 9-Fluoro-11,17,21-trihydroxy-16-methylpregna-
1,4-diene-3,20-dione

NR3C1 5.30047 1.51E-07

abraxane TUBB 4.50938 7.51E-06

Alisertib AURKB 4.50069 7.83E-06

PAC-1 CASP3 4.27611 2.16E-05

660,868–91-7 PLK1 4.21764 2.79E-05

Gossypol BCL2 4.19093 3.12E-05

Decitabine DNMT1 4.18042 3.24E-05

722,544–51-6 AURKB 4.14645 3.74E-05
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Table 2 Loss of BTNL9 expression may promote drug resistance toward many targeted therapies in CGP, CCLE, and CTRP cohorts
(Continued)

Drug Target t-value p-value

Etoposide TOP2B 4.0066 6.76E-05

3,5-bis(4-methylbenzylidene)piperidin-4-one USP13 3.92444 9.47E-05

180,002–83-9 CNR2 3.91953 9.68E-05

CICLOPIROX RRM1 3.90668 0.000102

Dabrafenib BRAF_V600E.Mutation 3.84863 0.00014

BRD-K62801835–001–01-0 EZH2 3.80929 0.000151

BI2536 PLK1 3.69725 0.000233

Nilotinib ABL1 3.67464 0.000255

Cerulenin HMGCS1 3.66163 0.000268

TW-37 BCL2 3.585 0.000358

zebularine DNMT1 3.57912 0.000366

Pevonedistat NAE1 3.55057 0.000409

BAS02002358 GPER1 3.52883 0.000442

KU-60019 ATM 3.52842 0.000443

narciclasine RHOA 3.47702 0.000536

Ki8751 PDGFRA 3.43765 0.000619

4ly1 HDAC1 3.39584 0.000719

SCHEMBL12182311 EIF4E 3.35831 0.000822

Belinostat HDAC1 3.35122 0.000886

Masitinib PDGFRA 3.32101 0.000941

BIBR1532 TERT 3.31812 0.000949

UNII-UZ77T1VFBM BIRC5 3.30878 0.000985

Nutlin-3 MDM2 3.2982 0.001018

CHEMBL2058177 EIF4E 3.29052 0.001045

NSC373989 MDM2 3.24218 0.001239

Imatinib ABL1 3.22213 0.001327

Tacrolimus PPP3CB 3.13945 0.001761

Olaparib PARP1 3.07789 0.002159

SMR001317659 PDE4A 3.03729 0.002467

Axitinib PDGFRA 3.02572 0.002563

Pubchem_92131101 KIF11 3.01909 0.002617

abraxane TUBB1 3.01218 0.002678

GSK461364 PLK1 2.97879 0.002987

Sorafenib PDGFRA 2.93438 0.003443

Nutlin-3 TP53 2.88952 0.003968

SMR000068650 S1PR2 2.88871 0.003992

MK-1775 WEE1 2.88827 0.003985

BRD-K53855319–001–01-2 SIRT1 2.87063 0.004217

Apicidin HDAC1 2.7849 0.005485

TelomeraseInhibitorIX TERT 2.7825 0.005527

Pluripotin MAPK1 2.76988 0.005741

PHA-793887 CDK1 2.75543 0.005999

Vorinostat HDAC1 2.74595 0.006174

Ma et al. BMC Cancer         (2021) 21:1096 Page 12 of 17



Development of a nomogram predicting OS
A nomogram predicting the 1-, 3- and 5- year OS for
TCGA-LUAD was constructed based on BTNL9 expres-
sion and TNM stage (Fig. 8A). We built the ROC for the
training dataset and the testing dataset and calculated
the area under the ROC (AUC) to validate the accuracy
of the nomogram. The AUCs for 1-, 3- and 5-year OS
were 0.642, 0.645, and 0.607 in the training set (Fig. 8B);
0.727, 0.545, and 0.631 in the testing set (Fig. 8C). These
results suggested that the nomogram showed a consist-
ent accuracy in the training and testing dataset. We then
conducted decision curve analysis (DCA) to evaluate the
clinical usefulness, and the result showed that the

nomogram provided an additional benefit compared to
the “treat-all” and “treat-none” strategies in both the
training and testing dataset (Fig. 8D-E). Finally, to com-
pare the consistency of the model predictions with ac-
tual clinical outcomes, calibration curves for 1-year, 3-
year, and 5-year OS were created for the training and
testing dataset (supplementary Fig. 1A-F). The calibra-
tion curves showed consistent agreement between the
predicted and observed values for 1-, 3- and 5-year OS.

Discussion
Immune checkpoint inhibition or adoptive cell therapy
has significantly changed the cancer treatment paradigm

Table 2 Loss of BTNL9 expression may promote drug resistance toward many targeted therapies in CGP, CCLE, and CTRP cohorts
(Continued)

Drug Target t-value p-value

I-BET151 BRD4 2.73756 0.006332

SCHEMBL12182311 EIF4A2 2.68306 0.007448

112,522–64-2 HDAC2 2.66828 0.007855

RG108 DNMT1 2.65008 0.008212

PF184 IKBKB 2.63052 0.008701

Pazopanib PDGFRA 2.63026 0.008704

JQ-1 BRD4 2.59578 0.009615

SCHEMBL13833318 HDAC1 2.56094 0.010633

CAY10603 HDAC6 2.55261 0.010887

GSK525762A BRD4 2.51599 0.012071

4CA-0620 PLK1 2.43094 0.01529

BCP9000801 MDM2 2.41963 0.015783

Belinostat HDAC6 2.37335 0.018128

Tipifarnib FNTA 2.36404 0.018536

prima-1 TP53 2.35318 0.018879

BMS345541 IKBKB 2.35317 0.018872

Gemcitabine RRM1 2.3315 0.019984

SMR001317659 PDE4B 2.28061 0.022841

Doxorubicin TOP2B 2.26369 0.023866

Rigosertib PIK3CA 2.22431 0.026433

3,5-di-tert-butylchalcone RARA −2.40858 0.016249

Dasatinib EPHA2 −2.95126 0.003261

Table 3 Independent predictive power of BTNL9 based on multivariate analysis

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

T stage (T3&T4 vs. T1&T2) 501 2.364 (1.621–3.448) < 0.001 1.911 (1.136–3.217) 0.015

N stage (N1&N2&N3 vs. N0) 492 2.606 (1.939–3.503) < 0.001 1.863 (1.260–2.755) 0.002

M stage (M1 vs. M0) 360 2.111 (1.232–3.616) 0.007 1.662 (0.790–3.496) 0.181

Primary therapy outcome (PD&SD vs. CR&PR) 419 2.786 (1.978–3.924) < 0.001 2.951 (1.949–4.468) < 0.001

BTNL9 (High vs. Low) 504 0.686 (0.511–0.921) 0.012 0.669 (0.448–0.999) 0.049

# CR complete response, PR partial response, SD stable disease, PD progressive disease
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and has resulted in an age of chemotherapy-free NSCLC
[38]. Immune checkpoint inhibitors figure prominently
in achieving chemotherapy-free cancer treatment. BTNs
are immune checkpoints in several cancer types; how-
ever, the functions of BTNs have not been explored in
LUAD. This study shows that BTNL9 is poorly
expressed in LUAD tissues, and its low expression is

correlated with a lower probability of 1, 3, 5-year OS
based on a nomogram model. In addition, this team ex-
plored the mechanisms behind BTNL9 low expression.
This study shows that mutated p53 results in a signifi-
cant decrease in BTNL9 expression (Fig. 2B). Approxi-
mately 46% of LUAD patients possess p53 mutation
[39]. Breast cancer exhibits a low expression level of

Fig. 8 A nomogram predicting the OS for LUAD was constructed. (A). A prognostic nomogram for OS with scales for the BTNL9 and TNM stage
was constructed. Validation of the nomogram and clinical usefulness in the training dataset (B, D) and testing dataset (C, E)
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BTNL9, which can be targeted to inhibit proliferation
and metastasis through the p53/CDC25C and p53/
GADD45 signaling pathway [40]. In addition, BTNL9
plays a role as a transcriptional modulator through epi-
genetic regulation and post-transcriptional modification.
DNA methylation is the most common form of DNA

modification. It plays a vital role in normal cell physi-
ology, and increased DNA methylation, and loss of de-
methylation, are observed in different cancer types.
DNMTs are implicated in abnormal DNA methylation.
Gene body hypermethylation activates oncogenes, and
promotion of hypermethylation causes suppression of
tumors [41]. GEPIA analysis showed that BTNL9 and
DNMTs correlate significantly with normal lung tissues
but not LUAD tumorigenesis (Fig. 4A, B). However, the
molecular mechanism of regulation of BTNL9 by
DNMTs in LUAD has not been explored.
miRNA and lncRNA are non-coding RNAs involved in

tumor promotion and suppression, depending on the
tumor type [41]. A total of 3 miRNAs (hsa-miR-30b-3p,
hsa-miR-4709-3p, and hsa-miR-6514-3p) were signifi-
cantly positively correlated BTNL9 in LUAD, and their
high expression was significantly associated with longer
OS. Previous studies reported that hsa-miR-30b-3p plays
a role as an antitumor miRNA [42, 43]. Hsu Y-L et al.
reported that BTNL9 acts as a tumor suppressor in
LUAD and is regulated by hsa-miR-183-5p; however, the
specific regulatory network was not reported [44]. In
addition, lncRNA AP001462.6 was shown to bind to
BTNL9, and the high expression level of this lncRNA
was significantly correlated with longer OS in LUAD pa-
tients (Fig. 4E).
Moreover, analysis of the protein interaction network

of BTNL9 showed that the interacting proteins played a
role in immune regulation, protease hydrolysis, and
serine/threonine kinase regulation. Notably, protease hy-
drolysis is related to ubiquitination and degradation of
proteins. Analysis showed that BTNL9 has a potential E3
recognizing domain binding site (Fig. 4H, I). These find-
ings indicate that BTNL9 in LUAD may be regulated by
DNA methylation and non-coding RNA. In addition,
BTNL9 protein may be held by ubiquitination and deg-
radation after translation.
We performed a GSEA analysis to explore the bio-

logical function of BTNL9 in LUAD. Functional analysis
showed low expression levels of BTNL9 in energy me-
tabolism (oxidative phosphorylation, glycolysis, myc tar-
gets v1 [45], and mTORC1 signaling [46]), DNA
replication, and protease hydrolysis. Metabolic repro-
gramming triggers selective gene amplification and a
large gene family, which drives cellular functions to pro-
mote cancer cell growth and proliferation [45]. The
above functions were subsequently verified from a single
cell perspective. Findings showed that BTNL9 was

significantly negatively correlated with cancer cell malig-
nant behaviors such as proliferation, invasion, EMT, me-
tastasis, and hypoxia. This result indicates that BTNL9
may play a role in LUAD tumor suppression.
TME is a potential predictor of response to an im-

mune checkpoint inhibitor. Analysis of the relationship
between BTNL9 and TME showed that the mutation fre-
quency of BTNL9 in LUAD was about 1.14%, and
BTNL9 was significantly negatively correlated with
TMB. Furthermore, BTNL9 was significantly positively
correlated with ImmuneScore and ESTIMATEScore.
Previous studies report that high ImmuneScore and
ESTIMATEScore are positively associated with a good
prognosis of LUAD [47]. This finding shows that BTNL9
plays an important role in TME immune regulation.
Moreover, the correlation between BTNL9 and TILs
showed that BTNL9 was significantly negatively corre-
lated with tumor purity, and previous studies report that
low tumor purity is associated with poor prognosis [48].
Although BTNL9 was significantly correlated with B,
CD4 + T, and macrophages, survival analysis showed
that BTNL9 was only significantly correlated with B cells
and DC cells.
DCs act pivotally in shaping innate and adaptive im-

mune responses because they have a unique ability to
initiate T-cell responses and promote their differenti-
ation into effector lineages [36]. B cells play antigen
presentation, cytotoxicity, and antibody production func-
tions, which are essential in adaptive immunity [49].
TIMER and GEPIA database analysis showed that the
expression level of BTNL9 was not correlated with levels
of DCs (cDC1s and cDC2s) in normal adjacent tissues;
however, BTNL9 was significantly associated with levels
of DCs (cDC1s and cDC2s) in LUAD tissues (Table 1).
cDC1s can migrate to tumor-draining lymph nodes, acti-
vate and attract T cells, secrete cytokines, and present
antigens in TME, promoting local cytotoxic T cells [50].
cDC2s present antigens to MHC II, activate CD4 + T
cells, and effectively polarize TILs into anti-tumor T
helper cell 1 (Th1) or Th17 phenotype [51]. The BTNL9
expression level was not correlated with B cells (naïve B
cells) in normal adjacent tissues; however, it was signifi-
cantly associated with levels of B cells (naïve B cells) in
LUAD tissues, except for plasma B cells. This finding
implies that BTNL9 regulates the function of naïve B
cells in TME. Previous studies report that naïve B cells
are down-regulated in advanced NSCLC and are corre-
lated with poor prognosis [37]. Furthermore, CARE
database analysis showed that BTNL9 expression is asso-
ciated with effective antiangiogenic tyrosine kinase in-
hibitors response (Fig. 7, and Table 2). More data are
being awaited to confirm this preliminary observation.
Notably, this study had a few limitations. Firstly, our

findings are entirely based on public databases using
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bioinformatics analysis, and therefore further molecular
biology experiments should be performed to verify these
results. In addition, all findings presented here were de-
veloped using Database algorithms. Secondly, BTNL9
may not be detected by histopathology due to a lack of
LUAD tissue samples. Further, OS analyses can’t be per-
formed based on histopathology results. Finally, the
study did not verify the role of BTNL9 in predicting im-
mune responses in LUAD patients due to the lack of
clinical cohorts of immunotherapy-treated LUAD pa-
tients. Taken together, results and conclusions based en-
tirely on bioinformatics are informative and can lay
down the foundations for more robust studies, but they
do not replace experimentation.

Conclusion
In summary, the findings of this study show an associ-
ation between immune checkpoint BTNL9 and OS in
LUAD patients. Transcriptional regulation and post-
transcriptional regulation are potential mechanisms for
down-regulating BTNL9 expression, resulting in more
malignant biological characteristics in LUAD. BTNL9
may modify the TME by enrichment of naïve B cells and
DCs and promoting immune response and antiangio-
genic tyrosine kinase inhibitors response.
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