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Abstract
The placenta sustains embryonic development and is critical for a successful pregnancy outcome. It provides the site of 
exchange between the mother and the embryo, has immunological functions and is a vital endocrine organ. To perform these 
diverse roles, the placenta comprises highly specialized trophoblast cell types, including syncytiotrophoblast and extravillous 
trophoblast. The coordinated actions of transcription factors (TFs) regulate their emergence during development, subse-
quent specialization, and identity. These TFs integrate diverse signaling cues, form TF networks, associate with chromatin 
remodeling and modifying factors, and collectively determine the cell type-specific characteristics. Here, we summarize the 
general properties of TFs, provide an overview of TFs involved in the development and function of the human trophoblast, 
and address similarities and differences to their murine orthologs. In addition, we discuss how the recent establishment of 
human in vitro models combined with -omics approaches propel our knowledge and transform the human trophoblast field.
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Introduction

The placenta is the most diverse organ among mammals, and 
it aids fetal development by facilitating nutrient, metabolite 
and gas exchange between the mother and the fetus. To fulfill 
these various functions, the progenitor cells of the placenta 
differentiate into multiple highly specialized trophoblast 
cell types. Proper trophoblast differentiation is essential for 
correct placental and fetal development as aberrant differ-
entiation often results in pregnancy complications, hamper-
ing both maternal and fetal health. This review focuses on 
trophoblast cell identity determined by specific gene expres-
sion patterns driven by transcription factors (TFs). They 
form networks, and together with co-factors, chromatin-
modifying and -remodeling complexes govern cell identity 
and differentiation. The review is divided into three main 
parts describing (i) the development of the human placenta, 
(ii) general properties of TFs and (iii) human trophoblast 
cell identity determined by TFs, where we discuss indi-
vidual TFs and signaling pathways in trophectoderm (TE), 
cytotrophoblast (CTB), syncytiotrophoblast (STB) and 

extravillous trophoblast (EVT) in comparison to mouse 
placenta development.

Development of the human placenta

During human development, the first lineage decision seg-
regates the TE and the inner cell mass (ICM), resulting in 
the blastocyst 4–5 days post fertilization (dpf). While all 
embryonic cells originate from the ICM, the TE generates 
the trophoblast compartment of the placenta. The blastocyst 
implants into the maternal endometrium 6–7 dpf; the TE 
gives rise to the mononuclear CTB that differentiates into 
the invasive multinuclear primitive syncytium (PS) (Fig. 1) 
[1]. Around day 9, vacuoles appear in the PS that fuse and 
form the lacunar spaces, and eventually breach the maternal 
capillaries giving rise to the maternal blood sinusoids [2]. 
Concomitantly, rows of proliferative CTB break through the 
expanding PS and form primary villi, subsequently invaded 
by the extraembryonic mesoderm (ExM), which is thought 
to originate from the ICM. Further proliferation and dif-
ferentiation result in a villous structure consisting of an 
ExM-derived core containing fetal capillaries covered by 
two trophoblast layers: the proliferative villous CTB and its 
derivative, the multinuclear STB (Fig. 1) [1]. The STB forms 
a syncytium that provides the exchange site between the 
maternal and fetal bloodstreams and produces and secretes 
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a plethora of pregnancy hormones. The developing pla-
centa comprises two types of villi: the floating villi and the 
anchoring villi attached to the decidua through cell columns 
(Fig. 1). The proximal part of the column is a proliferative 

progenitor pool that gives rise to the highly invasive and 
migratory EVT lineage. Two distinct EVT populations exist 
by 15–16 dpf and safeguard immunological adaptation: the 
interstitial EVT (iEVT) that invade decidual stroma and the 
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endovascular EVT (eEVT) that colonize and remodel mater-
nal spiral arteries to a high conductance at low-pressure 
vessels, ensuring optimal blood flow [3]. In addition to the 
arterial transformation, the eEVT moves down the artery 
and forms plugs that prevent blood flow and safeguard a 
hypoxic environment. By the end of the first trimester, the 
plugs disintegrate, and the three main trophoblast lineages 
of the human placenta are established: the CTB, the STB 
and the EVT, providing an outline for further growth and 
physiological development (Figs. 1 and 2a). 

While human and murine placentas fulfill analogous 
functions and both show a hemochorial (maternal blood 
directly contacts trophoblast cells) type of placentation, 
they exhibit several morphological and functional differ-
ences. The murine placenta comprises the junctional and 
the labyrinth zones (Fig. 2b). The junctional zone con-
sists of cells derived from the ectoplacental cone (EPC), 
encompassing the secondary trophoblast giant cells 
(TGCs), the spongiotrophoblast cells, and the glycogen 
cells (GlycCs) [4]. The secondary TGCs are thought to 
correspond to EVTs, as they invade (around E7.5-E9.5) 
deeply into the decidua and remodel the maternal spiral 
arteries. The GlycCs are loaded with glycogen and serve 
as an energy store. The labyrinth zone provides the site 
of the maternal–fetal exchange and functionally relates to 
human chorionic villi. During murine development, the 
TE gives rise to the extraembryonic ectoderm (ExE) and 
the EPC. The allantois arises from the ExM, and around 
embryonic day E8.5 fuses with the chorion, a structure 
of ExE origin, in a process known as the chorioallantoic 
fusion [5]. This fusion enables the invasion of the ExM-
derived blood vessels into the chorionic layer, eventually 

leading to the establishment of the labyrinth zone. Here, 
the fetal and the maternal bloodstreams are separated by 
a trilaminar barrier consisting of the two layers of syncy-
tiotrophoblast and a layer of sinusoidal giant cells lining 
the maternal blood sinuses [6] (Fig. 2b). Thus, the gen-
eral functional layout of the murine and human placenta 
is similar, as in both cases, the fetal vasculature is of ExM 
origin, and the maternal blood flows in trophoblast-lined 
sinuses and remains in direct contact with STB; how-
ever, species-specific differences do exist. Despite these 
disparities, the murine placenta has proven to be a very 
informative animal model, not least due to its amenability 
to genetic engineering, particularly gene knockout (KO) 
experiments [7, 8]. In addition, derivation of self-renewing 
and multipotent mouse trophoblast stem cells (mTSCs), 
representing the ExE compartment of the mouse embryo 
[9], contributed enormously to our understanding of the 
TF networks operating in trophoblast.

Numerous human placental disorders have their patho-
physiological roots at the early developmental stages. 
However, molecular studies of the underlying causes 
were long hampered by the inaccessibility of placental 
tissue and the lack of suitable in vitro models. Research-
ers mainly relied on the scarcely available primary tissue 
and several transformed and cancer cell lines of restricted 
potential [5]. While animal models, in particular mice, 
are widely used to study the development and function 
of human organs, their ability to model the placenta is 
limited. As described above, the development of the spe-
cific trophoblast lineages and cell types differ between 
the two species. For instance, various types of the tropho-
blast giant cells feature prominently in the murine pla-
centa while these are limited to EVT subtypes in humans 
[4, 10]. The recent establishment of the human tropho-
blast stem cells (hTSCs) and self-organizing trophoblast 
organoids (TOs) was a major breakthrough and provided 
novel, reliable tools to study molecular mechanisms driv-
ing trophoblast development and disease (Fig. 3) [11–13]. 
The hTSCs represent the CTB population of the first tri-
mester placenta. In culture conditions activating EGF and 
WNT and inhibiting TGF-β and ROCK signaling, they 
self-renew and remain bipotent. Upon induction, hTSCs 
can differentiate into STB or EVT, providing a versatile 
in vitro system to follow trophoblast development [11]. 
TOs require similar signaling inputs to self-organize in 
3D into the outer CTB-like layer and the inner STB-like 
compartment, representing the inside-out model of the 
human villi [12, 13]. While these models have already 
proven to be a powerful tool to interrogate TF function in 
CTB [14–16], naive human embryonic stem cells (hESCs) 
conversion into hTSCs and recently-derived human blas-
toids can be used to dissect even earlier stages of human 
trophoblast development [17–24].

Fig. 1  The development of the human placenta. Initiated by ferti-
lization, the zygote undergoes multiple divisions and gives rise to a 
blastocyst 4–5 days post-fertilization (dpf). The blastocyst consists of 
the inner cell mass, which gives rise to the embryo proper and the 
trophectoderm, which gives rise to the trophoblast of the placenta. 
Upon implantation of the blastocyst into the uterine endometrium, the 
establishment of the multi-nucleated primitive syncytium (PS) and 
the cytotrophoblast (CTB) monolayer begins. Around day 9 dpf, lacu-
nae form within the PS, fuse subsequently with uterine capillaries, 
and establish maternal sinusoids filled with maternal blood by day 
13 dpf. Simultaneously, the CTB expands through the PS, extending 
towards the maternal decidua and forming primary villi. By the end 
of the third trimester, the main placental structure, the villous tree, 
is fully established. The villous tree consists of the extraembryonic 
mesoderm-derived core, fetal capillaries, the CTB monolayer and the 
multinucleated syncytiotrophoblast (STB) layer, arising from CTB 
fusion. The floating villi of the villous tree are located in the intervil-
lous space filled with maternal blood, while the anchoring villi extend 
towards the decidua. At the tip of the anchoring villi, CTB forms a 
cytotrophoblast cell column, comprising the proliferative progenitor 
population of invasive extravillous trophoblast (EVT). The EVT can 
be divided into two subtypes; the endovascular EVT (eEVT), which 
remodels the maternal spiral arteries and the interstitial EVT (iEVT), 
which invades the decidua

◂
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General properties of TFs controlling gene 
regulatory networks

Cell identity is determined by the specific TF-driven tran-
scriptional outputs and is coordinated by the signaling inputs 
[25]. TFs bind DNA in a sequence-specific manner, cooper-
ate with chromatin remodeling and modifying complexes, 
and other factors to recruit the transcriptional machinery and 
drive transcription. Specific cell types are usually defined 
by a particular combination of TFs, as evidenced by cell 
(re)programming studies. Classical reprogramming experi-
ments demonstrated that transient ectopic expression of 
Oct4, Sox2, Klf4 and Myc (OSKM) in fibroblasts cultured 

in murine ESC media resulted in the establishment of self-
renewing induced pluripotent stem cells (iPSCs), barely dis-
tinguishable from ESCs [26]. Similarly, transient, ectopic 
expression of Eomes, Tfap2c, Gata3 and optionally Ets2 
or Myc in mouse fibroblast coupled to mouse TSC culture 
conditions (FGF4 and TGF-β) led to the establishment of 
self-renewing and multipotent induced TSCs (iTSCs) that 
contributed to the placenta in chimeras [27, 28]. Moreover, a 
recent report showed reprogramming of human term CTB to 
iTSCs upon expression of 5 TFs (TFAP2C, TEAD4, CDX2, 
ELF5 and ETS2) in hTSC culture conditions [29]. The role 
of TFs in translating the signaling inputs into the transcrip-
tional outputs was demonstrated in the trophoblast context, 

b

a

Fig. 2  Comparison of the human and murine placenta. a The main 
unit of the human placenta is a villous tree, comprising the extraem-
bryonic mesoderm-derived core (ExM-dC), containing fetal capillar-
ies. The ExM-dC is covered by the cytotrophoblast (CTB) monolayer 
and the multinucleated syncytiotrophoblast (STB) layer that is in con-
tact with maternal blood. The inset shows a cross-section through the 
villi. At the tip of the villi, the cytotrophoblast cell column forms. It 
gives rise to the interstitial extravillous trophoblast (iEVT), invading 
the decidua and the endovascular extravillous trophoblast (eEVT), 

invading the maternal spiral arteries. b The murine placenta can be 
divided into the junctional zone and the labyrinth zone. The junc-
tional zone  consists of the spongiotrophoblasts and the glycogen 
cells. The trophoblast giant cells invade the maternal decidua and 
remodel maternal arteries and thus are considered to correspond to 
human EVT. In the labyrinth zone, the fetal blood is separated from 
the maternal blood sinusoids by fetal endothelial cells, two layers of 
STB (STB-I and STB-II) and sinusoidal giant cells. The labyrinth 
functionally relates to human villi
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as constitutive overexpression of Sox2 and Esrrb/Tfap2c was 
sufficient to confer FGF4-independent self-renewal and sus-
tain multipotency in mTSCs [30].

Importantly, TFs usually do not function as a sum of sin-
gle players but rather operate as networks at both the tran-
scriptional and protein level [31–35]. Analysis of TFs in 
mTSCs (e.g., ESRRB, TFAP2C, TEAD4, GATA2/3, SOX2, 
ELF5, EOMES, CDX2, etc.) revealed that they directly bind 
their own and each other's genes and drive their expression 
resulting in the maintenance of the network [30, 36–38]. For 
instance, ESRRB binds itself as well as the Eomes and Elf5 
genes and is essential for their expression [36]. Furthermore, 
in addition to sustaining each other, trophoblast TFs co-bind 
and co-regulate the expression of downstream gene modules 
determining the mTSC identity [38]. The co-binding prefer-
entially occurs at the gene regulatory regions referred to as 
enhancers. Enhancers are densely packed with DNA motifs 
bound by TFs, are highly enriched for transcriptional cofac-
tors (e.g., p300), exhibit accessible chromatin structure and 
may cooperate and form regulatory hubs referred to as super-
enhancers [39]. A recent study in differentiating mTSCs sys-
tematically mapped trophoblast-specific super-enhancers 

and the associated TFs, of which the vast majority has not 
been characterized yet in the placental context [38]. Inter-
estingly, no bonafide trophoblast-specific TFs have been 
identified, as all of the known essential trophoblast TFs 
are also expressed in a range of embryonic and adult cell 
types, indicating that cell-type specificity is acquired by 
their unique combinations. This notion is exemplified by 
EOMES, CDX2 and SOX2 that function largely separately 
in the early mesendoderm, late mesoderm, and neuroecto-
derm lineage derivatives, respectively, but uniquely cooper-
ate in the trophoblast lineage [40–43]. Another example is 
provided by the key stem cell/progenitor TF SOX2 that has 
context-dependent protein interactors and therefore differ-
ent target gene networks (e.g., OCT4 in mESC, TFAP2C in 
trophoblast, and OTX2 in neuroectoderm) [30, 34, 44–46]. 
The acquisition of new TF combinations in a network could 
be driven by the evolution of novel cis-regulatory elements, 
in agreement with the genetic theory of morphological evo-
lution [47]. It has been reported that endogenous retroviruses 
function as species-specific placental enhancers bound by 
CDX2, EOMES and ELF5 TFs [48]. The tissue-specificity 
of these enhancers relies on the low methylation levels in 

Fig. 3  Human trophoblast stem cells and trophoblast organoids. The 
human trophoblast stem cells (hTSC) can be derived from both the 
blastocyst and the cytotrophoblast (CTB) of the first-trimester pla-
centa. The hTSCs represent the proliferative CTB population and can 
be differentiated into extravillous trophoblast (EVT) and syncytio-
trophoblast (STB) upon defined culture conditions. Moreover, troph-

oblast organoids (TOs) can be established from the first-trimester 
CTB. TOs have an STB-like core and CTB-like shell and thus pro-
vide an inside-out three-dimensional model. TOs can be further dif-
ferentiated to form the cytotrophoblast cell column (CCC)-like and 
EVT-like populations
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trophoblast, providing access to otherwise silenced regions 
(by DNA methylation), which are the source of regulatory 
variation [48]. Another example is a human long terminal 
repeat (LTR) element driving placental expression of the 
corticotropin-releasing hormone (CRH) via the TF DLX3 
and thereby regulating gestational length. This LTR element 
was sufficient to reignite CRH expression in transgenic mice, 
resulting in prolonged gestational length [49]. In sum, TFs 
operate as a highly intertwined transcriptional regulatory 
circuitry, determining trophoblast cell identity.

TF protein networks in trophoblast

TFs also form networks at the protein level. For instance, 
interactions of MSX2 with both GATA3 and TFAP2C [15] 
were identified in hTSCs, and mutual interactions for ELF5, 
TFAP2C and EOMES [37] as well as TFAP2C and SOX2 
[30] were reported in mTSCs. Interestingly, the relative 
abundance of EOMES, ELF5 and TFAP2C determines the 
outcomes of their interactions. In mTSCs, ELF5 interacts 
with EOMES and recruits TFAP2C to triply occupied sites 
at trophoblast-specific genes, driving their expression. In 
contrast, the interaction of ELF5 and TFAP2C becomes 
predominant as their protein levels increase. This triggers 
binding to double- and single-occupancy sites that harbor 
the cognate Tfap2c motif, causing activation of the asso-
ciated differentiation-promoting genes [37]. Thus, mouse 
trophoblast cell identity shifts in line with the stoichiometry 
of these associations, indicating that specificity is not deter-
mined by a single TF but by its interactions. This is further 
illustrated by the largely cell-type-specific protein interac-
tomes and gene binding patterns of SOX2 and ESRRB in 
mTSCs vs. mESCs [30].

TFs exert their function in cooperation with transcrip-
tional cofactors, chromatin remodeling complexes and chro-
matin-modifying enzymes. Transcriptional cofactors provide 
the link to the general RNA Polymerase II (PolII) machinery 
and comprise a diverse array of proteins and complexes. For 
instance, YAP is a TEAD4 cofactor in mTSCs and hTSCs 
[50–52], while the Integrator complex was reported to inter-
act with ESRRB in mTSCs. ESRRB also interacted with 
components of the Lysine-specific histone demethylase 1 
(LSD1), and Nucleosome Remodeling and Deacetylase 
(NuRD) complexes [36]. We have also recently reported a 
strong interaction of the TF MSX2 with the canonical BRG1/
BRM associated factors (cBAF) complex, a subtype of the 
SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin 
remodeling complex, in hTSCs. Chromatin immunoprecipi-
tation followed by high-throughput sequencing (ChIP-seq) 
analyses have demonstrated a substantial binding overlap 
between MSX2, cBAF components ARID1A and BRG1, 
and H3K27ac in hTSCs. Intriguingly, depletion of MSX2 
resulted in spontaneous STB differentiation, increased cBAF 

occupancy and elevated levels of H3K27ac. Thus, in hTSCs, 
MSX2 keeps cBAF “in check”, prevents premature activa-
tion of STB genes and reinforces the hTSC identity [15]. 
These findings provide a paradigm of how the intrinsic con-
nections between TFs, chromatin remodelers and modifiers 
coordinately determine transcriptional cell fate. In addition 
to cBAF, also non-canonical (nc)BAF and Polybromo-asso-
ciated (P)BAF complexes have been shown to operate in 
hTSCs [15]; however, their precise functions await elucida-
tion. The SWI/SNF complex has also been implicated in the 
regulation of self-renewal in mTSCs. Its core subunit BRG1 
has been shown to cooperate with EOMES and TFAP2C TFs 
and positively regulate the expression of crucial stemness 
markers, including Elf5, Eomes and Cdx2 [53]. The SWI/
SNF complex is also essential for early trophoblast develop-
ment as genetic ablation of Brg1, Baf47, and Baf155 subu-
nits resulted in developmental arrest around the blastocyst 
stage and implantation failure [54–56]. Other chromatin 
regulators involved in trophoblast self-renewal are the chro-
matin organizers SATB homeobox 1 (SATB1) and SATB2. 
Their depletion led to a loss of self-renewal and differentia-
tion of rat TSCs [57]. In contrast, the bromodomain BPTF 
nucleosome remodeling factor NURF301 is necessary for 
trophoblast differentiation. Its gene KO resulted in dimin-
ished expression of Ascl2 and Hand1, reduced/absent ecto-
placental cone, and embryonic lethality [58].

Besides the chromatin remodeling status, active (e.g., 
H3K4me4, H3K27ac, H3K9ac) and repressive (e.g., 
H3K27me3, H3K9me2/3) histone modifications have been 
implicated in transcriptional regulation of trophoblast cell 
states. Genetic ablation of histone-modifying enzymes, 
including EZH2 (H3K27 methyltransferase), G9A (H3K9 
methyltransferase), KDM6 (H3K27 demethylase), LSD1 
(H3K4 demethylase), MYST1/MYST2 (H3K14 acetyl-
transferase) and SUV39H1 (H3K9 methyltransferase) led 
to severely impaired trophoblast development and embry-
onic lethality (reviewed in [59]). In contrast to murine, the 
epigenome of the human trophoblast remains relatively 
poorly characterized. Recently, Kwak et al. provided some 
new insights through genome-wide characterization of 
histone modifications (H3K4me3, H3K9Ac, H3K27Ac 
and H3K27me3) and RNA Pol II occupancy in CTB and 
in vitro differentiated STB. These analyses revealed that the 
transition from CTB to STB is associated with profound 
gene regulatory and epigenetic changes [60]. Accordingly, 
pharmacological inhibition and genetic depletion of histone 
deacetylase 1 and 2 impaired STB differentiation [61].

Together, these examples illustrate how TFs, chroma-
tin remodelers, and modifiers cooperate and coordinately 
regulate specific transcriptional outputs that determine cell 
identity. They also highlight the importance of the holistic 
approach when studying transcriptional regulation of cell 
fate decisions.
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TFs determining trophoblast identity

TFs operating in TE

Human development commences with the fertilization and 
formation of a zygote. Following several cell divisions, the 
first lineage specification takes place at the morula stage, 
with the outer, polar cells giving rise to TE and the inner, 
apolar cells becoming the ICM. The outer, polar cells, due 
to the presence of a “free” apical surface, show different 
localization of aPKC, AMOT, and PARD6B and divergent 
distribution of the adherens junctions in comparison to the 
inner cells [52]. As a consequence of this polarization and 
localized mechanical strain, the HIPPO signaling pathway 
is differentially activated. In the inner cells, the HIPPO 
signaling effector YAP1 is phosphorylated and retained 
in the cytoplasm. In the outer cells, the unphosphorylated 
YAP1 translocates to the nucleus where, as a cofactor, 
together with TEAD4 and GATA3 activates the expression 
of key downstream TFs. As the HIPPO/TEAD4 pathway 
is required for the expression of Gata3 in the early mouse 
embryo, it is likely that a similar mechanism operates in 
the human context [52]. GATA3 and its paralog GATA2 
have a redundant function in establishing the TE lineage 
in the mouse, as only the double KO and not the single KO 
mice fail at the preimplantation stage [62]. Interestingly, 
GATA2 is not expressed in the human outer morula cells 
(as in the mouse) but only later in the TE of both species 
[52].

In contrast to the mouse morula, where YAP1 together 
with TEAD4 directly drive expression of Cdx2 in the outer 
cells, concomitantly with the establishment of TE, [50], 
human embryos show expression of CDX2 only at the blas-
tocyst stage. While in the mouse, the expression of CDX2 
and OCT4 become mutually exclusive before the early blas-
tocyst stage [50, 52], in the human, CDX2 is co-expressed 
with OCT4 in the TE of the early blastocyst and becomes 
exclusively expressed only in the TE of the late blastocyst 
[63, 64]. Similar to OCT4, SOX2 is vital for mouse preim-
plantation development and becomes restricted in expression 
to the inner cells of the morula. In humans, SOX2 is initially 
expressed in all nuclei up to the formation of the early blas-
tocyst and becomes confined to the ICM in the expanding 
blastocyst [52]. There are other prominent differences in 
TF expression patterns between the mouse and human TE: 
EOMES, TFAP2C and ID2 are restricted to the mouse TE. 
However, they are either absent (EOMES) or unrestricted 
(TFAP2C, ID2) in the human blastocyst [64].

Collectively, despite the evolutionary conservation of 
blastocyst formation and the first lineage specifications, 
important molecular differences in timing and expression 
and thus regulation of the process exist in mouse and human 
embryos.

TFs operating in CTB

The molecular mechanisms, particularly the TFs, driving 
placental development between the blastocyst implantation 
and the establishment of the villi are poorly understood. 
Because researchers have restricted access to human blas-
tocysts and first trimester placental tissue and their poten-
tial for genetic studies is very limited, the developmental 
period of TE-CTB transition remains largely unexplored. 
However, there is a considerable amount of data on the TFs 
operating in the first-trimester trophoblast (Fig. 4). Depend-
ing on the location, the CTB is the progenitor population for 
STB and EVT lineages and the TFs controlling its identity 
are intensely studied. Notably, the recent establishment of 
hTSCs representing CTB provided an excellent, genetically 
amenable model that will further propel our understanding 
of these TF networks [11].

Many TFs present in TE continue to be expressed in CTB, 
including GATA2/3, TEAD4, and TFAP2C. Recent studies 
have shown that both in human and mouse, TEAD4 pro-
motes TSC self-renewal and stemness by driving the expres-
sion of cell cycle genes and prevents STB and invasive EVT 
differentiation by silencing differentiation markers [14]. The 
importance of TEAD4 for multipotency was further cor-
roborated by the finding that idiopathic recurrent pregnancy 
failures were associated with loss of TEAD4 expression in 
trophoblast progenitors [14]. Similarly, depletion of YAP1, 
a cofactor of TEAD4, revealed its involvement in driving 
self-renewal, proliferation and stemness by transcriptional 
regulation of cell cycle- and STB-related genes [51]. In sum-
mary, the HIPPO pathway controls the trophoblast progeni-
tors in vivo and stem cells in vitro at early (TE) and later 
(CTB) stages of human placental development, highlighting 
its universal role in maintaining trophoblast multipotency.

As already mentioned, GATA3, GATA2 and TFAP2C 
are other conserved TFs, readily expressed in TE, CTB and 
hTSCs. While the molecular mechanisms underlying the 
GATA2/3 and TFAP2C action in CTB and hTSCs await elu-
cidation, the hESC-based trophoblast differentiation model 
has already provided some insights. Even though disputed 
by some [65], this in vitro system was used to demonstrate 
that the network of TFs GATA2, GATA3, TFAP2A and 
TFAP2C regulates trophoblast identity and facilitates the 
exit from pluripotency, and depletion of GATA3 prevents 
specification of trophoblast identity [66]. The critical roles 
of GATA2, GATA3 and TFAP2C in the human CTB and 
hTSCs are expected, as their depletion in the mouse sys-
tem resulted in impaired trophoblast development result-
ing in embryonic lethality [62, 67]. Moreover, GATA2 and 
TFAP2C gained further prominence, as depletion of either 
impaired reprogramming of fibroblasts to naïve hESCs, 
which have the potential to adopt the hTSC state in suit-
able media conditions [68]. In addition, GATA2, GATA3 
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Fig. 4  Overview of TFs operating in different types of human trophoblast. TFs are shown in bold. Arrows indicate interactions between TFs, 
signaling ligands and receptors. Dashed arrows indicate secreted components. The bar line indicates an inhibitory relationship between TFs
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and TFAP2C act as powerful, pioneering TFs, i.e., they can 
bind nucleosomal DNA and nucleate the formation of a new 
enhancer and hence drive cell fate decisions in diverse devel-
opmental contexts [69, 70]. CDX2 is another TF present 
in both human and murine TE. However, in contrast to the 
mouse, CDX2 expression is gradually lost during the first 
trimester of human placental development and is absent in 
hTSCs [11, 71]. These observations raise questions to what 
extent CDX2 is an actual human trophoblast marker, whether 
several progenitor trophoblast subpopulations exist during 
the first trimester, and whether the hTSCs media lacks the 
necessary signaling inputs to maintain CDX2 expression.

As previously discussed, the TE in humans gives rise 
to the proliferative progenitor population of CTB. Inter-
estingly, a number of TFs vital for sustaining the progeni-
tor identity are continuously expressed starting in the TE 
(e.g., GATA2/3, TEAD4, TFAP2C, etc.). In contrast, others 
commence their expression only in the CTB and ExE. For 
instance, expression of ELF5 is conserved in human and 
mouse trophoblast progenitor populations (CTB and ExE, 
respectively) as well as in mTSCs and hTSCs, and downreg-
ulated upon differentiation. Similarly, epigenetic regulation 
of the Elf5/ELF5 promoter by DNA methylation is preserved 
between these two species [72, 73]. In mice, ELF5 coop-
erates with EOMES and TFAP2C and acts as a molecular 
switch governing the balance between mTSCs proliferation 
and differentiation [37]. ELF5 is essential for mouse placen-
tal development and the maintenance of mTSCs; however, 
its function in the human trophoblast remains to be eluci-
dated [37, 74].

ESRRB, EOMES and SOX2 are indispensable for mouse 
placental development and maintenance of mTSCs [75–78]. 
They are lowly expressed (ESRRB and SOX2) or absent 
(EOMES) from both the CTB and hTSCs [11, 71], fur-
ther highlighting the species-specific differences during 
post-implantation trophoblast development. Interestingly, 
we have recently identified MSX2 as a novel and human-
specific regulator of trophoblast identity [15]. While MSX2 
depletion results in loss of hTSC self-renewal and sponta-
neous STB differentiation, MSX2 forced expression blocks 
it. Mechanistically, MSX2 cooperates with the chromatin-
remodeling cBAF complex to prevent premature syncytio-
trophoblast differentiation and reinforce the stemness of 
hTSCs. Hence, MSX2 was established as a repressor of the 
STB lineage, playing a pivotal role in cell fate decisions gov-
erning human placental development and disease. Similar to 
MSX2, TP63 seems to be specific to the human trophoblast. 
TP63 is commonly expressed in the basal layer of strati-
fied epithelia, where it reinforces self-renewal and restricts 
premature differentiation [79]. In the trophoblast context, it 
is highly expressed in CTB and hTSCs, where it drives pro-
liferation and prevents epithelial-to-mesenchymal transition 
and differentiation [80].

Taken together, several TFs have been identified in human 
CTB that maintain the progenitor state and prevent prema-
ture differentiation; however, the relationships between these 
factors in a regulatory network are unclear; some are yet 
likely to be discovered, and their function may differ from 
that in mice.

TFs operating in STB

As in other cell types, the unique combination of TFs deter-
mines the identity of STB Fig. 4). There are two types of 
human STB: the primitive STB mediates embryonic implan-
tation, and the definitive STB lines chorionic villi from the 
third week onwards. The exact relationship between these 
two subtypes is unclear. The villous STB remains in direct 
contact with maternal blood and ensures optimal pregnancy 
adaptation. It enables efficient transport of nutrients, gases 
and metabolites via an enlarged cell surface by microvilli, 
numerous channels and transporters. It synthesizes and 
secretes a variety of pregnancy hormones, including human 
chorionic gonadotropin (hCGA and hCGB), placental lacto-
gen (CSH1), pregnancy-specific glycoproteins (PSGs), pla-
cental growth factor (PGF), corticotropin-releasing hormone 
(CRH) and others [81, 82]. Importantly, STB is devoid of 
human leukocyte antigen class I (HLA-I) molecules, mak-
ing it invisible to the potentially reactive T cells [83]. Thus, 
STB is vital for a functional placenta and successful preg-
nancy. STB undergoes a tightly regulated turnover and is 
replenished by the coordinated differentiation and fusion 
of the underlying CTB. This process is tightly controlled 
and involves biochemical as well as morphological changes. 
While the direct signal remains elusive, a prerequisite for 
differentiation is an exit from the cell cycle [84], followed by 
repression of genes associated with the progenitor state and 
activation of genes related to STB function, i.e., involved in 
nutrient transport, hormone synthesis, and immunomodula-
tion. This differentiation process is coordinated by a subset 
of TFs and signaling inputs. For instance, hCG promotes 
syncytialization [85]. Initially, it is secreted by CTB and is 
thought to induce the formation of the primitive syncytium. 
During later stages, it is produced by STB and acts as a 
positive regulator of the syncytialization process. Mecha-
nistically, hCG binding to the luteinizing hormone/chori-
ogonadotropin receptor (LH/CG-R) induces high levels of 
cAMP and activation of protein kinase A (PKA). In turn, 
PKA phosphorylates the cAMP response element-binding 
(CREB) TF, which, together with the CREB-binding pro-
tein and histone acetyltransferase P300, promotes expres-
sion of fusogenic genes and GCM1 [86–88]. GCM1 is of 
particular importance as it directly drives expression of the 
critical fusogenic proteins SYNCYTIN-1 and -2, encoded 
by the human endogenous retroviruses (HERV) HERV-W 
and HERV-FRD [84, 89–91]. SYNCYTIN-1 and -2 represent 
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domesticated versions of an env gene that in viruses encode 
the envelope glycoprotein mediating infection competency 
and virus-host membrane fusion. SYNCYTIN-1 and -2 
interact with their respective receptors, the sodium-depend-
ent neutral amino acid transporters (ASCT1 and ASCT2) 
and major facilitator superfamily domain-containing 2a 
(MFSD2a), respectively. The receptors are localized on the 
target-cell membrane and induce the cell fusion process that 
is vital for STB formation [88]. Interestingly, the role of 
GCM1 in STB morphogenesis is conserved in the murine 
placenta, as embryos deficient for Gcm1 show a block of 
branching morphogenesis and lack of STB [92].

Another conserved TF implicated in human STB forma-
tion is the peroxisome proliferator-activated receptor gamma 
(PPARG). Its expression is modulated by EGF signaling 
via phosphorylation of P38. PPARG forms a heterodimer 
with retinoid X receptor alpha (RXRA) and promotes syn-
cytialization by driving transcription of STB-related genes, 
including GCM1 and SYNCYTIN-1 [93, 94]. Accordingly, 
mTSCs deficient for Pparg fail to differentiate to STB 
[95], and Pparg KO embryos result in embryonic lethal-
ity due to a placental phenotype [96]. The TF distal-less 3 
(DLX3) has also been demonstrated to control STB identity. 
Mouse embryos deficient for Dlx3 show embryonic lethal-
ity around E10 and their placentas feature malformations 
in the labyrinth and spongiotrophoblast compartments [97]. 
In the human placenta, DLX3 appears to bind and regulate 
the expression of CSH1, CGA , HSD3B1, and PGF and thus 
regulates STB differentiation [98]. Additionally, it has been 
demonstrated that DLX3 physically interacts with GCM1 
and inhibits its transactivation activity at the PGF promoter, 
among others [99]. These findings provide an example of 
how an interaction between TFs impacts their activity and 
outcome. The transcription factor activator protein-2 alpha 
(AP-2α; TFAP2A) was reported as a critical regulator of bio-
chemical but not morphological differentiation of the human 
STB [100]. While expression of a dominant-negative version 
of TFAP2A significantly inhibited induction of vital STB 
markers, (including hCG, PSG family of genes, PGF, and 
cytochrome P-450 (CYP11A1)), it did not affect cell fusion, 
demonstrating the uncoupling of the biochemical and mor-
phological stages of STB differentiation [100]. Interestingly, 
transcription of TFAP2A is regulated by a nuclear recep-
tor subfamily 2, group F, member 2 (NR2F2). Induction of 
NR2F2 promoted expression of TFAP2A, and conversely, 
NR2F2 depletion reduced it, leading to impaired STB dif-
ferentiation [101]. Another TF that is indirectly involved in 
regulating the STB state is OVOL1. OVOL1 is thought to 
suppress CTB genes including MYC, ID1, TP63 and ASCL2 
to facilitate STB differentiation. Consequently, disruption of 
OVOL1 resulted in incomplete silencing of these genes and 
impaired STB differentiation [102]. Recently, a single cell 
(sc)RNA-seq analysis on human embryos cultured using a 

peri-implantation in vitro model identified TBX3 as a novel 
regulator of STB cell fate [103]. Functional validation exper-
iments have demonstrated that depletion of TBX3 in the 
JEG-3 cell line blocked STB differentiation [103].

Overall, several TFs have been identified to control 
STB fate and function; however, their STB context-spe-
cific genome-wide binding profiles, interacting proteins, 
TF networks and transcriptional co-factors remain largely 
unexplored.

TFs operating in EVTs

As stated earlier, the EVT encompasses both the prolifera-
tive EVT of stratified cell columns and the invasive EVT. 
The latter include the eEVT that lines the spiral arteries 
and the iEVT that migrates through the uterine stroma. The 
diverse EVT subtypes have unique properties as they per-
form highly specialized functions and are thus regulated 
by a subtype-specific set of TFs (Fig. 4). These TFs can 
be divided into those that promote EVT proliferation and 
those that promote EVT cell cycle exit, differentiation and 
invasiveness [104]. Hypoxia has been suggested to promote 
proliferation of EVT via the hypoxia inducible factor 1 
(HIF1) TF, and to inhibit their differentiation into the inva-
sive subtypes, supporting placental growth [105]. However, 
other studies found the opposite effect: that the hypoxia-HIF 
pathway stimulates EVT invasiveness [106].

One of the TFs implicated in regulating the EVT iden-
tity is achaete-scute family bHLH transcription factor 2 
(ASCL2). Mice deficient for Ascl2 are embryonic lethal due 
to impaired spongiotrophoblast development and an over-
abundance of giant cells [107, 108]. In the human placenta, 
ASCL2 is expressed in CTB and proliferative EVT but not 
in STB and invasive EVT. Recent reports have shown that 
disruption of ASCL2 impaired EVT differentiation of hTSCs 
and instead induced STB identity [16]. These observations 
indicate that ASCL2 acts to promote proliferation and inhib-
its differentiation. Similarly, the FOS like 1 (FOSL1) and 
MYC TFs are also expressed in CTB and proliferative EVT 
cell columns but not in the more differentiated lineages. In 
agreement with this, it has been demonstrated that deple-
tion of FOSL1 in an immortalized EVT cell line HTR-8/
SVneo results in loss of proliferation and gain of invasive-
ness, indicating that its primary role is also to reinforce the 
undifferentiated, proliferative state [109]. Interestingly, both 
MYC and FOSL1 are also required for placental develop-
ment in mice [110, 111].

While GCM1 is a master regulator of STB formation, 
it is also involved in the regulation of the EVT cell fate. In 
this context, GCM1 drives the expression of genes promot-
ing invasion, including HTRA4, a serine protease that facili-
tates fibronectin cleavage [112]. Accordingly, expression of 
GCM1 provokes invasiveness of the BeWo cell line, while 
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depletion of GCM1 in explant cultures reduces it [91]. Thus, 
GCM1 promotes cell cycle exit and context-dependent dif-
ferentiation of both STB and EVT.

One of the few known TFs specifically expressed in 
the iEVT and required for differentiation is placenta-specific 
protein 8 (PLAC8). While depletion of PLAC8 in explant 
culture and HTR8/SVneo cell line abrogated EVT migra-
tion and invasion, ectopic expression of PLAC8 promoted it 
[113]. These observations indicate that PLAC8 may play an 
important role in human placental development and disease 
as a critical regulator of iEVT invasion and migration. In the 
mouse placenta, Plac8 mRNA localizes to trophoblast giant 
cells at E6.5 and E8.5, and to spongiotrophoblast at E10.5 
and E18.5, suggesting a role for PLAC8 in murine placental 
development [114]. However, a placental phenotype has not 
been reported in embryos deficient for Plac8 [115]. Another 
TF expressed in EVTs is the IKZF1 Ikaros family zinc fin-
ger protein 1. The expression of dominant-negative IKZF1 
abrogated migration and invasion in an immortalized EVT 
cell line and IKAROS was demonstrated to promote EVT 
differentiation [116, 117].

WNT signaling is vital not only for the reinforcement 
of the progenitor state in CTBs but also plays a role in the 
determination of EVT identity. Canonical WNT signaling 
operates via the transcriptional co-activator β-CATENIN 
that translocates to the nucleus, where it associates with the 
T-cell factor (TCF)/lymphoid enhancer factor (LEF) family 
of TFs, driving transcription of diverse genes. It has been 
demonstrated that WNT3A stimulated EVT migration and 
invasion, while the addition of the WNT signaling inhibi-
tor DKK-1 blocked it [118]. Similarly, depletion of TCF4 
in both villous explant cultures and the SGHPL-5 cell line 
impaired their migratory and invasive potential [119]. Col-
lectively, these findings indicate that WNT/TCF4 signaling 
promotes EVT motility and invasiveness. WNT signaling 
is also vital for the development of the murine placenta, as 
mice deficient for components and mediators of this pathway 
show defects in labyrinth formation (WNT2, WNT7B and 
R-SPONDIN, FZD5), impaired chorioallantoic fusion (Tcf1/
Lef1 dKO), and faulty STB formation (Bcl9L) [120–124]. 
In addition, WNT/β-CATENIN signaling has been dem-
onstrated to activate the expression of Gcm1 and promote 
STB-II cell fate [125]. Thus, while indispensable for mouse 
and human trophoblast development and function, WNT/
β-CATENIN signaling plays context-dependent roles. In 
humans, it sustains CTB progenitor identity and controls 
migration and invasiveness of the EVT, whereas, in mice, it 
drives STB identity and labyrinth formation.

Two other pathways that regulate EVT identity are LIF/
STAT3 and NOTCH signaling. Signal transducer and activa-
tor of transcription 3 (STAT3) is vital for ESC self-renewal 
as the critical mediator of the LIF/STAT3 signaling. Upon 
phosphorylation, it undergoes homo- or heterodimerization 

and translocates to the nucleus, where it regulates the expres-
sion of a plethora of genes. Experiments in the choriocar-
cinoma JEG-3 cell line showed that LIF/STAT3 signaling 
promotes cell proliferation and invasiveness [126]. Moreo-
ver, the STAT3 DNA-binding activity was increased in inva-
sive cells, including first-trimester trophoblast, collectively 
suggesting that LIF/STAT3 may regulate EVT invasive 
properties. This notion is in agreement with observations 
made in murine placentas, where the LIF/STAT3 and the 
suppressor of cytokine signaling 3 (SOCS3) are implicated 
in the regulation of placental development [127]. NOTCH1 
is expressed at the base of the proliferative cell columns and 
upon gamma-secretase cleavage gives rise to the NOTCH1 
intracellular domain (N1ICD) that acts as a transcriptional 
activator. Manipulation of NOTCH1 in primary trophoblast 
models revealed that N1ICD promoted trophoblast survival 
and repressed CTB markers including TEAD4 and TP63 and 
induced the EVT progenitor-specific genes MYC and VE-
CADHERIN [128]. These findings place NOTCH1 as a key 
regulator promoting the development of EVT progenitors in 
the human placenta.

Taken together, although a number of TFs and signaling 
pathways have been implicated in EVT specification, dif-
ferentiation and migration, it is likely that more remain to 
be discovered. Importantly, it is unclear how these TFs exert 
their function within context-dependent TF networks and 
with transcriptional co-factors in the EVT lineage.

Current limitations and outlook

Optimal placental development and function are vital for 
a successful pregnancy outcome and the wellbeing of the 
embryo and the mother. These processes require coor-
dinated and dynamic actions of TFs that, in concert with 
signaling inputs, determine cell identity of specialized 
trophoblast cell types. Despite their indisputable impor-
tance, the molecular mechanisms underlying TF actions in 
the human trophoblast remain poorly understood. In addi-
tion, our knowledge is based on studies performed mainly 
in transformed trophoblast cell lines and explant cultures, 
encouraging caution in data interpretation and drawing of 
conclusion. It will be of great interest to validate these TF 
studies in more physiologically relevant systems like hTSCs 
and TOs. The recent establishment of the chemically-defined 
conditions to culture hTSCs and TOs has been a significant 
breakthrough, transforming the human trophoblast field. It 
provided researchers with reliable, well-characterized, and 
physiologically relevant in vitro models of the human troph-
oblast. Importantly, these models are scalable, amenable to 
genetic manipulations and screens, and compatible with 
various -omics approaches, and thus offer an excellent sys-
tem to study TFs in the human trophoblast. Indeed, several 
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important findings about TFs have recently been made using 
this system [14–16].

While hTSCs and TOs provide invaluable tools to study 
the human trophoblast and TF regulation, researchers should 
also consider particularities of these models, when inter-
preting results. For instance, in comparable culture con-
ditions (EGF, CH99021, A83-01, ROCKi), TOs consist 
of co-existing CTB-like and STB-like populations, while 
hTSCs remain CTB-like and do not undergo spontaneous 
STB differentiation. STB differentiation of hTSCs requires 
the strong inducer forskolin instead. These observations may 
suggest that TOs constitute a better model of chorionic villi 
as they recapitulate the co-existence of CTB and STB in a 
dynamic balance. Indeed, recent findings confirm that TOs 
represent villous CTB and STB, while hTSCs resemble cells 
at the base of the cell columns from where EVT derives 
[129]. Interestingly, EVT differentiation of both hTSC and 
TOs requires specific growth factor stimuli and seems less 
robust compared to STB differentiation. These observa-
tions may suggest that the commonly used hTSC/TO culture 
conditions introduce a bias favoring the villous CTB/STB 
identity. An alternative explanation may point toward inef-
ficient EVT differentiation protocols and intensive efforts 
are made toward their further optimization (Sandra Haider 
et al., personal communication). In summary, while hTSCs 
and TOs offer valuable tools to investigate the role of TFs 
in the human trophoblast, additional studies are required to 
bettter characterize these systems better and harness their 
full potential.

Discoveries made in mESCs, hESCs, and in mTSCs 
proved transformative to our understanding of the TF-driven 
molecular processes that determine cell identity and control 
development. Based on this blueprint, future research efforts 
in the context of the human trophoblast should focus on 
identifying novel TFs and their functional characterization, 
elucidating the cooperation between these TFs, chromatin 
remodelers and modifiers, and decoding the TF networks 
that control human trophoblast lineage specification. Par-
ticularly important for dissecting the role of trophoblast TFs 
in the future will be the unbiased study of global effects in 
gain and loss of function experiments since most studies in 
the past focused on selected marker genes. Similarly, the 
genome-wide determination of TF-bound regions and the 
identification of the TF protein interactomes will provide 
a holistic comprehension of trophoblast network control, 
instead of the insular focus on single factors. Finally, the 
growing human trophoblast expression atlas comprising 
bulk and single-cell transcriptome datasets will be a crucial 
resource for benchmarking mechanistic in vitro studies [11, 
130–132].

Overall, the field can look forward to an exciting next dec-
ade where a combination of new models and technologies 

will enable breakthroughs in understanding TF control of 
human placental development and disease.
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