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Abstract

Species distribution models (SDMs) are used to test ecological theory and to direct
targeted surveys for species of conservation concern. Several studies have tested
for an influence of species traits on the predictive accuracy of SDMs. However, most
used the same set of environmental predictors for all species and/or did not use truly
independent data to test SDM accuracy. We built eight SDMs for each of 24 plant
species of conservation concern, varying the environmental predictors included in
each SDM version. We then measured the accuracy of each SDM using independent
presence and absence data to calculate area under the receiver operating charac-
teristic curve (AUC) and true positive rate (TPR). We used generalized linear mixed
models to test for a relationship between species traits and SDM accuracy, while
accounting for variation in SDM performance that might be introduced by differ-
ent predictor sets. All traits affected one or both SDM accuracy measures. Species
with lighter seeds, animal-dispersed seeds, and a higher density of occurrences had
higher AUC and TPR than other species, all else being equal. Long-lived woody spe-
cies had higher AUC than herbaceous species, but lower TPR. These results support
the hypothesis that the strength of species-environment correlations is affected by
characteristics of species or their geographic distributions. However, because each
species has multiple traits, and because AUC and TPR can be affected differently,
there is no straightforward way to determine a priori which species will yield useful
SDMs based on their traits. Most species yielded at least one useful SDM. Therefore,
it is worthwhile to build and test SDMs for the purpose of finding new populations of

plant species of conservation concern, regardless of these species’ traits.
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1 | INTRODUCTION

Species distribution models (SDMs) use known locations of a spe-
cies along with geospatial data on climatic, topographic, edaphic,
and land cover variables to predict habitat suitability or probability
of occurrence across a region (Guisan & Zimmerman, 2000). SDMs
have been used to test ecological theories about what factors con-
strain species’ ranges (e.g., Kharouba, McCune, Thuiller, & Huntley,
2013; Moore & Elmendorf, 2006), to predict future shifts in species
distributions with climate change (e.g., Elith, Kearney, & Phillips,
2010), and in conservation-related applications (Franklin, 2013;
Guisan et al., 2013). For example, SDMs can predict areas of suit-
able habitat where field surveys might reveal previously undiscov-
ered populations of species of conservation concern (Guisan et al.,
2006). Although there are challenges and limitations when using
SDMs for this purpose (e.g., Breiner, Guisan, Bergamini, & Nobis,
2015; McCune, 2019), many studies using SDMs to target surveys
for plant species have been successful, with SDM-directed surveys
leading to the discovery of previously unknown occurrences—even
of species with very few known populations (e.g., Boetsch, Manen,
& Clark, 2003; Bourg, McShea, & Gill, 2005; Engler, Guisan, &
Rechsteiner, 2004; Guisan et al., 2006; van Manen, Young, Thatcher,
Cass, & Ulrey, 2005; Marage, Garraud, & Rameau, 2008; McCune,
2016; Williams et al., 2009). SDMs can effectively complement ex-
pert knowledge of the best locations to search, or provide guidance
when expert knowledge is lacking. SDM-directed surveys have been
shown to increase the efficiency of field surveys when compared
to other sampling strategies (Guisan et al., 2006; van Manen et al.,
2005; Rosner-Katz et al. in revision). Knowing the locations of all
extant occurrences of species of conservation concern is important
in order to correctly assess their status and to design effective strat-
egies for recovery.

Although SDMs have had many successful applications, the ac-
curacy of SDMs in representing a species’ geographic distribution
varies (e.g., Kharouba et al., 2013). Species with certain traits, which
we define broadly as biological characteristics of the species or char-
acteristics of a species’ geospatial distribution, might be less amena-
ble to accurate SDMs. For example, many studies have found that
SDMs of generalist species tend to be less accurate than SDMs of
more specialized species (e.g., Franklin, 2010; Hernandez, Graham,
Master, & Albert, 2006; Marshall et al., 2015; Seoane, Carrascal,
Alonso, & Palomino, 2005). Presumably, SDMs can more effec-
tively tease apart suitable from unsuitable habitat when the range
of conditions the species can tolerate is quite narrow and of limited
extent in the study region (Franklin, Wejnert, Hathaway, Rochester,
& Fisher, 2009). Dispersal ability may also influence the accuracy
of SDMs if poor dispersers are unable to reach all suitable habitat
within a study area and are thus absent even where conditions are
predicted to be suitable (e.g., Gogol-Prokurat, 2011; Graham, Silva,
& Velasquez-Tibata, 2010). Other potentially important traits include
lifespan, prevalence in the study area, and range extent (see Table 1).

Studies testing the effects of species traits on SDM accuracy

have had variable results. Many have found that certain traits do

correlate with SDM accuracy (e.g., Franklin et al., 2009; Guisan et al.,
2007; Hanspach, Kuhn, Pompe, & Klotz, 2010; Newbold et al., 2010;
Poyry, Luoto, Heikkinen, & Saarinen, 2008; Syphard & Franklin,
2009)—but which particular traits are significant varies in studies
of different taxonomic groups, and from different regions. Others
have found trait-SDM accuracy correlations lacking or weak (Elith &
Burgman, 2002; McPherson & Jetz, 2007; Tessarolo, Rangel, Araujo,
& Hortal, 2014). Of course, these tests are complicated by the fact
that each species has multiple traits, and a species with one trait
that predisposes it to a more accurate SDM might have another trait
that acts in the opposite direction. For example, a species might be
a good disperser, leading potentially to a more accurate SDM, but
also be a generalist, which might make it more difficult to achieve an
accurate SDM. This makes it necessary to test the effects of multiple
traits simultaneously, so that the effect of each can be tested while
accounting for the others.

In addition, the choice of which environmental predictors to in-
clude could affect the accuracy of SDMs, in ways that depend on
species traits. For example, two studies found that faster-growing,
disturbance-associated plants had less accurate SDMs on average
than other plant species (Guisan et al., 2007; Hanspach et al., 2010).
However, both studies speculate that accuracy would have been
higher for those species had geospatial data on the degree of local
disturbance been available and included in the SDMs. That is, the
distributions of disturbance-associated species may not be funda-
mentally difficult to model, as long as the essential predictors are
included. A more rigorous test of the effect of species traits on SDM
accuracy would account for this by building multiple SDMs for each
species that use different sets of environmental predictors.

Another factor to consider when assessing SDM accuracy is the
source of the data with which the SDM is evaluated. Often, SDMs are
evaluated using a subset of presences and absences withheld from
the same dataset used to build the model (i.e., not truly independent
data). Many studies evaluating the effect of traits on SDM accuracy
have used this method (e.g., Hernandez et al., 2006, McPherson &
Jetz, 2007, Poyry et al., 2008, Syphard & Franklin, 2010, Tessarolo
et al., 2014). However, SDM accuracy tends to be higher using this
technique compared with when independently collected presence
and absence data are used (Elith & Burgman, 2002; McCune, 2016,
Newbold 2010). This is probably because environmental or spatial
biases in the full set of occurrences available for SDM building are
retained in the subset withheld for evaluation (Chatfield, 1995).
For targeting suitable habitat for field surveys, it is crucial that the
SDM is able to predict habitat suitability accurately at new sites.
Therefore, when testing the potential effects of species traits on
SDM accuracy, it is important to assess SDMs using independently
collected presence and absence data whenever possible.

In this study, we ask whether traits of species or their geographic
distributions affect the accuracy of SDMs for 24 plant species of
conservation concern. Our goal was to test the fundamental ques-
tion: “are species’ traits related to the strength of the relationship
between environmental predictors and geographic distribution?”

and the applied question that follows from it: “can traits be used to
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predict which species will be most amenable to the use of SDMs to
target field surveys?” We built eight SDM versions for each species,
varying the set of environmental predictors included in each version
to account for the potential for the accuracy of an SDM to vary de-
pending on the predictors, and recognizing that the most accurate
SDM version might be different for different species. Specifically,
we included land cover and forest extent in some SDM versions
based on our observation in a previous study that some species re-
spond to forest type and landscape context in addition to climatic,
topographic, and edaphic conditions (McCune, 2016). We then eval-
uated the SDMs with independent presences and absences obtained
from field surveys of 156 sites that varied in their predicted habi-
tat suitability for each species. Thus, our measure of SDM accuracy
measures the ability of the SDMs to predict habitat suitability at new
sites.

2 | METHODS
2.1 | Study area and species

Our study region is southern Ontario, Canada (Figure 1), in the
Mixedwood Plains ecozone (Crins, Gray, Uhlig, & Wester, 2009).
This is the most highly populated region of the province. Prior to
European colonization, the region was dominated by forest, but for-
ests are now highly fragmented and the landscape is dominated by
agriculture (Larson, Riley, Snell, & Godschalk, 1999). Mean daily tem-
peratures range from 18 to 22°C in July, and there is 720-1,000 mm
of annual precipitation (Crins et al., 2009). Elevation ranges from 20
to 575 m above sea level.

Southern Ontario is a hotspot for plant diversity in Canada: More
than 40% of Canada's plant species occur here (Oldham, 2017). The
region is also home to many threatened plant species: 80 out of 201

vascular plants listed as extirpated, endangered, threatened, or spe-

cial concern under Canada's Species at Risk Act occur in Ontario

(Government of Canada, 2018). We built SDMs for 41 vascular plant
species that are provincially rare (ranked S1, S2, or S3 in Ontario,
indicating critically imperiled, imperiled, or vulnerable status, re-
spectively; Faber-Langendoen et al., 2012; Table 2). To maximize
the accuracy of field surveys, we chose species that are relatively
easy to identify in the field. We also focused on those species that
grow mainly in woodland habitats. The species vary in their habi-
tat specificity, their longevity, the number of known occurrences in
Ontario, and the extent of their distribution within the study region
(Table 2). Most of these species are at the northern edge of their
range in southern Ontario, which extends into the southeastern
United States. We compiled data on traits of each species that we
hypothesized might influence the accuracy of SDMs, based on pre-
vious studies (Table 1).

2.2 | Species distribution models

We obtained georeferenced data on known occurrences of each
species in southern Ontario from the Natural Heritage Information
Centre (NHIC) of the Ontario Ministry of Natural Resources and
Forestry (OMNRF). The NHIC maintains records of all species
ranked S1, S2, or S3 from herbarium records and confirmed sight-
ings by provincial biologists, other scientists, or members of the
public (Government of Ontario, 2018). We chose a resolution of
100 x 100 m (1 hectare) for the SDMs, corresponding to the larg-
est area we felt could be comprehensively surveyed for rare plants
within a reasonable amount of time. We therefore removed all oc-
currence records with a spatial uncertainty greater than 100 m.

We compiled geospatial data on climate, soils, surficial geology,
and topography from publicly available spatial datasets and con-
verted them to a 100 x 100 m resolution (Table S1). Given the large
number of climatic variables available, we chose a set that were min-
imally correlated (r < 0.7). Our primary set of predictors included

14 variables representing topography, surficial geology, soils, and

+ Castanea dentata
* Panax quinquefolius

200 km

e

46° N

45° N

44° N

FIGURE 1 The study area (shaded) in
southern Ontario. Occurrence records
used to build SDMs for Panax quinquefolius
(wild ginseng, circles) and Castanea
dentata (American chestnut, triangles) are
shown as examples. Polygons are convex
hulls enclosing the extent of the records

43° N

142°N

-83°W -82°W -81°W -80°W -79°W -78°W -77°W

-76°W -75°W

of each species in the study area
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Model Estimate (SE) df dAICc
(a) AUC
Full 12 0
Occurrence density 0.45 (0.06) 11 50.3
Woodiness 1.38(0.19) 11 44.3
Log (seed weight) -1.06 (0.15) 11 42.4
Log (seed weight)? -0.61(0.07) 11 424
Dispersal type NA 9 12.7
Soil type diversity -0.10 (0.06) 11 1.0
(b) TPR
Full 12 0
Dispersal type NA 9 329.2
Woodiness -1.27 (0.1) 11 153.3
Occurrence density 0.63(0.05) 11 145.9
Latitude -0.46 (0.04) 11 121.4
Log (seed weight) -0.48(0.1) 11 22.0
Maximum range 0.22 (0.06) 11 13.2
extent
Soil type diversity 0.10 (0.04) 11 3.1

TABLE 3 The relative importance of

Sk CAEIT species’ traits predicting (a) AUC and
(b) TPR. Model terms are listed in order
of decreasing influence as measured by

[ 001 the difference in AICc between a model
<
’ ’ without the variable and the full model
46.56 <.001
44.64 <.001
44.64 <.001
19.5 <.001
3.23 .07

336.0 <.0001

155.6 <.0001

148.2 <.0001

123.7 <.0001

24.3 <.0001
15.5 <.0001
5.4 .02

AUC, area under the receiver operating characteristic curve; TPR, true positive rate.

climate only. SDMs for some species (but not all) are more accurate
for sites with more contiguous forest surrounding them (McCune,
2016). Therefore, we used the Southern Ontario Land Information
System (SOLRIS; Smyth, 2008) wooded layer, which delineates
all forested areas in southern Ontario, to calculate the number of
cells within the 9 x 9 cell area surrounding each focal cell that were
forested. We called this “forest contiguity.” A 9 x 9 cell area cor-
responds to approximately the same area as is encompassed by a
circular area with a 500 m buffer around each focal cell, which is a
distance at which correlations between forest amount and presence
or absence of plant species of conservation concern has been shown
(McCune, 2016; McCune, Natto, & MacDougall, 2017). We also used
the SOLRIS categorical representation of land cover as a predictor in
some of the SDMs (Table S1).

We used the program MaxEnt to build 8 SDMs for each of the
41 species (Phillips, Anderson, & Schapire, 2006; we refer to the 8
SDMs for each species as “SDM versions”). We chose MaxEnt be-
cause it performs as well or better than other SDM methods, es-
pecially for presence-only data and in cases where the number of
presence records is low (Hernandez et al., 2006; Williams et al.,
2009). In addition, the pilot study showed that MaxEnt could pro-
duce accurate predictions of habitat suitability for plant species in
our region, when assessed with independent presence and absence
records (McCune, 2016). Because we had evidence of its efficacy
based on independent data, we chose to use MaxEnt alone rather
than using multiple SDM techniques and creating ensemble SDMs.
While some advocate including all possible predictors and allowing
MaxEnt to hone in on the most important (e.g., Phillips et al., 2006),
we have found that SDMs built with a smaller subset of potential

variables were more accurate for some species. Therefore, we used

4 sets of environmental predictors for each species: (a) the original
14 (climate, topography, soil, and geology only), (b) the original 14
plus forest contiguity, (c) the original 14 plus land cover, or (d) the
original 14 plus forest contiguity and land cover (Table S1).

We built two SDMs with each of these four predictor sets, by
varying the regularization multiplier in MaxEnt. The first model used
the default value of 1, while the second used a value of 0.5. During
initial trials building SDMs, we experimented with setting the regu-
larization multiplier at 0.5, 1, or 3 and found that the first two always
led to better performing SDMs. Regularization is a method used by
MaxEnt to penalize models that are too complex, reducing overfit-
ting (Elith et al., 2011; Merow, Smith, & Silander, 2013). By changing
the regularization multiplier to 0.5, we reduced the strength of this
penalization. Varying the regularization multiplier is recommended
by Merow et al. (2013). We set the background for pseudo-absences
in MaxEnt as the entire study area (shaded area in Figure 1).

We tested the accuracy of each SDM using independent presences
and absences from detailed forest surveys we carried out in 2014 and
2015, between May and September of each year (McCune et al., 2017).
We surveyed 156 100 x 100 m cells that varied in their predicted habi-
tat suitability for each modeled species, as defined by MaxEnt's cumu-
lative output for each cell. This value varies from O to 100, with values
closer to 100 indicating higher predicted habitat suitability. We chose
sites with the objective of maximizing the range of predicted habitat
suitability for each species, while including at least ten high-suitability
sites for each species. We were also limited to sites for which we could
obtain landowner permission to access. Given the variation in habitat
associations of the species, the 156 sites encompassed a wide range of
predicted habitat suitability for each species, with the lower end of the

range especially well represented. Our crew of 2-4 field technicians
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navigated to the center of each cell using a handheld GPS unit and
then flagged 50 m in each cardinal direction using a rangefinder and
compass to delineate four quadrants. We then systematically searched
each quadrant by walking transects no more than 5 m apart and re-
cording all vascular plant species present. Survey times ranged from
5 to 10 person hours. We considered a cell in which a species was not
found to be a true absence only if we surveyed the cell during the time
of year when the species was likely to be present and recognizable
(e.g., for spring ephemerals, we did not use any apparent absences
from plots surveyed later than mid-June).

Although we found new occurrences of 15 of the 41 species,
we did not find more than eight new occurrences for any species.
Therefore, we obtained additional independent presence records
from the NHIC. These were submissions of sightings to the NHIC
that had not yet been incorporated into the main NHIC database.
We ensured that these records were spatially accurate and did not
occur in the same cell as any of the records used to build the SDMs.
We selected those species which had at least 10 independent pres-
ence records, including those from our surveys and these extra in-
dependent presence records combined. This resulted in a final list of
24 species (Table 2).

We used the independent presence and absence records to cal-
culate the AUC (area under the receiver operating characteristic
curve) and the TPR (true positive rate) for each of the eight SDMs for
each species. The AUC is a threshold-independent index that mea-
sures the ability of an SDM to correctly discriminate between pres-
ences and absences. It ranges between 0 and 1, where values of 0.5
or less indicate that the SDM is worse than a random model would
be at predicting presence or absence (Fielding & Bell, 1997). The
TPR is the proportion of independent presence records that were
predicted to have suitable habitat by the SDM. We set the thresh-
old for “suitable” habitat as the minimum MaxEnt output value that
resulted in the correct prediction of 90% of the presence records
used to build the model, as long as there were at least 15 original
records. If there were fewer than 15 records used to build the SDM,
we set the threshold at the MaxEnt output value that resulted in
the correct prediction of 100% of the original presence records, as
recommended by Pearson, Raxworthy, Nakamura, and Peterson
(2007). TPRis an important metric when evaluating SDMs for use in
targeting surveys for species because high rates of omission errors
would result in many occupied sites not being surveyed due to the
SDM incorrectly predicting them to be unsuitable. Therefore, the
most useful SDMs for directing field surveys must do a good job of
correctly predicting occurrences. The AUC and TPR for each species
and each SDM version are available in the Supplementary Material
(Tables S3 and S4).

2.3 | Testing the relationship between
SDM accuracy and species traits

We began with 10 traits, 8 continuous and 2 categorical (Table 1).

Prior to the analysis, we assessed multicollinearity among
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continuous candidate predictors using variance inflation factors
(VIF; Zuur, leno, & Elphick, 2010). We also calculated pairwise
Pearson's correlation coefficients (Table S2). We used the vifstep
function (“usdm” package in R) to choose a set of relatively inde-
pendent variables with a VIF less than 3 (n = 7; Table 1). We log-
transformed seed weight and density of occurrence to improve
normality. This resulted in a set of seven candidate predictors:
maximum range extent, density of occurrence, soil type diversity,
mean latitude, seed weight, seed dispersal type (categorical), and
woodiness (categorical; see Table 2). We standardized all continu-
ous variables before building models.

We analyzed each of the two accuracy measures separately.
Because AUC is a continuous proportion that ranges from O to 1,
we used a generalized linear mixed effects model (glmm) with a
beta error distribution (“glmmTMB” function). We included SDM
model version and regularization factor as random effects to ac-
count for potential differences in model performance that might
be introduced by SDMs built using different predictors or with
different regularization settings. Due to nonlinearity, we fit seed
weight as quadratic. We first fit a model including all seven can-
didate predictor variables. We then used the dredge function of
the MuMIn package to create and rank a list of all possible vari-
able combinations based on the lowest AlCc. We assessed the
relative importance of each of the variables retained in the top
ranked model by using a dropl test to assess the importance of
each predictor once all the others were accounted for, based on
the difference in AICc with and without the predictor. We report
both dAICc and the p-value of X2 tests for each comparison. We
assessed overall fit of the top ranked model using an R? function
specified for the beta distribution based on Nakagawa, Johnson,
and Schielzeth (2017) and report the conditional value.

Because TPR is a continuous computed rate based on the num-
ber of correctly predicted presences (“successes”) out of the total
number of independent presences (“trials”), we analyzed this re-
sponse variable using a glmm with a binomial error distribution
(“glmmTMB” function), including SDM model type and regularization
factor as random effects. We assessed model fit and variable im-
portance using the same procedure described above. We assessed
overall model fit using R? (“r.squaredGLMM” function).

We chose to use the dropl test on the top ranked model to as-
sess the relative importance of each predictor rather than taking a
model averaging approach and calculating relative importance val-
ues (Burnham & Anderson, 2002) because the averaging of partial
regression coefficients across multiple models is not recommended
when dealing with predictor variables that are not completely or-
thogonal or for models with a nonlinear link function, as is the case
here (Banner & Higgs, 2017; Cade, 2015).

We used partial residual plots to visualize the final model for
each response variable. These plots show the predicted effect of
each trait variable in the final model, while holding the other predic-
tors constant at their median or the most frequent category (visreg
package; Breheny & Burchett, 2016). We conducted all statistical

analyses in R version 3.5.1.
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3 | RESULTS

Across all species and all SDM versions, AUC (as calculated with in-
dependent data) ranged from 0.36 to 0.98, while TPR ranged from
0 to 0.96 (Table S4). The most accurate SDM varied according to
species: For some species, SDM accuracy increased when land cover
and/or forest contiguity were included, while for others, the SDM

with the highest AUC or TPR included only climatic and topographic

predictors (Figures S1 and S2). The range of variability between
SDM versions also varied. For example, AUC for Liparis lillifolia
ranged from 0.96 to 0.97, depending on SDM version, while AUC for
Aplectrum hyemale ranged from 0.59 to 0.73.

The best model for predicting AUC of SDMs included five pre-
dictor variables: occurrence density, woodiness, seed weight, dis-
persal type, and soil type diversity (Table 3a). The best model had
an R? value of 0.88. The most influential variable was occurrence
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density—dropping it from the model led to an increase in AlCc of
50.3 (Table 3a). All other predictors being equal, species with a higher
density of occurrences within their range in the study area, woody
species, species with smaller seeds, and species with animal- or likely
wind-dispersed seeds had higher AUC than others (Figure 2).

The final model for TPR included seven predictors: dispersal
type, density of occurrences, maximum range extent, seed weight,

latitude, soil specialization, and woodiness (Table 3b). The final

model had an R? value of 0.17. Dispersal type and woodiness con-
tributed most to the model individually. All else being equal, species
with winged seeds or seeds dispersed by animals, and nonwoody
species had higher TPR (Figure 3). The other five predictors also had
significant effects, with species having a higher density of occur-
rences within their range, lower mean latitude, lighter seeds, larger
range extents, and growing on a greater diversity of soil types having
higher TPR (Figure 3).
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Some patterns were common to both response variables:
Species with animal-dispersed seeds, lighter seeds, and a greater
density of occurrences had higher AUC and TPR, all else being equal.
However, woodiness showed opposing effects, with woody species
having higher AUC but lower TPR. Edaphic specialization, as mea-
sured by the diversity of soil types occupied, had a marginal effect
on both AUC and TPR, but with opposite effects: AUC declined
with increasing diversity of soil types occupied, while TPR increased
(Table 3). Mean latitude had an effect on TPR only, which was neg-
ative (Table 3).

4 | DISCUSSION

Our results support the idea that the traits of species can influence
the strength of the relationship between environmental predic-
tors and species’ occurrences, and hence the accuracy of SDMs.
Characteristics of the species’ life history and geographic distribu-
tion significantly influenced the overall accuracy of the SDMs and
the true positive rates of independent surveys. Most traits influ-
enced SDM accuracy as predicted by theory and confirmed in previ-
ous studies (Table 1). However, some traits influenced only AUC or
TPR, not both, and the effect of traits on TPR was opposite to the
predicted effect for four of the seven traits.

4.1 | Lifespan

SDMs for woody species, which tend to be longer lived than herba-
ceous plants, had higher AUC values, all other traits held constant.
Syphard and Franklin (2010) and Hanspach et al. (2010) also found
that longer-lived plants tended to produce SDMs with greater AUC.
In contrast, woody species had significantly lower TPR. This sug-
gests that SDMs for woody species have higher accuracy when con-
sidering both types of error (false negatives and false positives), but
do a poorer job of correctly predicting independent presences of
woody species compared with herbaceous species. The higher rate
of omission for woody species could indicate the greater ability of
long-lived species to tolerate habitat that has recently become less
suitable. However, this hypothesis would only apply for SDMs built
using predictors that have changed substantially over recent dec-

ades, most notably forest contiguity.

4.2 | Dispersal-related traits

Species dispersed by mammals or birds tended to have higher AUC
than species with no long-distance dispersal mechanism, consistent
with the idea that species able to disperse their seeds farther are
better able to colonize suitable habitat throughout the study region.
SDMs for mammal or bird dispersed species also tended to have
higher TPR, indicating that they are less prone to false negatives.

Species with no evident specialized dispersal mechanism had the

lowest TPR and lower AUC than animal or wind-dispersed species.
Syphard and Franklin (2010) found that plants with ballistic dispersal
had higher AUC than others, with animal and wind-dispersed species
having slightly lower AUC scores, and gravity dispersed species the
lowest.

Species with lighter seeds had significantly more accurate SDMs,
all other traits being equal. This is consistent with the idea that
species with lighter seeds are able to travel farther (e.g., McEuen &
Curran, 2004) and thus have distributions that more closely match
environmental conditions. This result was the same for both mea-
sures of model accuracy, although the relationship for AUC was non-
linear. Our results for TPR indicate that species with lighter seeds
tend to be found in sites that are predicted to be suitable by the
SDM more often than species with heavier seeds. Heavier-seeded
species may not be able to track suitable habitat as closely due to

their reduced ability to disperse great distances.

4.3 | Edaphic specialization

We did not find a strong role for edaphic specialization in influenc-
ing the relationship between environmental predictors and a spe-
cies’ distribution. The degree of specialization, as measured by the
diversity of soil types occupied, was maintained in the final model
for both AUC and TPR, but in both cases was the predictor with
the least influence once other predictors had been accounted for.
There was a negative relationship between soil type diversity and
AUC, indicating that species that are more specialized had more ac-
curate SDMs. This result aligns with Hernandez et al. (2006), who
found that AUC increased for animal species with narrower niche
tolerance, and Marshall et al. (2015), who found that highly special-
ized bee species were modeled more accurately than generalists.
Similarly Seoane et al. (2005) and Brotons, Thuiller, Araujo, and
Hirzel (2004) found that birds with specialized habitat selection
had more accurate habitat suitability models. In contrast, Hanspach
et al. (2010) did not find an effect of plant species specialization, as
measured by the number of different vegetation types with which
a species was affiliated. Interestingly, in our study, the relationship
was reversed for TPR, with species found on a more diverse range
of soil types having higher TPR, all else being equal. We believe that
the range of soil types upon which a species is found is a good in-
dication of specialization in plants. However, for species with very
few records such as some of the rarest species in our dataset, the
calculation of this indicator may be biased due to low numbers of

extant populations.

4.4 | Geographic distribution

We detected an effect of average latitude on SDM performance for
TPR only. Luoto, Poyry, Heikkinen, and Saarinen (2005) built SDMs
for 98 butterfly species in Finland and found that butterflies at

the margin of their geographic range in Finland (occurring at lower
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latitudes on average) tended to have more accurate SDMs. They
suggested that these range edge species are likely restricted to a
narrower range of habitats within Finland, thus making them more
amenable to accurate SDMs. This is likely also true for the plant
species in our study, as those with smaller mean latitude tend to be
restricted to the Carolinian forest zone, which reaches the northern-
most extent of its range in the far southwest of southern Ontario and
is therefore limited in area. Hence, SDMs for species like American
chestnut (Castanea dentata), which are restricted to the Carolinian
zone, may yield more accurate SDMs than species like wild ginseng
(Panax quinquefolia), which range widely throughout our study area
(Figure 1). However, it is worth noting that the TPR for these two
species was practically equivalent, which highlights the importance
of other traits that can influence SDM accuracy. In addition, we did
not find an effect of mean latitude on AUC.

Range size within the study region was not a significant predictor
of AUC. This contrasts with the findings of Hernandez et al. (2006),
McPherson and Jetz (2007), and Syphard and Franklin (2010), all of
whom found a negative correlation between range size and SDM
accuracy. Syphard and Franklin (2010) speculate that range size is
often correlated with the degree of environmental variation (i.e.,
specialization) of the species, which could explain why species with
smaller ranges have higher AUC. However, in our study, the two were
not strongly correlated (R? = 0.10, Table $2), and we included both
as potential predictors in our models. McPherson and Jetz (2007)
suggest that species with larger range sizes may exhibit variation in
habitat preferences across the range, making them more difficult to
model due to variation in the relationship between environmental
predictors and presence/absence across the range. It is possible that
within our relatively small study region, no such variation in habitat
preferences or local adaptation exists.

We did find an effect of range size on TPR, but in the opposite
direction than predicted: Species with larger ranges tended to have
a higher TPR. Garrison and Lupo (2002) found that birds with larger
range sizes yielded more accurate SDMs. However, McPherson and
Jetz (2007) suggest that this could be a result of correlation of larger
range size with greater prevalence, with greater prevalence driving
increased SDM accuracy. In our study, range size in the study re-
gion and occurrence density (our measure of prevalence) were not
strongly correlated, so we do not think this is the cause of the in-
crease in TPR with range size.

Finally, both AUC and TPR were positively related to occurrence
density. This was opposite to results from other studies (e.g., Luoto
et al., 2005; Tessarolo et al., 2014) that found AUC to be negatively
related to prevalence. However, it is important to note that these
studies define prevalence as the number of occupied grid cells di-
vided by the total number of grid cells in the study area. Our measure
of occurrence density, in contrast, accounted for range size by mea-
suring the density of occurrences within the total range extent en-
compassed by known occurrences within our study region. A greater
density of occurrences within the range extent of a species most
likely gives a better sample of the range of environmental conditions

in which a species can survive, allowing MaxEnt to more accurately
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differentiate “suitable” versus “unsuitable” conditions, and leading to
the higher AUC and TPR for species with higher occurrence density.

5 | CONCLUSIONS

It is important to note that our results may be linked to the extent
and resolution of our study. For example, in a study at a much smaller
extent (0.33 km?) and finer resolution, Moore and Elmendorf (2006)
found that the ability of SDMs to predict plant species distributions
was not affected by dispersal mechanism or seed size. Given the
scale dependence of most ecological patterns and processes (e.g.,
Levin, 1992), this is a caveat common to most ecological studies.
However, the scale and resolution of our study is comparable to
many studies that have used SDMs to target field surveys for plants
(e.g., Boetsch et al., 2003; Engler et al., 2004; Gogol-Prokurat, 2011;
Marage et al., 2008; Williams et al., 2009).

We found significant effects of species traits on SDM perfor-
mance, which supports the idea that species traits are related to
the strength of the relationship between environmental predic-
tors and geographic distribution. However, the answer to our sec-
ond question—"“can traits be used to predict which species will be
most amenable to the use of SDMs to target field surveys?”—is not
straightforward. First, because each species has multiple traits,
it would be difficult to predict a priori for which species it will be
possible or impossible to build a useful SDM. For example, although
woody species tended to have higher AUC, the species in our data-
set with the highest AUC were Asplenium scolopendrium (a fern) and
Liparis liliifolia (an orchid; Table 2). Second, some traits affected TPR
in the opposite direction to our predictions and/or in the opposite di-
rection than they affected AUC. Species with traits that tend to de-
crease AUC may nonetheless yield SDMs with excellent TPR, which
is perhaps more important when using SDMs to target rare plant
surveys. Third, there was a great deal of variation in TPR that was
unexplained by traits (R? = 0.17), so any prediction for a particular
species based on our glmm might not reflect the true ability of an
SDM to predict independent occurrences. This matches the results
of McPherson and Jetz (2007), who found that bird species traits
explained only about 20% of the variation in SDM performance.
Finally, although there was variation in SDM performance, we were
able to build at least one “useful” SDM for most species. Twenty
out of 24 species had at least one SDM version with AUC >0.7, and
17 out of 24 species had at least one SDM version with TPR >70%.
Therefore, it is worthwhile to build and test SDMs for the purpose
of finding new populations of plant species of conservation concern,
regardless of their traits. We recommend building different SDM
versions using a range of environmental predictors to help ensure
the best SDM possible and using independently collected presence
and absence data to test SDM accuracy.
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