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Abstract
Species distribution models (SDMs) are used to test ecological theory and to direct 
targeted surveys for species of conservation concern. Several studies have tested 
for an influence of species traits on the predictive accuracy of SDMs. However, most 
used the same set of environmental predictors for all species and/or did not use truly 
independent data to test SDM accuracy. We built eight SDMs for each of 24 plant 
species of conservation concern, varying the environmental predictors included in 
each SDM version. We then measured the accuracy of each SDM using independent 
presence and absence data to calculate area under the receiver operating charac-
teristic curve (AUC) and true positive rate (TPR). We used generalized linear mixed 
models to test for a relationship between species traits and SDM accuracy, while 
accounting for variation in SDM performance that might be introduced by differ-
ent predictor sets. All traits affected one or both SDM accuracy measures. Species 
with lighter seeds, animal-dispersed seeds, and a higher density of occurrences had 
higher AUC and TPR than other species, all else being equal. Long-lived woody spe-
cies had higher AUC than herbaceous species, but lower TPR. These results support 
the hypothesis that the strength of species–environment correlations is affected by 
characteristics of species or their geographic distributions. However, because each 
species has multiple traits, and because AUC and TPR can be affected differently, 
there is no straightforward way to determine a priori which species will yield useful 
SDMs based on their traits. Most species yielded at least one useful SDM. Therefore, 
it is worthwhile to build and test SDMs for the purpose of finding new populations of 
plant species of conservation concern, regardless of these species’ traits.
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1  | INTRODUC TION

Species distribution models (SDMs) use known locations of a spe-
cies along with geospatial data on climatic, topographic, edaphic, 
and land cover variables to predict habitat suitability or probability 
of occurrence across a region (Guisan & Zimmerman, 2000). SDMs 
have been used to test ecological theories about what factors con-
strain species’ ranges (e.g., Kharouba, McCune, Thuiller, & Huntley, 
2013; Moore & Elmendorf, 2006), to predict future shifts in species 
distributions with climate change (e.g., Elith, Kearney, & Phillips, 
2010), and in conservation-related applications (Franklin, 2013; 
Guisan et al., 2013). For example, SDMs can predict areas of suit-
able habitat where field surveys might reveal previously undiscov-
ered populations of species of conservation concern (Guisan et al., 
2006). Although there are challenges and limitations when using 
SDMs for this purpose (e.g., Breiner, Guisan, Bergamini, & Nobis, 
2015; McCune, 2019), many studies using SDMs to target surveys 
for plant species have been successful, with SDM-directed surveys 
leading to the discovery of previously unknown occurrences—even 
of species with very few known populations (e.g., Boetsch, Manen, 
& Clark, 2003; Bourg, McShea, & Gill, 2005; Engler, Guisan, & 
Rechsteiner, 2004; Guisan et al., 2006; van Manen, Young, Thatcher, 
Cass, & Ulrey, 2005; Marage, Garraud, & Rameau, 2008; McCune, 
2016; Williams et al., 2009). SDMs can effectively complement ex-
pert knowledge of the best locations to search, or provide guidance 
when expert knowledge is lacking. SDM-directed surveys have been 
shown to increase the efficiency of field surveys when compared 
to other sampling strategies (Guisan et al., 2006; van Manen et al., 
2005; Rosner-Katz et al.  in revision). Knowing the locations of all 
extant occurrences of species of conservation concern is important 
in order to correctly assess their status and to design effective strat-
egies for recovery.

Although SDMs have had many successful applications, the ac-
curacy of SDMs in representing a species’ geographic distribution 
varies (e.g., Kharouba et al., 2013). Species with certain traits, which 
we define broadly as biological characteristics of the species or char-
acteristics of a species’ geospatial distribution, might be less amena-
ble to accurate SDMs. For example, many studies have found that 
SDMs of generalist species tend to be less accurate than SDMs of 
more specialized species (e.g., Franklin, 2010; Hernandez, Graham, 
Master, & Albert, 2006; Marshall et al., 2015; Seoane, Carrascal, 
Alonso, & Palomino, 2005). Presumably, SDMs can more effec-
tively tease apart suitable from unsuitable habitat when the range 
of conditions the species can tolerate is quite narrow and of limited 
extent in the study region (Franklin, Wejnert, Hathaway, Rochester, 
& Fisher, 2009). Dispersal ability may also influence the accuracy 
of SDMs if poor dispersers are unable to reach all suitable habitat 
within a study area and are thus absent even where conditions are 
predicted to be suitable (e.g., Gogol-Prokurat, 2011; Graham, Silva, 
& Velásquez-Tibatá, 2010). Other potentially important traits include 
lifespan, prevalence in the study area, and range extent (see Table 1).

Studies testing the effects of species traits on SDM accuracy 
have had variable results. Many have found that certain traits do 

correlate with SDM accuracy (e.g., Franklin et al., 2009; Guisan et al., 
2007; Hanspach, Kuhn, Pompe, & Klotz, 2010; Newbold et al., 2010; 
Poyry, Luoto, Heikkinen, & Saarinen, 2008; Syphard & Franklin, 
2009)—but which particular traits are significant varies in studies 
of different taxonomic groups, and from different regions. Others 
have found trait-SDM accuracy correlations lacking or weak (Elith & 
Burgman, 2002; McPherson & Jetz, 2007; Tessarolo, Rangel, Araujo, 
& Hortal, 2014). Of course, these tests are complicated by the fact 
that each species has multiple traits, and a species with one trait 
that predisposes it to a more accurate SDM might have another trait 
that acts in the opposite direction. For example, a species might be 
a good disperser, leading potentially to a more accurate SDM, but 
also be a generalist, which might make it more difficult to achieve an 
accurate SDM. This makes it necessary to test the effects of multiple 
traits simultaneously, so that the effect of each can be tested while 
accounting for the others. 

In addition, the choice of which environmental predictors to in-
clude could affect the accuracy of SDMs, in ways that depend on 
species traits. For example, two studies found that faster-growing, 
disturbance-associated plants had less accurate SDMs on average 
than other plant species (Guisan et al., 2007; Hanspach et al., 2010). 
However, both studies speculate that accuracy would have been 
higher for those species had geospatial data on the degree of local 
disturbance been available and included in the SDMs. That is, the 
distributions of disturbance-associated species may not be funda-
mentally difficult to model, as long as the essential predictors are 
included. A more rigorous test of the effect of species traits on SDM 
accuracy would account for this by building multiple SDMs for each 
species that use different sets of environmental predictors.

Another factor to consider when assessing SDM accuracy is the 
source of the data with which the SDM is evaluated. Often, SDMs are 
evaluated using a subset of presences and absences withheld from 
the same dataset used to build the model (i.e., not truly independent 
data). Many studies evaluating the effect of traits on SDM accuracy 
have used this method (e.g., Hernandez et al., 2006, McPherson & 
Jetz, 2007, Poyry et al., 2008, Syphard & Franklin, 2010, Tessarolo 
et al., 2014). However, SDM accuracy tends to be higher using this 
technique compared with when independently collected presence 
and absence data are used (Elith & Burgman, 2002; McCune, 2016, 
Newbold 2010). This is probably because environmental or spatial 
biases in the full set of occurrences available for SDM building are 
retained in the subset withheld for evaluation (Chatfield, 1995). 
For targeting suitable habitat for field surveys, it is crucial that the 
SDM is able to predict habitat suitability accurately at new sites. 
Therefore, when testing the potential effects of species traits on 
SDM accuracy, it is important to assess SDMs using independently 
collected presence and absence data whenever possible.

In this study, we ask whether traits of species or their geographic 
distributions affect the accuracy of SDMs for 24 plant species of 
conservation concern. Our goal was to test the fundamental ques-
tion: “are species’ traits related to the strength of the relationship 
between environmental predictors and geographic distribution?” 
and the applied question that follows from it: “can traits be used to 
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predict which species will be most amenable to the use of SDMs to 
target field surveys?” We built eight SDM versions for each species, 
varying the set of environmental predictors included in each version 
to account for the potential for the accuracy of an SDM to vary de-
pending on the predictors, and recognizing that the most accurate 
SDM version might be different for different species. Specifically, 
we included land cover and forest extent in some SDM versions 
based on our observation in a previous study that some species re-
spond to forest type and landscape context in addition to climatic, 
topographic, and edaphic conditions (McCune, 2016). We then eval-
uated the SDMs with independent presences and absences obtained 
from field surveys of 156 sites that varied in their predicted habi-
tat suitability for each species. Thus, our measure of SDM accuracy 
measures the ability of the SDMs to predict habitat suitability at new 
sites.

2  | METHODS

2.1 | Study area and species

Our study region is southern Ontario, Canada (Figure  1), in the 
Mixedwood Plains ecozone (Crins, Gray, Uhlig, & Wester, 2009). 
This is the most highly populated region of the province. Prior to 
European colonization, the region was dominated by forest, but for-
ests are now highly fragmented and the landscape is dominated by 
agriculture (Larson, Riley, Snell, & Godschalk, 1999). Mean daily tem-
peratures range from 18 to 22°C in July, and there is 720–1,000 mm 
of annual precipitation (Crins et al., 2009). Elevation ranges from 20 
to 575 m above sea level.

Southern Ontario is a hotspot for plant diversity in Canada: More 
than 40% of Canada's plant species occur here (Oldham, 2017). The 
region is also home to many threatened plant species: 80 out of 201 
vascular plants listed as extirpated, endangered, threatened, or spe-
cial concern under Canada's Species at Risk Act occur in Ontario 

(Government of Canada, 2018). We built SDMs for 41 vascular plant 
species that are provincially rare (ranked S1, S2, or S3 in Ontario, 
indicating critically imperiled, imperiled, or vulnerable status, re-
spectively; Faber-Langendoen et al., 2012; Table  2). To maximize 
the accuracy of field surveys, we chose species that are relatively 
easy to identify in the field. We also focused on those species that 
grow mainly in woodland habitats. The species vary in their habi-
tat specificity, their longevity, the number of known occurrences in 
Ontario, and the extent of their distribution within the study region 
(Table  2). Most of these species are at the northern edge of their 
range in southern Ontario, which extends into the southeastern 
United States. We compiled data on traits of each species that we 
hypothesized might influence the accuracy of SDMs, based on pre-
vious studies (Table 1).

2.2 | Species distribution models

We obtained georeferenced data on known occurrences of each 
species in southern Ontario from the Natural Heritage Information 
Centre (NHIC) of the Ontario Ministry of Natural Resources and 
Forestry (OMNRF). The NHIC maintains records of all species 
ranked S1, S2, or S3 from herbarium records and confirmed sight-
ings by provincial biologists, other scientists, or members of the 
public (Government of Ontario, 2018). We chose a resolution of 
100 × 100 m (1 hectare) for the SDMs, corresponding to the larg-
est area we felt could be comprehensively surveyed for rare plants 
within a reasonable amount of time. We therefore removed all oc-
currence records with a spatial uncertainty greater than 100 m.

We compiled geospatial data on climate, soils, surficial geology, 
and topography from publicly available spatial datasets and con-
verted them to a 100 × 100 m resolution (Table S1). Given the large 
number of climatic variables available, we chose a set that were min-
imally correlated (r  <  0.7). Our primary set of predictors included 
14 variables representing topography, surficial geology, soils, and 

F I G U R E  1   The study area (shaded) in 
southern Ontario. Occurrence records 
used to build SDMs for Panax quinquefolius 
(wild ginseng, circles) and Castanea 
dentata (American chestnut, triangles) are 
shown as examples. Polygons are convex 
hulls enclosing the extent of the records 
of each species in the study area
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climate only. SDMs for some species (but not all) are more accurate 
for sites with more contiguous forest surrounding them (McCune, 
2016). Therefore, we used the Southern Ontario Land Information 
System (SOLRIS; Smyth, 2008) wooded layer, which delineates 
all forested areas in southern Ontario, to calculate the number of 
cells within the 9 × 9 cell area surrounding each focal cell that were 
forested. We called this “forest contiguity.” A 9  ×  9 cell area cor-
responds to approximately the same area as is encompassed by a 
circular area with a 500 m buffer around each focal cell, which is a 
distance at which correlations between forest amount and presence 
or absence of plant species of conservation concern has been shown 
(McCune, 2016; McCune, Natto, & MacDougall, 2017). We also used 
the SOLRIS categorical representation of land cover as a predictor in 
some of the SDMs (Table S1).

We used the program MaxEnt to build 8 SDMs for each of the 
41 species (Phillips, Anderson, & Schapire, 2006; we refer to the 8 
SDMs for each species as “SDM versions”). We chose MaxEnt be-
cause it performs as well or better than other SDM methods, es-
pecially for presence-only data and in cases where the number of 
presence records is low (Hernandez et al., 2006; Williams et al., 
2009). In addition, the pilot study showed that MaxEnt could pro-
duce accurate predictions of habitat suitability for plant species in 
our region, when assessed with independent presence and absence 
records (McCune, 2016). Because we had evidence of its efficacy 
based on independent data, we chose to use MaxEnt alone rather 
than using multiple SDM techniques and creating ensemble SDMs. 
While some advocate including all possible predictors and allowing 
MaxEnt to hone in on the most important (e.g., Phillips et al., 2006), 
we have found that SDMs built with a smaller subset of potential 
variables were more accurate for some species. Therefore, we used 

4 sets of environmental predictors for each species: (a) the original 
14 (climate, topography, soil, and geology only), (b) the original 14 
plus forest contiguity, (c) the original 14 plus land cover, or (d) the 
original 14 plus forest contiguity and land cover (Table S1).

We built two SDMs with each of these four predictor sets, by 
varying the regularization multiplier in MaxEnt. The first model used 
the default value of 1, while the second used a value of 0.5. During 
initial trials building SDMs, we experimented with setting the regu-
larization multiplier at 0.5, 1, or 3 and found that the first two always 
led to better performing SDMs. Regularization is a method used by 
MaxEnt to penalize models that are too complex, reducing overfit-
ting (Elith et al., 2011; Merow, Smith, & Silander, 2013). By changing 
the regularization multiplier to 0.5, we reduced the strength of this 
penalization. Varying the regularization multiplier is recommended 
by Merow et al. (2013). We set the background for pseudo-absences 
in MaxEnt as the entire study area (shaded area in Figure 1).

We tested the accuracy of each SDM using independent presences 
and absences from detailed forest surveys we carried out in 2014 and 
2015, between May and September of each year (McCune et al., 2017). 
We surveyed 156 100 × 100 m cells that varied in their predicted habi-
tat suitability for each modeled species, as defined by MaxEnt's cumu-
lative output for each cell. This value varies from 0 to 100, with values 
closer to 100 indicating higher predicted habitat suitability. We chose 
sites with the objective of maximizing the range of predicted habitat 
suitability for each species, while including at least ten high-suitability 
sites for each species. We were also limited to sites for which we could 
obtain landowner permission to access. Given the variation in habitat 
associations of the species, the 156 sites encompassed a wide range of 
predicted habitat suitability for each species, with the lower end of the 
range especially well represented. Our crew of 2–4 field technicians 

Model Estimate (SE) df dAICc Chisq p-value

(a) AUC

Full   12 0    

Occurrence density 0.45 (0.06) 11 50.3 52.58 <.001

Woodiness 1.38 (0.19) 11 44.3 46.56 <.001

Log (seed weight) −1.06 (0.15) 11 42.4 44.64 <.001

Log (seed weight)2 −0.61 (0.07) 11 42.4 44.64 <.001

Dispersal type NA 9 12.7 19.5 <.001

Soil type diversity −0.10 (0.06) 11 1.0 3.23 .07

(b) TPR

Full   12 0    

Dispersal type NA 9 329.2 336.0 <.0001

Woodiness −1.27 (0.1) 11 153.3 155.6 <.0001

Occurrence density 0.63 (0.05) 11 145.9 148.2 <.0001

Latitude −0.46 (0.04) 11 121.4 123.7 <.0001

Log (seed weight) −0.48 (0.1) 11 22.0 24.3 <.0001

Maximum range 
extent

0.22 (0.06) 11 13.2 15.5 <.0001

Soil type diversity 0.10 (0.04) 11 3.1 5.4 .02

AUC, area under the receiver operating characteristic curve; TPR, true positive rate.

TA B L E  3   The relative importance of 
species’ traits predicting (a) AUC and 
(b) TPR. Model terms are listed in order 
of decreasing influence as measured by 
the difference in AICc between a model 
without the variable and the full model
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navigated to the center of each cell using a handheld GPS unit and 
then flagged 50 m in each cardinal direction using a rangefinder and 
compass to delineate four quadrants. We then systematically searched 
each quadrant by walking transects no more than 5 m apart and re-
cording all vascular plant species present. Survey times ranged from 
5 to 10 person hours. We considered a cell in which a species was not 
found to be a true absence only if we surveyed the cell during the time 
of year when the species was likely to be present and recognizable 
(e.g., for spring ephemerals, we did not use any apparent absences 
from plots surveyed later than mid-June).

Although we found new occurrences of 15 of the 41 species, 
we did not find more than eight new occurrences for any species. 
Therefore, we obtained additional independent presence records 
from the NHIC. These were submissions of sightings to the NHIC 
that had not yet been incorporated into the main NHIC database. 
We ensured that these records were spatially accurate and did not 
occur in the same cell as any of the records used to build the SDMs. 
We selected those species which had at least 10 independent pres-
ence records, including those from our surveys and these extra in-
dependent presence records combined. This resulted in a final list of 
24 species (Table 2).

We used the independent presence and absence records to cal-
culate the AUC (area under the receiver operating characteristic 
curve) and the TPR (true positive rate) for each of the eight SDMs for 
each species. The AUC is a threshold-independent index that mea-
sures the ability of an SDM to correctly discriminate between pres-
ences and absences. It ranges between 0 and 1, where values of 0.5 
or less indicate that the SDM is worse than a random model would 
be at predicting presence or absence (Fielding & Bell, 1997). The 
TPR is the proportion of independent presence records that were 
predicted to have suitable habitat by the SDM. We set the thresh-
old for “suitable” habitat as the minimum MaxEnt output value that 
resulted in the correct prediction of 90% of the presence records 
used to build the model, as long as there were at least 15 original 
records. If there were fewer than 15 records used to build the SDM, 
we set the threshold at the MaxEnt output value that resulted in 
the correct prediction of 100% of the original presence records, as 
recommended by Pearson, Raxworthy, Nakamura, and Peterson 
(2007). TPR is an important metric when evaluating SDMs for use in 
targeting surveys for species because high rates of omission errors 
would result in many occupied sites not being surveyed due to the 
SDM incorrectly predicting them to be unsuitable. Therefore, the 
most useful SDMs for directing field surveys must do a good job of 
correctly predicting occurrences. The AUC and TPR for each species 
and each SDM version are available in the Supplementary Material 
(Tables S3 and S4).

2.3 | Testing the relationship between 
SDM accuracy and species traits

We began with 10 traits, 8 continuous and 2 categorical (Table 1). 
Prior to the analysis, we assessed multicollinearity among 

continuous candidate predictors using variance inflation factors 
(VIF; Zuur, Ieno, & Elphick, 2010). We also calculated pairwise 
Pearson's correlation coefficients (Table S2). We used the vifstep 
function (“usdm” package in R) to choose a set of relatively inde-
pendent variables with a VIF less than 3 (n = 7; Table 1). We log-
transformed seed weight and density of occurrence to improve 
normality. This resulted in a set of seven candidate predictors: 
maximum range extent, density of occurrence, soil type diversity, 
mean latitude, seed weight, seed dispersal type (categorical), and 
woodiness (categorical; see Table 2). We standardized all continu-
ous variables before building models.

We analyzed each of the two accuracy measures separately. 
Because AUC is a continuous proportion that ranges from 0 to 1, 
we used a generalized linear mixed effects model (glmm) with a 
beta error distribution (“glmmTMB” function). We included SDM 
model version and regularization factor as random effects to ac-
count for potential differences in model performance that might 
be introduced by SDMs built using different predictors or with 
different regularization settings. Due to nonlinearity, we fit seed 
weight as quadratic. We first fit a model including all seven can-
didate predictor variables. We then used the dredge function of 
the MuMIn package to create and rank a list of all possible vari-
able combinations based on the lowest AICc. We assessed the 
relative importance of each of the variables retained in the top 
ranked model by using a drop1 test to assess the importance of 
each predictor once all the others were accounted for, based on 
the difference in AICc with and without the predictor. We report 
both dAICc and the p-value of χ2 tests for each comparison. We 
assessed overall fit of the top ranked model using an R2 function 
specified for the beta distribution based on Nakagawa, Johnson, 
and Schielzeth (2017) and report the conditional value.

Because TPR is a continuous computed rate based on the num-
ber of correctly predicted presences (“successes”) out of the total 
number of independent presences (“trials”), we analyzed this re-
sponse variable using a glmm with a binomial error distribution 
(“glmmTMB” function), including SDM model type and regularization 
factor as random effects. We assessed model fit and variable im-
portance using the same procedure described above. We assessed 
overall model fit using R2 (“r.squaredGLMM” function).

We chose to use the drop1 test on the top ranked model to as-
sess the relative importance of each predictor rather than taking a 
model averaging approach and calculating relative importance val-
ues (Burnham & Anderson, 2002) because the averaging of partial 
regression coefficients across multiple models is not recommended 
when dealing with predictor variables that are not completely or-
thogonal or for models with a nonlinear link function, as is the case 
here (Banner & Higgs, 2017; Cade, 2015).

We used partial residual plots to visualize the final model for 
each response variable. These plots show the predicted effect of 
each trait variable in the final model, while holding the other predic-
tors constant at their median or the most frequent category (visreg 
package; Breheny & Burchett, 2016). We conducted all statistical 
analyses in R version 3.5.1.
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3  | RESULTS

Across all species and all SDM versions, AUC (as calculated with in-
dependent data) ranged from 0.36 to 0.98, while TPR ranged from 
0 to 0.96 (Table  S4). The most accurate SDM varied according to 
species: For some species, SDM accuracy increased when land cover 
and/or forest contiguity were included, while for others, the SDM 
with the highest AUC or TPR included only climatic and topographic 

predictors (Figures  S1 and S2). The range of variability between 
SDM versions also varied. For example, AUC for Liparis lillifolia 
ranged from 0.96 to 0.97, depending on SDM version, while AUC for 
Aplectrum hyemale ranged from 0.59 to 0.73.

The best model for predicting AUC of SDMs included five pre-
dictor variables: occurrence density, woodiness, seed weight, dis-
persal type, and soil type diversity (Table 3a). The best model had 
an R2 value of 0.88. The most influential variable was occurrence 

F I G U R E  2   Partial residual plots showing the effect of each variable in the final model on the AUC (area under the receiver operating 
characteristic curve) as determined by independent field surveys. Note that for each variable, all other variables are held constant at their 
median (or the most common category, for categorical variables)
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density—dropping it from the model led to an increase in AICc of 
50.3 (Table 3a). All other predictors being equal, species with a higher 
density of occurrences within their range in the study area, woody 
species, species with smaller seeds, and species with animal- or likely 
wind-dispersed seeds had higher AUC than others (Figure 2).

The final model for TPR included seven predictors: dispersal 
type, density of occurrences, maximum range extent, seed weight, 
latitude, soil specialization, and woodiness (Table  3b). The final 

model had an R2 value of 0.17. Dispersal type and woodiness con-
tributed most to the model individually. All else being equal, species 
with winged seeds or seeds dispersed by animals, and nonwoody 
species had higher TPR (Figure 3). The other five predictors also had 
significant effects, with species having a higher density of occur-
rences within their range, lower mean latitude, lighter seeds, larger 
range extents, and growing on a greater diversity of soil types having 
higher TPR (Figure 3).

F I G U R E  3   Partial residual plots showing the effect of each variable in the final model on the TPR (true positive rate) as determined by 
independent field surveys. Note that for each variable, all other variables are held constant at their median (or the most common category, 
for categorical variables)
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Some patterns were common to both response variables: 
Species with animal-dispersed seeds, lighter seeds, and a greater 
density of occurrences had higher AUC and TPR, all else being equal. 
However, woodiness showed opposing effects, with woody species 
having higher AUC but lower TPR. Edaphic specialization, as mea-
sured by the diversity of soil types occupied, had a marginal effect 
on both AUC and TPR, but with opposite effects: AUC declined 
with increasing diversity of soil types occupied, while TPR increased 
(Table 3). Mean latitude had an effect on TPR only, which was neg-
ative (Table 3).

4  | DISCUSSION

Our results support the idea that the traits of species can influence 
the strength of the relationship between environmental predic-
tors and species’ occurrences, and hence the accuracy of SDMs. 
Characteristics of the species’ life history and geographic distribu-
tion significantly influenced the overall accuracy of the SDMs and 
the true positive rates of independent surveys. Most traits influ-
enced SDM accuracy as predicted by theory and confirmed in previ-
ous studies (Table 1). However, some traits influenced only AUC or 
TPR, not both, and the effect of traits on TPR was opposite to the 
predicted effect for four of the seven traits.

4.1 | Lifespan

SDMs for woody species, which tend to be longer lived than herba-
ceous plants, had higher AUC values, all other traits held constant. 
Syphard and Franklin (2010) and Hanspach et al. (2010) also found 
that longer-lived plants tended to produce SDMs with greater AUC. 
In contrast, woody species had significantly lower TPR. This sug-
gests that SDMs for woody species have higher accuracy when con-
sidering both types of error (false negatives and false positives), but 
do a poorer job of correctly predicting independent presences of 
woody species compared with herbaceous species. The higher rate 
of omission for woody species could indicate the greater ability of 
long-lived species to tolerate habitat that has recently become less 
suitable. However, this hypothesis would only apply for SDMs built 
using predictors that have changed substantially over recent dec-
ades, most notably forest contiguity.

4.2 | Dispersal-related traits

Species dispersed by mammals or birds tended to have higher AUC 
than species with no long-distance dispersal mechanism, consistent 
with the idea that species able to disperse their seeds farther are 
better able to colonize suitable habitat throughout the study region. 
SDMs for mammal or bird dispersed species also tended to have 
higher TPR, indicating that they are less prone to false negatives. 
Species with no evident specialized dispersal mechanism had the 

lowest TPR and lower AUC than animal or wind-dispersed species. 
Syphard and Franklin (2010) found that plants with ballistic dispersal 
had higher AUC than others, with animal and wind-dispersed species 
having slightly lower AUC scores, and gravity dispersed species the 
lowest.

Species with lighter seeds had significantly more accurate SDMs, 
all other traits being equal. This is consistent with the idea that 
species with lighter seeds are able to travel farther (e.g., McEuen & 
Curran, 2004) and thus have distributions that more closely match 
environmental conditions. This result was the same for both mea-
sures of model accuracy, although the relationship for AUC was non-
linear. Our results for TPR indicate that species with lighter seeds 
tend to be found in sites that are predicted to be suitable by the 
SDM more often than species with heavier seeds. Heavier-seeded 
species may not be able to track suitable habitat as closely due to 
their reduced ability to disperse great distances.

4.3 | Edaphic specialization

We did not find a strong role for edaphic specialization in influenc-
ing the relationship between environmental predictors and a spe-
cies’ distribution. The degree of specialization, as measured by the 
diversity of soil types occupied, was maintained in the final model 
for both AUC and TPR, but in both cases was the predictor with 
the least influence once other predictors had been accounted for. 
There was a negative relationship between soil type diversity and 
AUC, indicating that species that are more specialized had more ac-
curate SDMs. This result aligns with Hernandez et al. (2006), who 
found that AUC increased for animal species with narrower niche 
tolerance, and Marshall et al. (2015), who found that highly special-
ized bee species were modeled more accurately than generalists. 
Similarly Seoane et al. (2005) and Brotons, Thuiller, Araujo, and 
Hirzel (2004) found that birds with specialized habitat selection 
had more accurate habitat suitability models. In contrast, Hanspach 
et al. (2010) did not find an effect of plant species specialization, as 
measured by the number of different vegetation types with which 
a species was affiliated. Interestingly, in our study, the relationship 
was reversed for TPR, with species found on a more diverse range 
of soil types having higher TPR, all else being equal. We believe that 
the range of soil types upon which a species is found is a good in-
dication of specialization in plants. However, for species with very 
few records such as some of the rarest species in our dataset, the 
calculation of this indicator may be biased due to low numbers of 
extant populations.

4.4 | Geographic distribution

We detected an effect of average latitude on SDM performance for 
TPR only. Luoto, Poyry, Heikkinen, and Saarinen (2005) built SDMs 
for 98 butterfly species in Finland and found that butterflies at 
the margin of their geographic range in Finland (occurring at lower 
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latitudes on average) tended to have more accurate SDMs. They 
suggested that these range edge species are likely restricted to a 
narrower range of habitats within Finland, thus making them more 
amenable to accurate SDMs. This is likely also true for the plant 
species in our study, as those with smaller mean latitude tend to be 
restricted to the Carolinian forest zone, which reaches the northern-
most extent of its range in the far southwest of southern Ontario and 
is therefore limited in area. Hence, SDMs for species like American 
chestnut (Castanea dentata), which are restricted to the Carolinian 
zone, may yield more accurate SDMs than species like wild ginseng 
(Panax quinquefolia), which range widely throughout our study area 
(Figure 1). However, it is worth noting that the TPR for these two 
species was practically equivalent, which highlights the importance 
of other traits that can influence SDM accuracy. In addition, we did 
not find an effect of mean latitude on AUC.

Range size within the study region was not a significant predictor 
of AUC. This contrasts with the findings of Hernandez et al. (2006), 
McPherson and Jetz (2007), and Syphard and Franklin (2010), all of 
whom found a negative correlation between range size and SDM 
accuracy. Syphard and Franklin (2010) speculate that range size is 
often correlated with the degree of environmental variation (i.e., 
specialization) of the species, which could explain why species with 
smaller ranges have higher AUC. However, in our study, the two were 
not strongly correlated (R2 = 0.10, Table S2), and we included both 
as potential predictors in our models. McPherson and Jetz (2007) 
suggest that species with larger range sizes may exhibit variation in 
habitat preferences across the range, making them more difficult to 
model due to variation in the relationship between environmental 
predictors and presence/absence across the range. It is possible that 
within our relatively small study region, no such variation in habitat 
preferences or local adaptation exists.

We did find an effect of range size on TPR, but in the opposite 
direction than predicted: Species with larger ranges tended to have 
a higher TPR. Garrison and Lupo (2002) found that birds with larger 
range sizes yielded more accurate SDMs. However, McPherson and 
Jetz (2007) suggest that this could be a result of correlation of larger 
range size with greater prevalence, with greater prevalence driving 
increased SDM accuracy. In our study, range size in the study re-
gion and occurrence density (our measure of prevalence) were not 
strongly correlated, so we do not think this is the cause of the in-
crease in TPR with range size.

Finally, both AUC and TPR were positively related to occurrence 
density. This was opposite to results from other studies (e.g., Luoto 
et al., 2005; Tessarolo et al., 2014) that found AUC to be negatively 
related to prevalence. However, it is important to note that these 
studies define prevalence as the number of occupied grid cells di-
vided by the total number of grid cells in the study area. Our measure 
of occurrence density, in contrast, accounted for range size by mea-
suring the density of occurrences within the total range extent en-
compassed by known occurrences within our study region. A greater 
density of occurrences within the range extent of a species most 
likely gives a better sample of the range of environmental conditions 
in which a species can survive, allowing MaxEnt to more accurately 

differentiate “suitable” versus “unsuitable” conditions, and leading to 
the higher AUC and TPR for species with higher occurrence density.

5  | CONCLUSIONS

It is important to note that our results may be linked to the extent 
and resolution of our study. For example, in a study at a much smaller 
extent (0.33 km2) and finer resolution, Moore and Elmendorf (2006) 
found that the ability of SDMs to predict plant species distributions 
was not affected by dispersal mechanism or seed size. Given the 
scale dependence of most ecological patterns and processes (e.g., 
Levin, 1992), this is a caveat common to most ecological studies. 
However, the scale and resolution of our study is comparable to 
many studies that have used SDMs to target field surveys for plants 
(e.g., Boetsch et al., 2003; Engler et al., 2004; Gogol-Prokurat, 2011; 
Marage et al., 2008; Williams et al., 2009).

We found significant effects of species traits on SDM perfor-
mance, which supports the idea that species traits are related to 
the strength of the relationship between environmental predic-
tors and geographic distribution. However, the answer to our sec-
ond question—“can traits be used to predict which species will be 
most amenable to the use of SDMs to target field surveys?”—is not 
straightforward. First, because each species has multiple traits, 
it would be difficult to predict a priori for which species it will be 
possible or impossible to build a useful SDM. For example, although 
woody species tended to have higher AUC, the species in our data-
set with the highest AUC were Asplenium scolopendrium (a fern) and 
Liparis liliifolia (an orchid; Table 2). Second, some traits affected TPR 
in the opposite direction to our predictions and/or in the opposite di-
rection than they affected AUC. Species with traits that tend to de-
crease AUC may nonetheless yield SDMs with excellent TPR, which 
is perhaps more important when using SDMs to target rare plant 
surveys. Third, there was a great deal of variation in TPR that was 
unexplained by traits (R2 = 0.17), so any prediction for a particular 
species based on our glmm might not reflect the true ability of an 
SDM to predict independent occurrences. This matches the results 
of McPherson and Jetz (2007), who found that bird species traits 
explained only about 20% of the variation in SDM performance. 
Finally, although there was variation in SDM performance, we were 
able to build at least one “useful” SDM for most species. Twenty 
out of 24 species had at least one SDM version with AUC >0.7, and 
17 out of 24 species had at least one SDM version with TPR >70%. 
Therefore, it is worthwhile to build and test SDMs for the purpose 
of finding new populations of plant species of conservation concern, 
regardless of their traits. We recommend building different SDM 
versions using a range of environmental predictors to help ensure 
the best SDM possible and using independently collected presence 
and absence data to test SDM accuracy.
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