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Abstract

This study evaluated the feasibility of utilizing a 3D-printed anthropomorphic patient-specific

head phantom for patient-specific quality assurance (QA) in intensity-modulated radio-

therapy (IMRT). Contoured left and right head phantoms were converted from DICOM to

STL format. Fused deposition modeling (FDM) was used to construct an anthropomorphic

patient-specific head phantom with a 3D printer. An established QA technique and the

patient-specific head phantom were used to compare the calculated and measured doses.

When the established technique was used to compare the calculated and measured doses,

the gamma passing rate for γ� 1 was 97.28%, while the gamma failure rate for γ > 1 was

2.72%. When the 3D-printed patient-specific head phantom was used, the gamma passing

rate for γ� 1 was 95.97%, and the gamma failure rate for γ > 1 was 4.03%. The 3D printed

patient-specific head phantom was concluded to be highly feasible for patient-specific QA

prior to complicated radiotherapy procedures such as IMRT.

Introduction

The effectiveness of radiotherapy is maximized by delivering the highest possible dose of radia-

tion to a tumor while minimizing the effect on normal tissues [1,2]. In particular, treatment

techniques such as intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc

therapy (VMAT) optimize the composite dose distribution and deliver a non-uniform fluence

from any given position of the treatment beam to the patient [3]. The dose distribution needs

to be calculated with a radiation treatment planning system (RTPS), and patient-specific qual-

ity assurance (QA) is needed to validate the dose distribution. Dose distributions can be mea-

sured by either using a chamber (i.e., point dosimetry) or a film or diode array detector (i.e.,

two-dimensional dosimetry) [4,5]. For patient-specific QA using a film or array detector, the

gamma index is currently used extensively to validate the difference between the calculated

and measured doses [6,7].
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In recent years, various cases of radiotherapy using 3D printing technology have been re-

ported. For instance, Ehler et al. [8] constructed the head and neck components of the Rando

phantom (The Phantom Laboratory, Salem NY) with a 3D printer. Park et al. [9] created a 3D

customized bolus and used it as a compensator in IMRT of a patient with Kimura’s disease

involving the auricle. Choi et al. [10] utilized a 3D printer to evaluate the effectiveness and ac-

curacy of a patient-specific bolus in electron beam therapy, while Kim et al. [11] created a

customized bolus with a 3D printer to analyze its effectiveness in comparison with the con-

ventional Superflab bolus in photon beam radiotherapy. For proton therapy, Ju et al. [12]

concluded that the physical accuracy and dosimetric characteristics of a proton range compen-

sator (RC) created with a 3D printer and the conventional RC constructed with a computer-

ized milling machine are comparable. Our institution [13] recently fabricated a customized 3D

bolus for an irregular surface by using a 3D scanner and 3D printer.

Ehler et al. [8] pointed out that a QA method based on using a 3D phantom constructed

with a 3D printer provides a better end-to-end test than traditional per-patient quality control

tests because it matches the clinical patient workflow.

To realize the advantages of this patient-specific phantom using a 3D printer, this study

evaluated the feasibility of using a 3D-printed anthropomorphic patient-specific head phan-

tom of a head and neck cancer patient for patient-specific QA in IMRT.

Materials and methods

Construction procedure for a patient-specific head phantom

The computed tomography (CT) image used in this study was a Digital Imaging and Commu-

nications in Medicine (DICOM) file intended for use in the radiotherapy treatment plan for

head and neck cancer patients. The CT image was scanned at 3 mm intervals with a Philips Big

Bore Brilliance CT Scanner (Philips Medical, Eindhoven, Netherlands). The scanned CT

image was then sent to an Eclipse 8.6 RTPS (Varian Medical System Inc., Palo Alto, CA). The

image was scanned in order to increase the smoothing level of the 3D-printed head phantom

and reconstructed in intervals of 0.5 mm at the Eclipse RTPS because of its thickness. The

“search body” function in the contouring tab of the Eclipse system was used to contour the

body automatically. Just like that used clinically for patient CT, the lower threshold was set to

−300 Hounsfield units (HU). The contoured body structure was partitioned to the left and

right to measure the radiation dose, as shown in Fig 1(A)–1(D). Because the STereoLithogra-

phy (STL) file format was required for 3D printing, the left and right head phantoms con-

toured from the RTPS were converted from DICOM to STL format by using the SlicerRT

toolkit in the open-source 3D Slicer (version 4.4; www.slicer.org) Fig 1(E) and 1(F) display the

converted file with STL Viewer.

An anthropomorphic patient-specific head phantom was constructed by using the fused

deposition modeling (FDM) method with a Dimension 1200 Series SST printer (Stratasys,

Eden Prairie, MN). ABSplus (Stratasys, Eden Prairie, MN) was chosen as the material to con-

struct the head phantom. Fig 1(G) and 1(H) show the constructed anthropomorphic patient-

specific head phantom. Structures such as the oral cavity, nasal cavity, and larynx were left as

cavities.

CT scan using a patient-specific head phantom and treatment plan

In order to obtain the CT DICOM for the radiotherapy treatment plan using the patient-spe-

cific head phantom in Fig 2(A), the image was scanned at a thickness of 1 mm. For other con-

ditions, the same protocol was used for the head phantom as that for a CT of a patient’s head.

The patient-specific head phantom was fixed into position with a DUONTM mask (Orfit

3D-printed patient-specific head phantom
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Industries, Wijnegem, Belgium) (Fig 2(B) and 2(C)). The CT images of a real patient (Fig 1

(A)–1(C)) and the patient-specific head phantom (Fig 3(A)–3(C)) were fused, and the “copy

all structure” function was used to override the head phantom with the structure contoured

from the patient. Fig 3(D) shows the model view of the fused CT image.

The treatment plan for the patient-specific head phantom was formulated by performing

fixed-gantry IMRT at the angles 0˚, 40˚, 80˚, 120˚, 160˚, 200˚, 240˚, 280˚, and 320˚. In this

treatment plan, the same tolerance and priority values used for a real patient’s target and nor-

mal organs were applied and re-optimized. Fig 3(F) shows the dose distribution calculated for

the 3D-printed patient-specific head phantom in the sagittal plane. The treatment plan re-opti-

mized for the head phantom was also transferred to I’mRT MatriXX (IBA Dosimetry GmbH)

for calculation. Fig 3(E) shows the dose distributions calculated with I’mRT MatriXX in the

frontal plane. The ion chambers were arranged in a 2D array on the frontal plane, which made

it possible to compare the measured and calculated doses. The sagittal plane of the patient-

Fig 1. Images for a head phantom. (a) Transversal, (b) sagittal, and (c) frontal plane images contoured by auto

segmentation for the left and right head phantoms on the Eclipse RTPS from the DICOM CT images. (d) Model

view reconstructed by the RTPS for the left and right head phantoms. (e) 3D rendering of the left head phantom. (f)

3D rendering of the right head phantom displayed by STL Viewer. (g) Image of the 3D-printed anthropomorphic

patient-specific head phantom. (h) Patient-specific head phantom including air cavities such as the nasal cavity,

oral cavity, and larynx.

https://doi.org/10.1371/journal.pone.0181560.g001

3D-printed patient-specific head phantom
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specific head phantom was constructed so that a Gafchromic EBT2 film could be inserted for

comparison of the measured and calculated dose distributions.

Evaluation of the dose distributions with I’mRT MatriXX and a patient-

specific head phantom: gamma index (γ)
To verify the calculated and measured dose distributions, we used I’mRT MatriXX with the

Plastic Water1 phantom MULTICube (IBA Dosimetry GmbH) and the 3D-printed patient

specific head phantom. In recent years, the gamma index has been widely used to compare cal-

culated and measured doses [6,7,14].

Janusz et al. [14] defined the gamma index (γ) to compare the distributions of the calculated

and measured doses as follows:

g rm; rcð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 ðrm; rcÞ
Dd2

M
þ

d
2
ðrm; rcÞ

DD2
M

s

ð1Þ

where

rðrm; rÞ ¼ br � rmc ð2Þ

and

dðrm; rÞ ¼ DðrÞ � Dm ðrmÞ ð3Þ

is the dose difference (DD) at the position rm. Here, rm is a single measurement point, rc is the

spatial location of the calculated distribution relative to the measured point, ΔdM is the passing

criterion for the distance-to-agreement (DTA), and ΔDM is the passing criterion for the DD.

The calculation passes if γ� 1 and fails if γ> 1. In order to compare the calculated and mea-

sured doses for gamma evaluation, the acceptable DD and DTA values were set to 3% and 3

mm, respectively.

Fig 2. Scanning of the patient-specific head phantom. (a) Patient-specific head phantom immobilized with a

DUONTM mask to fix the phantom scanned with the CT scanner, (b) QA verification with I’mRT MatriXX into

MULTICube, and (c) QA verification with the patient-specific head phantom and Gafchromic EBT2 film.

https://doi.org/10.1371/journal.pone.0181560.g002

3D-printed patient-specific head phantom
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Patient-specific quality assurance with I’mRT MatriXX and a patient-

specific head phantom

I’mRT Matrixx. A Novalis Tx linear accelerator system (Varian Medical Systems, CA,

USA and BrainLAB, Feldkirchen, Germany) with an HD-120 high-definition multi-leaf colli-

mator (HD-MLC) was used for verifying the measured and calculated dose distributions for

IMRT. The Eclipse 8.6 RTPS and anisotropic analytical algorithm (AAA) were used to calcu-

late the radiation dose with a grid size of 2.5 mm and inhomogeneity correction. Our previous

study [15] and Park et al. [16] showed that the AAA algorithm with a grid size of 2.5 mm is suf-

ficiently accurate for low-density regions such as the lungs. Measurements were made by using

I’mRT MatriXX with MULTICube, and the source-to-axis distance (SAD) was set to 100 cm.

The calculated and measured radiation doses with I’mRT MatriXX were carried out at a 0˚

gantry angle as stipulated by the internal QA protocol.

Patient-specific head phantom and Gafchromic EBT2 film. The radiation dose was

calculated in the same manner as that used with I’mRT MatriXX but on the sagittal plane

because the radiation dose was to be measured in this plane. The calibration process for the

Fig 3. Treatment plan for the patient-specific head phantom. (a) Transversal (b) frontal, and (c) sagittal

plane images and (d) model view image of the CT scanned with the patient-specific head phantom and copied

to the RT structure by fusing information from the real patient and patient-specific head phantom. Dose

distributions calculated with (e) I’mRT MatriXX in the frontal plane and (f) the 3D-printed patient-specific head

phantom in the sagittal plane.

https://doi.org/10.1371/journal.pone.0181560.g003

3D-printed patient-specific head phantom
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Gafchromic EBT2 film was done in a previous study [17]. Among three channels (red, green,

and blue), the red calibration curve was selected to compare the calculated and measured radi-

ation doses for the patient-specific head phantom because the analog-to-digital (ADC) con-

verter value for the red channel was least sensitive to changes in the radiation dosage. The

calculation and measurement of the radiation dose with the 3D-printed patient-specific head

phantom and Gafchromic EBT2 film were performed by using the fixed-gantry IMRT tech-

nique with 6 MV photons at gantry angles of 0˚, 40˚, 80˚, 120˚, 160˚, 200˚, 240˚, 280˚, and

320˚.

Results

3D-printed patient-specific head phantom

Fig 4 shows the CT image of the 3D-printed patient-specific head phantom scanned at 1-mm

intervals on the (a) transversal and (b) sagittal planes. In order to investigate the homogeneity

of the HU of the head phantom, a point marked during the CT scan was designated as the cen-

ter, as shown in Fig 4(B). Ten points were selected at the center, superior (+10 cm), and infe-

rior (−10 cm) positions for HU measurement. S1 Table presents the results. The mean HU at

the center was −340 with a standard deviation of 11.6, while the mean and standard deviation

at the superior position were −338 and 14.6, respectively. The mean and standard deviation at

the inferior position were −339 and 9.9, respectively. Overall, the HU for the patient-specific

head phantom was largely homogeneous.

Test for dose accuracy in I’mRT MatriXX

Fig 5 compares the calculated and measured doses with I’mRT MatriXX by using the gamma

index (γ). Fig 5(A) shows the calculated dose distribution at the frontal plane, while Fig 5(B)

shows the measured dose distribution. Fig 5(C) is a gamma map in which the red regions indi-

cate where γ� 1, and the bluish-violet regions indicate where γ< 1. The acceptance DD and

DTA used for gamma evaluation were set to 3% and 3 mm, respectively [4]. Fig 5(D) repre-

sents the gamma evaluation profiles. The red line represents the distribution of the measured

dose, while the green line indicates the distribution of the calculated dose. The gamma passing

rate (i.e., γ� 1), was 97.28%, and the gamma failure rate (i.e., γ> 1) was 2.72%.

Fig 4. Superior (+10 cm), center (0 cm), and inferior (−10 cm) measurement positions for the HU of the

patient-specific head phantom. (a) Transversal and (b) sagittal plane images.

https://doi.org/10.1371/journal.pone.0181560.g004

3D-printed patient-specific head phantom
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Test for dose accuracy with the 3D-printed patient-specific head

phantom

Fig 6 compares the calculated and measured doses with the 3D-printed patient-specific head

phantom and Gafchromic EBT2 film using the γ index. Fig 6(A) shows the calculated dose

Fig 5. Dose profiles with I’mRT MatriXX. (a) Measured dose, (b) calculated dose, (c) gamma maps (3%/3 mm),

and (d) gamma evaluation profiles using I’mRT MatriXX in the frontal plane. The red and green lines show the

measured and calculated dose profiles, respectively.

https://doi.org/10.1371/journal.pone.0181560.g005

Fig 6. Dose profiles with the 3D-printed patient-specific head phantom and Gafchromic EBT2 film. (a)

Measured dose, (b) calculated dose, (c) gamma maps (3%/3 mm), and (d) gamma evaluation profiles using the

3D-printed anthropomorphic patient-specific head phantom and Gafchromic EBT2 film in the sagittal plane. The

red and green lines show the measured and calculated dose profiles, respectively.

https://doi.org/10.1371/journal.pone.0181560.g006

3D-printed patient-specific head phantom

PLOS ONE | https://doi.org/10.1371/journal.pone.0181560 July 20, 2017 7 / 10

https://doi.org/10.1371/journal.pone.0181560.g005
https://doi.org/10.1371/journal.pone.0181560.g006
https://doi.org/10.1371/journal.pone.0181560


distribution at the sagittal plane, and Fig 6(B) illustrates the measured dose distribution. Fig 6

(C) is a gamma map in which the regions in red indicate where γ� 1, while the bluish-violet

regions indicate where γ< 1 and Fig 6(D) shows the gamma evaluation profiles using the 3D-

printed anthropomorphic patient-specific head phantom and Gafchromic EBT2 film in the

sagittal plane. Similar to I’mRT MatriXX, the same values for the acceptance DD (3%) and

DTA (3 mm) were applied in calculations with the patient-specific head phantom. The results

produced a gamma passing rate (γ� 1) of 95.97% and failure rate (γ> 1) of 4.03%.

Discussion

In this study, the feasibility of using a 3D-printed patient-specific head phantom to compare

the calculated and measured radiation doses was verified. We fabricated an anthropomorphic

patient-specific head phantom by using 3D printing technology to verify the calculated and

measured radiation doses. We compared the conventional QA measured with a 2D diode

array and the head phantom fabricated with a 3D printer.

While the radiation doses in radiotherapy treatments are often measured by using an ion

chamber, diode 2D array, and films [4,5,7,8], there is little in the literature on utilizing a

patient-specific phantom to calculate and measure radiation doses. In this research, a patient-

specific head phantom was constructed from a DICOM file by using 3D printing technology,

which has seen rapid advances in recent years.

In summary, the performance with the patient-specific head phantom was compared to

that of I’mRT MatriXX, which is a well-established IMRT QA technique. The 2D array and

patient-specific head phantom were analyzed individually by using the gamma index. At the

acceptance DD and DTA values of 3% and 3 mm, respectively, the gamma passing rate with γ
� 1 was 97.28% with I’mRT MatriXX and 95.97% with the patient-specific head phantom for a

difference of approximately 1.31%. Consequently, our results showed that the 3D-printed

patient-specific head phantom has great potential for patient-specific QA of intensity-modu-

lated radiotherapy.

In a similar study, Ehler et al. [8] created an anthropomorphic Rando phantom with hetero-

geneous tissue equivalence in order to compare the measured and calculated radiation doses,

where FDM was applied to acrylonitrile butadiene styrene (ABS). They intended to realize

dosimetric measurements that would not be possible in vivo and to avoid patient privacy issues

during research. A nine-field IMRT plan was employed with a traditional verification method

using the planar and cylindrical phantoms MapCHECK2 and ArcCHECK (Sun Nuclear Corp,

Melbourne, FL). The mean percentage difference between the calculated and measured doses

for the Rando phantom was 1.9%±2.8%, whereas the value with the 3D printed phantom was

−0.1%±4.9%, so the difference between the two types of phantoms was minimal. Thus, they

concluded that patient-specific phantoms fabricated by a 3D printer can be used for dosimetric

verifications between the measured and calculated doses.

Joseph et al. [18] recently reported that polystyrene can be used to fabricate a 3D low-den-

sity phantom for radiotherapy QA with a relative electron density of 0.18–0.75 by using the

ORION Delta 3D (SeeMeCNC Indiana) phantom. They concluded that 3D printing allows the

fabrication of variable-density phantoms for radiotherapy QA in low-density regions from the

correlation curve between the 3D printer infill value and relative electron density. However,

they noted limitations for use in phantoms with an exceedingly low density.

These variable-density issues have been a great challenge in applying 3D printing technol-

ogy to patient-specific QA of radiotherapy because most commercially available 3D printers

currently support only one material at the time of fabrication. Thus, one limitation of our

study was that we used only a single material (ABSplus) for the fabrication of the head

3D-printed patient-specific head phantom
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phantom, while the body of a real patient consists of various types of organs that produce a

much wider range of HU values.

In future work, we plan to fabricate a variable-density patient-specific phantom to compare

the calculated and measured doses. We also want to investigate the linear attenuation coeffi-

cient for radiotherapy by varying the different materials used in 3D printing.

Nevertheless, the 3D-printed phantom in this study can provide a better end-to-end test

than the traditional quality control test.

Conclusions

In this research, a patient-specific head phantom identical to the head of a real patient was con-

structed with a 3D printer by using the patient’s CT image. The phantom can be utilized for

dosimetric verification that must be performed prior to complex radiotherapy treatment, such

as IMRT and VMAT. In future work, we will research fabricating phantoms with variable den-

sity to simulate various components of the human body, including the lungs, fat, blood, mus-

cle, soft tissue, and bones when comparing the calculated and measured radiation doses.

Supporting information

S1 Table. Measured Hounsfield units (HU) in the superior, center, and inferior positions

with the patient-specific head phantom.
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