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Abstract

During summer 2007 Italy has experienced an epidemic caused by Chikungunya virus – the first large outbreak documented
in a temperate climate country – with approximately 161 laboratory confirmed cases concentrated in two bordering villages
in North–Eastern Italy comprising 3,968 inhabitants. The seroprevalence was recently estimated to be 10.2%. In this work we
provide estimates of the transmission potential of the virus and we assess the efficacy of the measures undertaken by public
health authorities to control the epidemic spread. To such aim, we developed a model describing the temporal dynamics of
the competent vector, known as Aedes albopictus, explicitly depending on climatic factors, coupled to an epidemic
transmission model describing the spread of the epidemic in both humans and mosquitoes. The cumulative number of
notified cases predicted by the model was 185 on average (95% CI 117–278), in good agreement with observed data. The
probability of observing a major outbreak after the introduction of an infective human case was estimated to be in the
range of 32%–76%. We found that the basic reproduction number was in the range of 1.8–6 but it could have been even
larger, depending on the density of mosquitoes, which in turn depends on seasonal meteorological effects, besides other
local abiotic factors. These results confirm the increasing risk of tropical vector–borne diseases in temperate climate
countries, as a consequence of globalization. However, our results show that an epidemic can be controlled by performing a
timely intervention, even if the transmission potential of Chikungunya virus is sensibly high.

Citation: Poletti P, Messeri G, Ajelli M, Vallorani R, Rizzo C, et al. (2011) Transmission Potential of Chikungunya Virus and Control Measures: The Case of Italy. PLoS
ONE 6(5): e18860. doi:10.1371/journal.pone.0018860

Editor: Michael George Roberts, Massey University, New Zealand

Received November 2, 2010; Accepted March 20, 2011; Published May 3, 2011

Copyright: � 2011 Poletti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Italian Ministry of Health ‘‘Chikungunya virus infection: epidemiological and clinical features’’ project. The funder had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: merler@fbk.eu

Introduction

During summer 2007 Italy has experienced the first large outbreak

caused by Chikungunya virus (CHIKV) documented in a temperate

climate country [1]. CHIKV is an arthropod–borne virus which can

be transmitted to humans by Aedes mosquitoes [2], widespread in

some tropical regions [3–8]. Aedes albopictus is highly competent for

CHIKV [9,10]. In Italy, the presence of this mosquito was first

documented in Genoa and Padua (Northern Italy) in the earliest

1990’s [11,12]. Over the following years, Aedes albopictus expanded its

distribution and is now well established in Northern and Central Italy

[13,14]. Having the potential to colonize the Mediterranean basin

[15], the species has been reported from most Mediterranean

European countries [16]. Samples of Aedes albopictus from the two

villages were found to be positive for CHIKV sequences [1].

Sustained transmission of CHIKV was mainly observed in two

neighboring villages in Emilia–Romagna region (North–Eastern

Italy), namely Castiglione di Cervia and Castiglione di Ravenna

[1], comprising 3,968 inhabitants in a built–up area of about

70 ha. The two villages are separated by a river with relatively

stagnant water resulting from the presence of a lock. Houses are

typically low (two storeys), surrounded by small gardens with many

flowers, plants and flower pots. During the outbreak in the streets,

drainage systems were visible, indicating open stagnant water

underground [17].

A total of 161 laboratory confirmed cases were reported to the

enhanced surveillance system developed in the two villages [1].

Sporadic cases, probably due to travel towards the most affected

villages and not leading to sustained transmission, were also

observed in other areas of the same region [1].

Moreover, a seroprevalence study, conducted on a random

sample of residents in the village with the largest number of

reported cases, shows a 10.2% of protected individuals [18].

Specifically, 82% were symptomatic – similar to 72.3% estimated

in Mayotte, Indian Ocean [19] 285% of which satisfied the

surveillance case definition, 63% of which were identified by the

active surveillance system [18]. Higher prevalences were observed

in La Reunion Island and in Mayotte, Indian Ocean, 38.2% and

37.2% respectively [19,20].

The index case was recorded on June 23 2007 (a man who had

arrived in Italy from India on June 21, [1]). On August 23, after the

identification of CHIKV as the pathogen responsible for the

ongoing epidemic, a set of interventions were undertaken to control

the epidemic spread [1]: breeding sites and eggs removal on August

23; use of adulticides from August 23 to August 25 (3 days) and

antilarval measures. Breeding sites were attempted to be removed in

the entire area (house–to–house interventions were performed and

community participation was encouraged as well) while insecticide

interventions were undertaken within a radius of 100 m of each

suspected case’s residence (300 m for clusters of cases).
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In this study we investigate the transmission potential of

CHIKV in Italy, to provide insight into the possible impact of

future outbreaks in temperate climate regions, and the effective-

ness of the interventions performed during the outbreak, to

provide insight into the epidemic control. To such aim, we

developed a model describing the temporal dynamics of the

competent vector, known as Aedes albopictus, explicitly depending

on climatic factors, coupled to an epidemic transmission model

describing the spread of the disease in both humans and

mosquitoes, which allowed us to reproduce several observed

features of the epidemic.

Methods

In Italy the competent vector for the transmission of CHIKV is

Aedes albopictus [1]. CHIKV can spread from human to human

through bites of adult female mosquitoes. As the dynamics of the

vector depends, among several abiotic factors, on meteorological

parameters, a population dynamics model accounting for seasonal

temperature variations was used to estimate vector abundance. In

particular, temperature plays a very significant role as it affects

development and mortality rates of Aedes albopictus [10,21],

influencing vector abundance and distribution over time [22].

The population dynamics model was then coupled to an epidemic

transmission model describing the spread of the epidemic in both

humans and mosquitoes (see Fig. 1), allowing the estimate of the

crucial parameters of the epidemic (e.g. basic reproduction

number, effective reproduction number, probability that a major

outbreak of the disease would occur after the introduction of a

single infective host) and the assessment of intervention strategies.

Modeling mosquito dynamics
The main purpose for modeling the dynamics of the vector is to

give an approximate estimation of the abundance of female adult

mosquitoes during the CHIKV epidemic outbreak in order to get

a reasonable value of the ratio of mosquitoes to humans over time,

a crucial factor for the calculation of the fundamental parameters

of the epidemic and for the assessment of intervention measures.

To achieve this goal, a differential equation model, structurally

similar to those analyzed in [23–25], was introduced.

The dynamics of the mosquitoes over a land surface of about

70 ha (the extension of the study area) is described by a

homogeneous mixing model. Briefly, the model simulates the

abundance of the vector in the four life stages of Aedes albopictus,

namely eggs (E), larvae (L), pupae (P), female adults (A), as follows:

_EE~nEdAA(1{
E

KE

){mEE{dEE

_LL~dEE{mLL{dLL

_PP~dLL{mPP{dPP

_AA~
1

2
dPP{mAA

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

where dE , dL, dP and dA are the temperature dependent

developmental rates; mE , mL, mP and mA are the temperature

dependent mortality rates; nE is the average number of eggs laid in

one oviposition; KE is the carrying capacity of eggs; the term 1=2
in the fourth equation accounts for the sex ratio (sex ratio is 1:1, as

reported in [21]). The four developmental rates correspond to egg

hatching (dE ), pupation (dP), adult emergence (dL) and gono-

trophic cycle (dA). Length of the gonotrophic cycles subsequent to

the first one and number of eggs laid at each gonotrophic cycles

are not significantly different within a range of temperature

between 200C and 350C [21]. Therefore, we consider only one

equation for modeling adults (and not a set of equations,

describing transitions through gonotrophic cycles of different

length, as in [23] for Aedes Aegypti) and the number of eggs laid in

one oviposition does not depend on temperature.

Figure 1. Schema of the model. a Model describing the evolution of the four life stages of the vector (eggs, E, larvae, L, pupae, P, adult females
A; black boxes and blue arrows), coupled to the epidemic transmission model in vectors (susceptible, A, latent, Ae , infectious, Ai ; black boxes and red
arrows). The dashed blue box and arrow refer to oviposition. b Model describing the epidemic transmission in humans (susceptible, Sh , latent, Eh ,
infectious symptomatic, Is

h , infectious asymptomatic, Ia
h , recovered, Rh ; black circles and red arrows).

doi:10.1371/journal.pone.0018860.g001
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Modeling epidemic transmission
Human host population is assumed to be constant during the

epidemic outbreak, given the brief duration of the epidemic

compared to the lifespan of humans. We indicate with Nh~3968
the number of humans [1]. As for the epidemic transmission

model, hosts are classified as susceptible (Sh), latent (Eh), infectious

symptomatic (Is
h) or asymptomatic (Ia

h ), and recovered (Rh). As

only adult female mosquitoes are responsible for virus transmis-

sion, adult males are not explicitly represented in the transmission

model. Female adult vectors are classified as susceptible (A), latent

(Ae) and infectious (Ai). A susceptible vector enters the latent class

after biting an infectious host at the per capita rate kxv, where k
represents the biting rate of the vector (i.e., the number of bites to

humans per mosquito per day) and xv is the susceptibility to

infection of the vectors (i.e., the probability that a mosquito get

infected after biting an infectious host). A latent vector enters the

infectious class after an average latent period of 1=vv days and

remains infectious for the rest of its life [26]. Thus, to account for

the epidemic transmission process, the 4th Eq. of system (1) is

replaced by the following three equations:

_AA~
1

2
dPP{mAA{lvA

_AAe~{mAAezlvA{vvAe

_AAi~{mAAizvvAe

8>>>><
>>>>:

ð2Þ

where

lv~kxv(Ia
h zIs

h)=Nh: ð3Þ

Moreover, as we assume that the infection does not affect

oviposition, the first Eq. of system (1) becomes:

_EE~nEdA(AzAezAi)(1{
E

KE

){mEE{dEE: ð4Þ

A susceptible host enters the latent class following the bite of an

infectious vector at the per capita rate kxh, where xh is the

susceptibility to infection of humans. A latent host becomes

infectious after an average latent period of 1=vh days, develops

symptoms with probability ps and then, after an average infectious

period of 1=c days, recovers.

The epidemic transmission process in humans can be modeled

by the following system of ordinary differential equations, which

has been added to system (1) as modified above (see Eq. 2 and 4):

_SSh~{lhSh

_EEh~lhSh{vhEh

_II
s

h~psvhEh{cIs
h

_II
a

h~(1{ps)vhEh{cIa
h

_RRh~c(Is
hzIa

h )

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

where lh~kxhAi=Nh. In what follows we refer to the full system

coupling dynamics of the vector and epidemic transmission

process as model M.

Basic reproduction number
The basic reproduction number R0 of host–vector infectious

diseases is the number of secondary infections that arise when a

single infective host is introduced into a fully susceptible host

population through pathogen transmission by the vector [27]. The

average number of hosts directly infected by the introduction of a

single infective vector into a fully susceptible host population is

given by the transmission probability kxh multiplied by the adult

mosquito infectious lifespan (that is, the entire lifespan) 1=mA:

RVH
0 ~

kxh

mA

, ð6Þ

The average number of vectors directly infected by the

introduction of a single infective host into a fully susceptible

vector population is given by the transmission probability kxv

multiplied by the initial number of mosquitoes per human Nv=Nh

(Nv~AzAezAi is the sum of all female adult mosquitoes,

regardless of the epidemic status) that survive the latent period

(probability: vv=(vvzmA)), multiplied by the human infectious

period 1=c:

RHV
0 ~

kxv

c

Nv

Nh

vv

vvzmA

: ð7Þ

Thus, the number of secondary infections generated by an

infective host in a fully susceptible host population over the entire

transmission cycle is:

R0~RHV
0 RVH

0 ~k2 Nv

Nh

xhxv

cmA

vv

vvzmA

: ð8Þ

Eq. (8), however, is the threshold parameter of a simplified model

M (with constant Nv). Therefore, to compute R0 we assume a

constant population of vectors, equal to the average value as

predicted by the model in the initial phase of the epidemic, i.e.

from June 21 to July 26 2007.

By employing the next–generation matrix method [28–30], one

obtains the number of secondary cases generated either in hosts or

vectors [31], that is the square root of Eq. (8).

Moreover, as shown in [32], the probability that a major

outbreak of the disease would occur after the introduction of a

single infective host is given by

p~1{
RVH

0 z1

RVH
0 (RHV

0 z1)
, ð9Þ

where the terms RVH
0 and RHV

0 are defined in Eq. (6) and (7).

Model parametrization
On the basis of data presented in [21], we estimated the length of

the developmental stages (egg hatching, larval and pupal develop-

ment) and of the gonotrophic cycle as a function of temperature. To

estimate, for instance, the length of the egg hatching period we used

the following procedure: let eT be the length of the egg hatching

period for temperatures T [T?:f150C,200C,250C,300C,350Cg,
as reported in [21]. We assume that eT~lE(T ; P)zeT where

lE(T ; P) is a parametric function of the temperature T (P indicate

the set of parameters) in a suitable set of functions, comprising

exponential and parabolic functions, and eT is a random sample of a

0 mean normal distribution with unknown variance s2. The square

error Err between predicted and observed length of the egg

hatching period is defined as Err~
P

T[T? (eT{lE(T ; P))2.

Parameters ~PP were estimated by minimizing Err. The variance ~ss2

was computed as the average of the estimated residuals of the model

(i.e., the average of the quadratic differences of (eT{lE(T ; ~PP))2

Transmission Potential of Chikungunya Virus
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between the observed data and the best model fit lE(T ; ~PP)). The

uncertainty of the parameters was estimated by using a technique

similar to that used in [33]. Specifically, we simulated 1000 different

feTgT[T? , obtained by perturbing the best-fit lE(T ; ~PP) by adding a

simulated error sampled from a normal distributed N(0,~ss2) and we

repeated the optimization procedure described above. Finally, the

rate of eggs hatching is defined as dE(T ; P)~1=lE(T ; P). The same

technique was used to estimate the length of larval and pupal

development and the length of the gonotrophic cycle. Results are

reported in Table 1. Fig. 2b shows a comparison between observed

and modeled data.

We estimated mortality rates of eggs, larvae and pupae as a

function of temperature on the basis of data on the survival rates

presented in [21]. To estimate, for instance, the mortality rate of

eggs we used the following procedure: let s19
T be the survival rates

of eggs (19 days after oviposition) for temperatures T [T?, as

reported in [21]. For a fixed value of temperature ~TT , the following

differential equation system describes the transition from eggs to

larvae:

_EE~{mE(~TT)E{dE(~TT)E

_LL~dE(~TT)E

(
ð10Þ

where dE(~TT) is the development rate as estimated above and

mE( ~TT) is the (unknown) mortality rate at the chosen temperature
~TT . We chose mE(~TT) in such a way that, after 19 days, the survival

rate as estimated through simulation of model (10) (i.e. the fraction

of eggs that successfully develop into larvae) coincides with s19
~TT

.

This procedure allowed the estimation of the mortality rate of eggs

at temperatures T [T?. Fig. 2c shows that the estimated mortality

rates of eggs at different temperatures lead to values of the survival

rates compliant with the observed ones. The same procedure was

used to estimate the mortality rates of larvae and pupae for

temperatures T [T?. Mortality rates of adults for temperatures

T [T? were directly available from [21]. The procedure described

above for estimating the length of the developmental stages was

used to estimate the mortality rates of all stages as a function of

temperature in the range ½150C{350C�. Results are reported in

Table 2. Fig. 2d shows a comparison between observed and

modeled data.

Mortality rates as computed above depend only on tempera-

ture. Since parasitism and deficient nutrients have been found to

cause a 35% increase in the rate of larval mortality [34] and adult

Aedes albopictus females have been found to survive an average of

only 8:2 days (probability of daily survival = 0:8 days{1) in the

natural environment [35], mortality rates for immature stages

(mL(T) and mP(T)) and adults (mA(T)) were multiplied by a factor

1:35 and 4 respectively.

The average number of eggs nE per oviposition is not

significantly different at each gonotrophic cycle between 200C

and 350C and in our simulations was uniformly chosen in the

interval ½50 eggs{75 eggs�, according to [21].

The carrying capacity of eggs KE was estimated on the basis of

data collected in the 2008 in the study area on the number of eggs

per ovitrap per week as resulting from the analysis of 2741 ovitraps

from week 21 to week 42 [36]. The mean egg density for the

region of interest was found to be in the interval ½46:6{63:2� per

ovitrap per week. Firstly, we estimated the carrying capacity of a

single breeding site as the value Kb giving rise (through simulation

of model (1), where all other parameters are known) to an

estimated weekly incidence of eggs in the observed range

(½46:6{63:2�) at temperatures observed in June and July. We

estimated Kb to be 19 in average (95% CI 14–27). The carrying

capacity of the study region can be computed as KE~BKbH,

where B is the density of breeding sites (number per ha) and

H~70 ha is the surface of the study area. The exact number of

breeding sites (public and private catch basins, stagnant pools of

water, etc.) in the area at the time of the epidemic is unknown.

Hence, in this study we considered different values of B, namely

50, 100, 150 and 200 ha{1, in order to describe different (high)

densities of mosquitoes, as those observed in the study area [1].

These different scenarios are thus characterized by average values

of of the carrying capacity KE in the range ½66500{266000�.
As for the dependence of rates on temperature, the develop-

mental rates of the aquatic stages, namely egg hatching, larval and

pupal developments, and the mortality rates of eggs, pupae and

larvae, are daily calculated as a function of the water mean

temperature, while the length of the gonotrophic cycle and the

mortality rate of adults are calculated as a function of air mean

temperature. Since 2008 a monitoring activity has been carried

out in order to estimate the water temperature (a key parameter in

the developmental stages) of breeding sites. In fact, most of Aedes

albopictus life stages develop in aquatic micro–environment.

Specifically, a linear regression model was used to estimate the

daily mean water temperature as a function of daily mean,

maximum and minimum air temperature and daily mean air

relative humidity (see Fig. 2a). This allowed us to get estimates of

the water temperature for the 2007 season in order to get a more

truthful calculation of developmental rates for eggs hatching and

immature stages (larvae and pupae), impossible to obtain

otherwise.

Plausible ranges for parameters most related to the epidemic

transmission process were taken from literature (see Table 3),

except for the biting rate k – it may vary a lot depending on

human and mosquitoes populations, climatic and environmental

factors [37]. We explored values of k in the range ½0,1� days{1.

Implementation and parameters optimization
To account for the stochastic nature of the processes regulating

both dynamics of mosquito and epidemic transmission, we used a

discrete–time stochastic version of model M, with time–step

Table 1. Length of the developmental stages.

development cycle ~s2 p1 (95% CI) p2 (95% CI) p3 (95% CI)

lE (T)~p1{p2 expf{((T{20)=p3)2g 1.03 6.9 (5.7,9.9) 4.0 (1.8,7.2) 4.1 (0.2,17.2)

lL(T)~p1T2zp2Tzp3 1.65 0.12 (0.08,0.15) 26.6 (28.3,24.8) 98 (76.6,118.8)

lP(T)~p1T2zp2Tzp3 0.44 0.027 (0.018,0.038) 21.7 (22.2,21.26) 27.7 (22.2,32.7)

lA(T)~p1T2zp2Tzp3 0.11 0.046 (0.038,0.049) 22.77 (22.96,22.36) 45.3 (39.7,47.8)

doi:10.1371/journal.pone.0018860.t001
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Dt~0:1 days. The time step was chosen short enough to obtain,

on average, results comparable with those obtained by simulating

the deterministic version of the model. Infections (either in vectors

or hosts) occur with probability

p~1{expf{lDtg

where l is the force of infection (see for instance [38–40]). For

instance, to simulate the number of new infections in mosquitoes

at a given time of the simulation, we sample from a binomial

distribution with probability p, where l is lv given in Eq. (3), and

sample size A, where A is the number of susceptible mosquitoes.

Other transitions, e.g. through different life stages of the mosquito

or through different epidemic classes, occur at the rate rDt where r

is the suitable rate (e.g. inverse of infectious period, inverse of the

eggs hatching period, etc.).

Table 2. Mortality rates.

stage ~s2 p1 (95% CI) p2 (95% CI) p3 (95% CI)

mE (T)~p1{p2 expf{((T{25)=p3)6g 0.092 506 (43.4,925) 506 (43.4,925) 27.3 (18.3,30.8)

mL(T)~p1zp2 expfT{p3g 0.012 0.029 (0.017,0.041) 858 (20.6,973) 43.4 (39.7,43.5)

mP(T)~p1zp2 expfT{p3g 0.005 0.021 (0.018,0.026) 37 (14.8,57) 36.8 (35.8,37.2)

mA(T)~p1zp2 expfT{p3g 0.003 0.031 (0.028,0.04) 95820 (2954,98553) 50.4 (46.9,50.6)

doi:10.1371/journal.pone.0018860.t002

Figure 2. Model parametrization. a Observed average daily temperature inside a standard catch basin in 2009 (red points) versus values as
predicted by a linear model whose independent variables are daily air temperature and relative humidity (blue line, RMSE = 1.30C) tuned on data
from the 2008 season. Daily air temperature and relative humidity, measured two meters above the ground, were obtained from the urban weather
station of Ravenna, the closest city to the two Italian villages affected by CHIKV. As for comparison, average daily air temperature is reported (green
line), showing that water temperature is hardly comparable to air temperature (RMSE = 2.80C). b Length of egg hatching period at temperatures
T [ f150C,200C,250C,300C,350Cg, as reported in [21] (red circles), and predicted values (solid red lines); vertical bars represent 95% CI of predicted
values. Other colors refer to length of larval development (green), pupal development (blue) and gonotrophic cycle (orange). c Survival rates of egg
at temperatures T [ f150C,200C,250C,300C,350Cg, as reported in [21], versus predicted survival rates (red circles). Other colors refer to survival rates
of larvae (green) and pupae (blue). c Mortality rates of eggs at temperatures T [ f150C,200C,250C,300C,350Cg, as derived by the analysis of survival
rates (see Eq. 10, red circles), and predicted values (solid red lines); vertical bars represent 95% CI of predicted values. Other colors refer to mortality
rates of larvae (green), pupae (blue) and adult females (orange).
doi:10.1371/journal.pone.0018860.g002
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All model parameters were calibrated to minimize the score

function F~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t (yt{zt)

2
q

, where yt is the observed daily

number of notified cases at time t and zt is the daily number of

notified cases as predicted by the model at time t (times t represent

days before the intervention). Model M outputs the daily

incidence of symptomatic cases, ~IIs
h(t), and asymptomatic cases,

~IIa
h (t). Notified cases zt at time t were estimated by sampling from a

binomial distribution of size n~~IIs
h(t) and probability p~pn, where

pn is the notification ratio (pn~0:54 [18]).

Latin Hypercube Sampling (LHS) allows an efficient sampling

of the parameter space which requires a smaller sample size than

simple sampling to achieve the same accuracy [41]. LHS was used

to build nQ~1000 sets of parameters Q:fq1, . . . ,qnQ
g (uniform

sampling was used to determine the nQ values of each model

parameter) and thus, through model simulations, nQ time series of

predicted notified cases fzt(q)gq[Q. The optimal parameter set q?

was chosen as the one minimizing the score function, i.e.

q?~arg minq[Q F (q). We repeated the above described proce-

dure 100 times. This allowed us to estimate distributions of model

parameters and, consequently, of the other quantities of interest

(e.g. R0, probability of major outbreak, attack rate). The index

case was recorded on June 23 2007 (a man who had arrived in

Italy from India on June 21, [1]) and thus we initialized all

simulations with 1 infected individual on June 23. Results of the

optimization procedure are shown in Fig. S1. Fig. S2 shows that

100 simulations are sufficient to obtain meaningful distributions of

parameters and quantities of interest.

Results and Discussion

In summer 2007, an outbreak of chikungunya fever affected the

Italian provinces of Ravenna, Cesena-Forli, Rimini and Bologna

[1,42–44]. Health authorities identified 214 laboratory-confirmed

cases with date of onset from July 15 to September 28 2007. Most

cases (161) occurred in the two neighboring villages of Castiglione di

Cervia and Castiglione di Ravenna, but five smaller clusters of local

transmission were also detected in five towns in the same region (i.e.,

Cervia, Cesena, Ravenna, Rimini, and Bologna) which are located

9 to 75 km from the initially affected villages [1,42–44], see Fig. 3.

ModelM was parametrized to describe epidemic spread only in

Castiglione di Cervia and Castiglione di Ravenna. Daily estimates

of the number of vectors over time Nv were obtained by the vector

dynamics model. The ratio of mosquitoes to humans was

estimated to be in the range of 10–35 during the peak mosquito

activity (Fig. S3 show the predicted dynamics of the vector for

different numbers of breeding sites B). By fitting model M to

notification data up to August 23 (the day before intervention) and

by assuming B = 200 ha{1 we estimated k to be 0.09 days{1 (95%

CI 0.05–0.16 days{1, see Fig. 4b). We recall that the explored

range for k through the LHS procedure was ½0,1�. Good fit to data

were obtained for values in the entire range explored for all the

other model parameters (see Fig. S4).

Table 3. Epidemic parameters.

parameter description value reference

1=vh Latent period in humans 2–4 days [3,58–60]

1=c Infectious period in humans 2–7 days [58,59,61]

xh Human susceptibility to
infections

50%–80% [58]

ps Symptomatic ratio 82% [18]

pn Notification ratio 54% [18]

1=vv Latent period in mosquitoes 2–3 days [26,58]

xv Mosquito susceptibility to
infections

70%–100% [62]

doi:10.1371/journal.pone.0018860.t003

Figure 3. Study area. Geographical position of the two most affected villages (Castiglione di Cervia and Castiglione di Ravenna, in red), and
municipalities where clusters of local transmission were observed (grey areas represent municipalities, blue points represent the geographic position
of the main towns within municipalities).
doi:10.1371/journal.pone.0018860.g003

Transmission Potential of Chikungunya Virus

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e18860



The uncertainty of k depends on the uncertainty of all model

parameters. Unfortunately, no field data are available for the study

area to validate these results. In [37], plausible values for the biting

rate and the ratio of mosquitoes to humans in Europe are

considered to be k~0:25 days{1 and Nv=Nh~20 (based on

published and non published data, e.g. [10]). However, we

acknowledge that it might be misleading to compare these results

with others carried out in other localities. In fact, abundance and

biting rate of Aedes Albopictus are strongly affected by abiotic factors,

both climatic and environmental (e.g. presence of other hosts).

Estimates of the biting rate and its uncertainty allowed us to

estimate R0 and its uncertainty from Eq. (8). Besides parameters

more strictly related to the infectious process, R0 is an increasing

function of the square of k, as the biting rate controls transmission

from humans to mosquitoes and from mosquitoes to humans, and

the ratio of vectors to humans Nv=Nh (see Fig. S5). However, it

should be considered that Eq. (8) depends on the number of

vectors Nv which substantially varies over time as a results of

seasonal meteorological factors. Thus, as for models explicitly

considering seasonal variations in transmission, it is difficult to

precisely define R0. Therefore, we computed R0 by considering

the average value of Nv from June 21 to July 26 2007 (i.e. the

initial phase of the epidemic), as predicted by the vector dynamics

model. We estimated R0 to be 3.3 on average (95% CI 1.8–6, see

Fig. 4e). The estimated biting rate increases by decreasing the

number of breeding sites and, consequently, estimates of R0 do not

change substantially by varying the number of breeding sites

(B = 50 ha{1: k~0:18 days{1, 95% CI 0.1–0.26 days{1,

R0~3:2, 95% CI 1.9–5.5; B = 100 ha{1: k~0:13 days{1, 95%

CI 0.08–0.2 days{1, R0~3:2, 95% CI 1.9–5.2; B = 150 ha{1:

k~0:1 days{1, 95% CI 0.06–0.15 days{1, R0~3:4, 95% CI 2.1–

5, see Fig. 4b and Fig. 4e). Fig. 4d shows that RVH
0 is below the

critical threshold for all vales of B and thus the epidemic is mainly

determined by RHV
0 , i.e. by transmission from humans to vectors.

As for the effective reproduction number Re (i.e., the average

number of secondary cases generated per primary case at a given

time), which accounts for both depletion of susceptible individuals

and mosquito dynamics, its value over time is shown in Fig. 4c and

Fig. 4f (by considering or not interventions). It emerges that Re,

which does not change much by varying the number of breeding

sites, can vary substantially over time as an effect of mosquito

dynamics. This suggests that R0 could have been even larger,

depending on the time of epidemic seeding.

Recently, it has been demonstrated using mathematical

modeling in the context of dengue that it is possible to generate

outbreaks even in cases when R0v1 provided that the vector-to-

human component of R0 is greater than one and that a certain

number of infected vectors are introduced into the affected

population [45]. However, it has been demonstrated that the

index case was a man of Indian origin from Kerala living in

Castiglione di Cervia, without history of traveling during the

previous year [1]. He only reported contact with a relative of his,

who had arrived in Italy on June 21 2007 from Kerala, India (a

region of India affected by the CHIKV epidemic), and visited him

Figure 4. Potential transmission of CHIKV. a Distribution (2.5%, 25%, 50%, 75% and 97.5% percentiles) of the probability of observing a major
outbreak for different numbers of breeding sites. b As a but for the biting rate. c Average effective reproduction number (black line, scale on the left)
and 95% CI (grey area), and average density of mosquitoes (green line, scale on the right) over time by assuming B = 200 ha{1 and no interventions.
The dashed black line identifies the threshold value Re~1. d As a but for RVH

0 and RVH
0 (see Eq. 6 and 7). e As a but for the basic reproduction

number. f As c but by assuming reference interventions, resulting in the following reductions: 40% as for breeding sites and eggs, 90% as for larvae
and 95% as for adults.
doi:10.1371/journal.pone.0018860.g004
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in Castiglione di Cervia village on June 23, while feverish.

Therefore, having the human index case being identified, we can

reasonably exclude the contemporaneous introduction of infected

vectors in the two villages. Moreover, our estimates show that RVH
0

is well below the critical threshold.

As several cases were reported in Italy among travelers

returning from endemic areas [46] (only one, however, in the

study area; additional imported cases throughout the duration of

the outbreaks were not detected), the question arises why no

previous outbreaks of CHIKV occurred in other Italian regions.

By assuming B = 200 ha{1, we estimated the probability p (see

Eq. 9) that a major outbreak of the disease would occur after the

introduction of a single infective host to be 0.59 (95% CI 0.35–

0.76, see Fig. 4a). Estimates do not change substantially by varying

the number of breeding sites (B = 50 ha{1: p~0:51, 95% CI

0.29–0.7, see Fig. 4a; B = 100 ha{1: p~0:55, 95% CI 0.32–0.71,

see Fig. 4a; B = 150 ha{1: p~0:59, 95% CI 0.4–0.73, see Fig. 4a).

For values of the biting rate k in a given range, results indicate that

major outbreaks are possible only for large enough values of

Nv=Nh (see Fig. S5) and, by assuming the same density of

mosquitoes, epidemic outbreaks are more likely in rural areas with

respect to urban areas – as the human population density is much

lower in the former. This could explain why cities like Cesena

(96,000 inhabitants), Rimini (141,000 inhabitants) and Bologna

(377,000 inhabitants) and Ravenna (157,000 inhabitants) located

in the same region of the two most affected villages did not

experience any epidemic outbreak, though sporadic CHIKV cases

were recorded in the same period [1,42–44]. These results support

the hypothesis that outbreaks of Chikungunya virus in those

temperate climate countries characterized by high density of Aedes

albopictus are probable after the importation of an index case from

abroad.

The potential epidemic trajectory in the absence of interven-

tions by assuming B~200 ha{1 is shown in Fig. 5a. The resulting

cumulative attack rate (i.e., the percentage of symptomatic cases in

the population at the end of the epidemic) was estimated to be

73.4% of the population (95% CI 57.8%–81.5%, see also Fig. 5b).

Results do not change much by varying B (B = 50 ha{1: 74%,

95% CI 55.3%–81.6%, see also Fig. S6; B = 100 ha{1: 73:9%,

95% CI 55.8%–81.5%; B = 150 ha{1: 75%, 95% CI 57.3%–

81.3%). Much lower prevalence values have been estimated in La

Reunion Island and in Mayotte, namely 38.2% and 37.2%

respectively. However, these estimates are hardly comparable with

our model predictions as these territories have benefited from high

resource allocation to mitigate the epidemic [19].

As for the undertaken interventions, breeding sites and eggs

were removed on August 23 2007, larvicides were used on August

23 (effect lasting 30 days), and adulticides were used from August

23 to August 25 2007. Through model simulations, we evaluated

the effects of strategies mimicking the timing of the actual

interventions undertaken in Italy. As for the effects in terms of

reduction of breeding sites, eggs, larvae and adults, likely values

Figure 5. Baseline simulations and reference interventions. a Average daily number of symptomatic notified cases as predicted by the model
in the absence of interventions (baseline scenario, blue line, scale on the left) and 95% CI (grey area) by assuming B~200 ha{1 , compared to the
actual daily number of symptomatic notified cases (black points). Red line represents the overall average daily number of symptomatic cases as
predicted by the model. Green line represents the average density of mosquitoes (scale on the right). b Histogram of the cumulative number of
symptomatic cases as predicted by the model in the absence of interventions. c and d As a and b respectively but for assuming an intervention
resulting in the following reductions: 40% as for breeding sites and eggs, 90% as for larvae and 95% as for adults (reference scenario).
doi:10.1371/journal.pone.0018860.g005
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are: 20% to 60% as for reduction breeding sites and eggs, 80% to

95% as for reduction of larvae and 80% to 95% as for reduction of

adults. We discuss first results obtained by assuming 40% as for

reduction of breeding sites and eggs, 90% as for reduction of

larvae and 95% as for reduction of adults. The effects of such an

intervention are shown in Fig. 5c. The resulting cumulative attack

rate, by assuming B~200 ha{1, was estimated to be 8.7% (95%

CI 5.6%–12.7%, see Fig. 5d), in good agreement with the

observed value, namely 8.4%, computed by multiplying the overall

observed prevalence, 10.2% [18], by the symptomatic ratio

ps~0:82 [18]. Results are similar for other choices of B (for

instance, for B = 50 ha{1 the figure becomes 8:5%, 95% CI

5.3%–13%; see also Fig. S6). To keep track of the number of

symptomatic cases identified by the active surveillance system, we

assume that human symptomatic cases are identified with

probability pn and this allows fitting notification data in model

simulations. According to model estimates, the number of notified

cases would have been about 185 on average (95% CI 117–278),

in good agreement with the number as reported to the surveillance

system, namely 161 cases [1]. The number of cases drastically

decreased in late August while the effective reproduction number,

in the absence of interventions, would have fallen below the

epidemic threshold in late September (see Fig. 4c and Fig. 4f). This

proves that a combined strategy resulted in a drastic reduction of

the epidemic impact, despite the relatively large value of R0.

Let us now consider two aspects of the control strategy. Firstly,

we assume different efficacy in terms of reduction of breeding sites,

eggs, larvae and adults to evaluate the robustness of the estimated

effects of the interventions undertaken in Italy. As shown in Fig. 6b,

results are robust for small variations of the efficacy of the vectors

control. In a fully susceptible population the time from primary

index case to secondary infections was estimated to be 11 days on

average (95% CI 3–20). This allows public health authorities to

gain time to put in place control measures.

Secondarily, we investigate the efficacy of the single interven-

tions (breeding sites removal, larvicides, adulticides). Results are

shown only for B~200 ha{1. As shown in Fig. 6a, reduction of

eggs and breeding sites could be effective only by hypothesizing a

massive intervention (cumulative attack rate is reduced on average

from 73% to 55% by reducing eggs and breeding sites of 60%);

adulticides do not contribute much to reducing the overall number

of cases (cumulative attack rate is reduced on average from 73% to

60%); larvicides contribute to a substantial reduction of the overall

number of cases (cumulative attack rate is reduced on average

from 73% to 40%); In fact, larvicides are effective for a prolonged

period of time and thus can contribute to decrease systematically

the number of adults for a long period of time and, consequently,

to substantially reduce the overall attack rate. Quite the contrary,

adulticides were used for a very limited period of time (3 days) and

thus their effect is limited due to the rapid increase of adults

suddenly after the intervention. Overall, these results suggest that

only a combined intervention, as the one performed during the

outbreak, can result in a drastic decrease of the number of cases.

Five smaller clusters of local transmission were detected in five

towns in the same region (i.e., Ravenna, Cervia, Cesena, Rimini,

and Bologna). Cervia and Ravenna are the main towns of the

municipalities where the two most affected villages (Castiglione di

Cervia and Castiglione di Ravenna) are located. The two affected

villages account for the 2.1% of the population of the

municipalities of Cervia (27,000 inhabitants) and Ravenna

(157,000 inhabitants). By analyzing commuting data of the

Emilia–Romagna region [47], we found that the number of

individuals traveling daily to Cervia and Ravenna for work or

study is 8,787 (from 249 different municipalities), and the number

Figure 6. Sensitivity analysis. a Red: distribution (2.5%, 25%, 50%, 75% and 97.5% percentiles) of the cumulative attack rate (only symptomatic
cases are considered) by assuming no interventions (baseline scenario) as in Fig. 5a and Fig. 5b, and B~200 ha{1. Green: as in the baseline scenario
but for reductions of breeding sites and eggs. Blue: as in the baseline scenario but for reductions of larvae. Cyan: as in the baseline scenario but for
reductions of adults. The horizontal dashed red line represent the observed attack rate (symptomatic cases, obtained by multiplying the observed
prevalence, 10.2% [18], by the probability of developing clinical symptoms, 0.82 [18]). b Red: distribution (2.5%, 25%, 50%, 75% and 97.5%
percentiles) of the cumulative attack rate (only symptomatic cases are considered) by assuming the same intervention as in Fig. 5c and Fig. 5d
(reference scenario), namely reduction of 40% as for breeding sites and eggs, 90% as for larvae and 95% as for adults, and B~200 ha{1 . Green: as in
the reference scenario but for different reductions of breeding sites and eggs. Blue: as in the reference scenario but for different reductions of larvae.
Cyan: as in the reference scenario but for different reductions of adults. The horizontal dashed red line represents the observed percentage of
symptomatic cases as resulting from survey data [18].
doi:10.1371/journal.pone.0018860.g006
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of persons traveling daily from Cervia and Ravenna to other

municipalities is 10,861 (towards 139 different municipalities). The

exact number of commuters for Castiglione di Cervia and

Castiglione di Ravenna is unknown but it should not exceed

2.1% of the overall number of commuters. However, the

probability of traveling from/to a certain municipality should be

similar to that observed for the two municipalities as a whole and

we found that clusters of local transmission were recorded in

municipalities well connected with the municipalities of Ravenna

and Cervia (see Table 4). For at least four of the five clusters,

population movement (i.e., persons who visited the area that was

primarily affected or persons from the primarily affected area who

visited one of the four towns) can be reasonably assumed to have

been the main determinant of local transmission. Another possible

explanation is passive vector mobility (e.g. infected mosquitoes

transported by car from the initial cluster), since the flight range

(active mobility) is usually considered to be less than 1 km

[35,48,49].

Our results suggest that the transmission potential of CHIKV in

Italy was similar to the one observed in tropical regions where

Chikungunya fever is widespread (e.g., Reunion Island, where the

best estimate for the initial R0 was 3.7 [3]). Specifically, we

estimated R0 to be in the range of 1.8–6. However, being the

reproduction number strongly dependent on the density of

mosquitoes, which in turn varies a lot over time as a consequence

of seasonal meteorological effects, different (even larger) values of

R0 could be observed in future outbreaks, depending on the time

of epidemic seeding. In [3], by adapting a method originally

introduced in [50] for human–to–human infections, R0 was

estimated from the generation interval probability distribution

function and the number of gonotrophic cycles of the mosquito.

This method can not be applied in our study, as the undertaken

control measures have contributed to alter the gonotrophic cycles

of the mosquito in a indeterminable manner. We found that the

probability of observing a major outbreak after the introduction of

an index case depends on the ratio of mosquitoes to humans and

was estimated to be in the range of 32%–76%. These results

confirm the high risk to Europe of tropical vector–borne diseases

as a consequence of globalization, which has been modifying the

mobility of humans and vectors. Climate changes could have been

playing a role, as the geographical limits of mosquito–borne

diseases can be influenced by climate [51,52], but this is still

debated [53–55].

Moreover, our analysis strongly support the efficacy of the

disinfestation strategy performed during the Italian outbreak,

which drastically contributed to reduce the cumulative attack rate

(of about 88%), though the application of self–protection

preventive measures (insect repellents and window screens) could

also have played a role [18]. Therefore, even if the transmission

potential of Chikungunya virus could be sensibly high also in

temperate climate countries, the epidemic can be controlled by

performing timely interventions.

The proposed model has several limitations. We assume

exponential distribution for all parameters of model M related

to the length of the different periods (e.g. latency, infectiousness,

etc.), though it would be preferable to use multiple classes within

each group to give more realistic gamma distributed lifetimes (see

for instance [56]). We assume density–dependent growth only in

eggs, though other density–dependent regulating processes should

be considered for other lifestages of the mosquitoes, e.g. larvae and

pupae [25]. These modeling choices are due to the lack of data for

parametrizing the model. The lack of information on the actual

number of breeding sites – it could be assessed only by performing

a field study – prevent us to give precise estimates on the density of

mosquitoes over time in the study area. However, we would note

that our estimates of R0, attack rates and probability of major

outbreak are robust with respect to assumptions on the number of

breeding sites. Moreover, the temporal dynamics of the vector is

qualitatively well captured by model M (though not in terms of

absolute abundance) and this allowed us to clarify whether or not

the sharp decrease in the number of cases observed after the

intervention was due to the intervention itself or to the

spontaneous reduction of adults due to decrease of temperature.

Definitely, a key lesson learnt from the analysis of the

Chikungunya outbreak in Italy is the necessity to improve tools

for obtaining reliable, though costly, estimates of the vector density

(see for instance [57]) – thus bypassing the necessity of developing

ad-hoc models. The proposed model, describing the temporal

dynamics of Aedes albopictus, provides a valid alternative in the

absence of reliable field data.

Supporting Information

Figure S1 Parameters optimization. a Green points

represent the values of the score function F plotted versus the

number of notified cases as predicted by the model (with B~200
ha{1) before intervention for Q different values of the model

parameters as obtained by the LHS procedure. Red point

represents the minimum of F . Black points represent the values

of the score function F plotted versus the number of notified cases

as predicted by the model before intervention as obtained by

repeating 100 times the optimization procedure. The inset shows

the minimum of F for the 100 replicates (red points). The blue

vertical line represent the number of notified cases reported to the

surveillance system before intervention, namely 132. b As a but

for B~50 ha{1.

(TIF)

Figure S2 Results for increasing number of simula-
tions. a Mean (red points), median (blue points) and 95% CI

(shaded grey area) of R0 for increasing number of simulations with

B~200 ha{1 in the absence of interventions (baseline scenario). b
As a but for probability of observing a major outbreak. c As a but

for the cumulative number of symptomatic cases. d As a but for

the biting rate.

(TIF)

Figure S3 Temporal dynamics of the mosquito. a
Average density (number per ha) of adult female mosquitoes over

time as predicted by the model by assuming B~200 ha{1 (green

line) and 95% CI (grey area). b As a but for B~150 ha{1. c As a
but for B~100 ha{1. d As a but for B~50 ha{1.

(TIF)

Table 4. Commuting patterns.

municipality origin (rank) destination (rank) cases [63]

Cesena 18% (2) 10% (3) 15

Rimini 2.9% (10) 3.1% (10) 6

Bologna 9.5% (3) 1.6% (13) 5

Cervia - - 19

Ravenna - - 9

Probability of origin and destination (and rank over all possible origins/
destinations) of individuals commuting daily for work or school from/to other
municipalities were local clusters of transmission were observed. The two most
affected villages are located in the municipalities of Cervia and Ravenna.
doi:10.1371/journal.pone.0018860.t004
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Figure S4 Range of the optimal parameters values.
Distribution of the model parameters (2.5%, 25%, 50%, 75% and

97.5% percentiles) after LHS optimization. Numbers below and

over the boxplot represent the explored range of values.

(TIF)

Figure S5 Epidemic threshold and probability of major
outbreak. a Epidemic threshold R0 in relation to biting rate k
and ratio of mosquitoes to humans Nv=Nh. The black line

represents the average threshold condition and the shaded blue

area represents 95% CI, as resulting from uncertainty of model

parameters. The red rectangle identifies the likely range of the two

parameters in the two Italian villages affected by CHIKV. b
Probability of observing a major outbreak as a function of the ratio

of mosquitoes to humans Nv=Nh for two extreme values of the

biting rate k, namely k~0:1 days{1 in red (solid line black

represents the average probability and the shaded area represents

95% CI) and k~0:2 days{1 in blue.

(TIF)

Figure S6 Baseline simulations and reference interven-
tions. a Average daily number of symptomatic notified cases as

predicted by the model in the absence of interventions (baseline

scenario, blue line, scale on the left) and 95% CI (grey area) by

assuming B~50 ha{1, compared to the actual daily number of

symptomatic notified cases (black points). Red line represents the

overall average daily number of symptomatic cases as predicted by

the model. Green line represents the average density of mosquitoes

(scale on the right). b Histogram of the cumulative number of

symptomatic cases as predicted by the model in the absence of

interventions. c and d As a and b respectively but for assuming an

intervention resulting in the following reductions: 40% as for

breeding sites and eggs, 90% as for larvae and 95% as for adults

(reference scenario).

(TIF)
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