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ABSTRACT

Mammalian cells repair DNA double-strand
breaks (DSBs) via efficient pathways of direct,
nonhomologous DNA end joining (NHEJ) and homol-
ogous recombination (HR). Prior work has identified
a complex of two polypeptides, PSF and p54(nrb), as
a stimulatory factor in a reconstituted in vitro NHEJ
system. PSF also stimulates early steps of HR
in vitro. PSF and p54(nrb) are RNA recognition
motif-containing proteins with well-established
functions in RNA processing and transport, and
their apparent involvement in DSB repair was unex-
pected. Here we investigate the requirement for
p54(nrb) in DSB repair in vivo. Cells treated with
siRNA to attenuate p54(nrb) expression exhibited a
delay in DSB repair in a y-H2AX focus assay. Stable
knockdown cell lines derived by p54(nrb) miRNA
transfection showed a significant increase in
ionizing radiation-induced chromosomal aberra-
tions. They also showed increased radiosensitivity
in a clonogenic survival assay. Together, results
indicate that p54(nrb) contributes to rapid and
accurate repair of DSBs in vivo in human cells and
that the PSF -p54(nrb) complex may thus be a poten-
tial target for radiosensitizer development.

INTRODUCTION

The RNA recognition motif (RRM) is one of the most
common protein domains in eukaryotes (1). Early work
identified the motif in a variety of RNA binding proteins
(2,3). More recent work has broadened our concept of
the function of RRM-containing proteins. The RRM
domain itself serves as a platform for RNA-—protein,

DNA—protein and protein—protein interactions (1).
Although most RRM-containing proteins function in
RNA metabolism, others bind to specific chromosomal
loci (4-6), regulate transcription (7), mediate the
response to DNA damaging agents (8) or modify
chromatin (9). Polypyrimidine tract-binding protein
associated splicing factor (PSF) and 54kDa nuclear
RNA binding protein [p54(nrb)] are members of a sub-
family of RRM proteins defined by tandem RRM
domains flanked by an additional region of homology.
PSF and p54(nrb), which form a stable complex in vivo,
have previously been implicated in nuclear retention of
A-to-I edited RNA (10), nuclear retention of other
RNAs (11), preemRNA 3’-end formation (12) and
transcriptional activation mediated by the androgen,
thyroid hormone and retinoid X receptors and by the
transducers of regulated CREB activity proteins (13-16).

In addition to its functions in RNA metabolism, carly
studies showed that PSF promotes annealing of single-
stranded DNA with homologous double-stranded DNA
(17,18). Recently, PSF was shown to cooperate in vitro
with the homologous recombination (HR) protein,
Rad51, to promote homologous DNA pairing and
strand displacement (19). We have also shown that the
purified PSF+p54(nrb) complex stimulates DNA non-
homologous end joining (NHEJ) 10-fold in a reconstituted
cell-free DNA double-strand break (DSB) repair assay
(20). PSF+p54(nrb) binds the repair substrate in vitro,
internal to the ends, and cooperates functionally with
Ku to form a preligation complex (21,22). HR and
NHEJ are the two major pathways of DSB repair in
human cells, and the biochemical data suggest that PSF
or the PSF +p54(nrb) complex might be involved in both.

Prior studies of the role of PSF+p54(nrb) in the DNA
damage response have used reconstituted in vitro systems.
Here, we report the results of a direct genetic investigation
of whether p54(nrb) is involved in the DNA damage
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response in vivo in human cells. We show that attenuation
of p54(nrb) expression produces a DSB repair-deficient,
radiosensitive phenotype.

MATERIALS AND METHODS
Cells and culture conditions

HeLa cervical carcinoma cells were grown in Dulbecco’s
Minimal Essential Medium supplemented with 10% FBS,
2mM glutamine and antibiotics. IMR-90 normal diploid
human lung fibroblasts were grown in modified Eagle’s
Minimal Essential Medium supplemented with 10%
FBS, 1.5g/l sodium bicarbonate, 0.1 mM non-essential
amino acids, 1.0mM sodium pyruvate and antibiotics.
Experiments were performed at population doubling
level of 32 or lower. HCT 116 near-diploid colorectal car-
cinoma cells were grown in McCoy’s SA medium supple-
mented with 10% FBS and antibiotics.

siRNA treatment and pS4(nrb) expression detection

Human NONO mRNA (accession no. NM_007363) was
evaluated using the Ambion ‘siRNA Target Finder’ web
tool (http://www.ambion.com). We synthesized comple-
mentary 21-mer oligonucleotides containing 19
nucleotides of complementary RNA sequence flanked at
the 3’ side by two thymidylate residues (sense strand, GG
CUUGACUAUUGACCUGATT; antisense strand UCA
GGUCAAUAGUCAAGCCTT). These were annealed
and transfected into IMR-90 human diploid fibroblasts
or HeLa cervical carcinoma cells using Lipofectamine
2000 (Invitrogen, Carlsbad, CA). Control cell populations
were transfected in parallel using Silencer Negative
Control #1 siRNA (Ambion, Austin, TX). The concentra-
tion of siRNA was 30nM. Attenuation of mRNA levels
was determined by real-time reverse transcriptase PCR
using B-actin mRNA as an internal standard. Total
RNA was isolated using Trizol Reagent (Invitrogen,
Carlsbad, CA). DNase treatment was performed to
remove residual DNA before reverse transcriptase (RT)
PCR. RT-PCR was performed in 25 pl using the Qiagen
OneStep RT-PCR kit (QIAGEN, Valencia, CA.
Reactions contained 800ng of input RNA. Primers for
p54(nrb) were d(TTGTGGGAAATCTTCCTCCCGAC
A) and d(GGGTTTCCAAGCGGATAAAGCCAA);
primers for B-actin were d(AGTCCTGTGGCATCCAC
GAAACTA) and d(ACTGTGTTGGCGTACAGGTCT
TTG). Levels of p54(nrb) protein were determined by
immunofluorescence and immunoblotting using anti-p54
mouse monoclonal antibody (1:2000, Clone 3, BD
Biosciences Pharmingen, San Diego, CA) and Alexa
Fluor 488- or enzyme-conjugated secondary antibodies.
Other antibodies were: mouse anti-B—actin (1:5000,
Sigma-Aldrich, St. Louis, MO), mouse anti-Ku80
antibody (1:200, clone 111, Lab Vision Corporation,
Fremont, CA), mouse anti-Ku70 antibody (1:200, clone
N3H10, Lab Vision Corporation, Fremont, CA) and
mouse anti-XRCC4 antibody (1:250, BD Bioscience, San
Jose, CA).
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v-H2AX focus formation assay

At 36h post-transfection, cells received 0.5Gy of '*’Cs
gamma radiation at a dose rate of 1Gymin~'. They
were allowed to recover for the indicated times, fixed
with 4% paraformaldehyde, permeabilized and blocked
by incubation in PBS containing 0.5% Triton X-100,
15% goat serum, 0.2% fish skin gelatin and 0.03%
NaNj. Cells were then stained with mouse monoclonal
anti-y-H2AX antibody (1:500, clone JBW301, Millipore
Corporation, Billerica, MA) and Alexa Fluor 488-
conjugated secondary antibody and counterstained with
4’ 6-diamidino-2-phenylindole (DAPI). A minimum of
120 nuclei per experimental group were scored by a
blinded observer.

Chromosomal aberration assay

To create stable cell lines, d(TGCTGTATAACAGAACC
GTATGTACGGTTTTGGCCACTGACTGACCGTAC
ATAGTTCTGTTATA) and d(CCTGTATAACAGAAC
TATGTACGGTCAGTCAGTGGCCAAAACCGTACA
TACGGTTCTGTTATAC) were annealed and inserted
into pcDNA6.2-GW/EmGFP-miR (Invitrogen). This
vector and pcDNA6.2-GW/EmGFP-miR-neg control
plasmid were transfected into HCT 116 cells, incubated
overnight in McCoy’s SA medium without antibiotics,
and subcultured in complete McCoy’s 5SA medium supple-
mented with 18 mg/ml Blasticidin (Invitrogen). Cells were
cultured for 2 weeks with replacement of the Blasticidin-
containing medium every 3—4 days. EmGFP-expressing
colonies were captured on Whatman 3 MM filter paper
(GE Healthcare) and expanded with subculturing in
Blasticidin-containing medium. Proteins were extracted
and analyzed by immunoblotting.

HCT 116-derived stable cell lines were subcultured in
T-25 flasks and allowed to reach 60-80% confluency,
irradiated using the '*’Cs source, and incubated in fresh
medium for 18 h. Colcemid was added to 0.1 pg/ml, and
incubation was continued for 2h at 37°C. Cells were
trypsinized, collected and resuspended in 2ml of pre-
warmed 0.075M KCI. The suspension was diluted to
45ml with 0.075M KCI and incubated for 45min at
37°C. Five drops of freshly prepared fixative
MeOH:HOAC [3:1 (v:v)] were added, and cells were col-
lected by centrifugation. Supernatant was removed,
leaving 0.5ml, and 5ml of fixative was gradually added.
Cells were collected, washed twice in fixative and stored at
4°C until slides were prepared. The cell suspension was
dropped onto slides and air-dried, then stained with
Giemsa. One hundred metaphase spreads were scored by
a cytogeneticist for abnormalities, including chromosome
fragments, dicentric chromosomes and translocations.
Significance was evaluated using Fisher’s exact test.

Clonogenic survival assay

Clonogenic survival assays were performed essentially as
described (23). Cultures were trypsinized and 500-4000
cells were seeded in six-well plates, allowed to attach and
irradiated using a '*’Cs source at a dose rate of
0.85Gymin~'. Cultures were incubated at 37°C in a



6748 Nucleic Acids Research, 2009, Vol. 37, No. 20

humidified 5% CO, atmosphere for 7 days with one
change of medium. Staining was with 0.25% crystal
violet and 3.7% formaldehyde in 80% methanol.
Colonies of >50 cells were counted. Survival rates were
determined as a function of radiation dose
[S(D)] = colonies/cells plated, where D is expressed in
units of Gray (Gy). Surviving Fractions [SF = S(D)/
S(0)] were calculated, where S(0) is survival at 0Gy
(mock-irradiated). The radiation survival curves were
fitted according to the linear-quadratic model: S(D)/
S(0) = exp(aD + BD?), where o and B parameters are
determined by weighted, stratified and linear regression
(23). Differences between treatment groups were evaluated
for significance based on an F test. The mean inactivation
dose (MID, integral under survival curve from 0 to
infinity) was calculated by numeric integration using the
Gaussian-Laguerre quadrature (24). The sensitizing
enhancement ratio (SER) was defined as MID(control
miRNA)/MID[p54(nrb)RNA].

RESULTS
Attenuation of pS4(nrb) expression with siRNA

To investigate the function of the PSF +p54(nrb) complex
in vivo, we first determined the ability to attenuate expres-
sion of each subunit using siRNA. We chemically
synthesized and annealed 21-nucleotide double-strand
RNAs corresponding to the coding region of each gene
and transfected them individually into IMR-90 human
diploid fibroblast cells. Attenuation of PSF expression
was variable and incomplete (data not shown) and was
not investigated further. A previous report also described
difficulty in attenuating PSF expression in cultured cells
(12). Transfection with p54(nrb) siRNA, by contrast,
consistently reduced mRNA expression by about 75%,
as measured by real-time reverse transcriptase PCR with
B-actin mRNA as an internal standard (Figure 1A). There
was a similar reduction in p54(nrb) protein levels (Figure
1B). Transfection with p54(nrb) siRNA did not affect PSF,
Ku70, Ku80 or XRCC4 protein levels, indicating
specificity. Transfection with p54(nrb) siRNA attenuated
p54(nrb) expression in at least 80% of cells in the IMR-90
population, with no apparent affect on morphology or via-
bility (Figure 1C). Essentially identical RT-PCR and
immunoblotting results were obtained using the same
siRNAs to transfect HeLa cells (Supplementary Figure S1).

Attenuation of p5S4(nrb) expression delays DSB repair

Prior in vitro studies predict that attenuation of p54(nrb)
expression should affect DSB repair. To investigate the
phenotype associated with attenuation of p54(nrb), we
induced DSBs by exposure to ionizing radiation and mon-
itored their fate using a histone y-H2AX focus assay.
Phosphorylation of H2AX serine 139 creates the
v-isoform, producing foci that can be visualized by
immunostaining using anti-y-H2AX antibody. These foci
correspond 1:1 with unrepaired DSBs (25,26). An advan-
tage to the use of this single-cell assay for siRNA-treated
cells is that a small fraction of non-transfected cells (if
present) would not alter the modal number of foci per cell.
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Figure 1. Attenuation of p54(nrb) expression using siRNA. (A)
Attenuation of p54(nrb) mRNA in IMR-90 cells 36 h after transfection
with control or p54(nrb) siRNA. Total RNA was quantified by real
time RT-PCR using an actin internal control. Bars denote standard
error based on 3 replicate transfections. Asterisks indicate significant
differences between groups at *P <0.05 and **P < 0.01 levels based on
Student’s r-test. (B) Attenuation of p54(nrb) expression detected by
immunoblotting. Cells were transfected with siRNA as in A and
extracts were analyzed as described in ‘Materials and Methods’
section. (C) Attenuation of p54(nrb) expression detected by
immunofluorescence. Fixed cells were stained for anti-pS4(nrb) expres-
sion and counterstained with DAPI.

p54(nrb) siRNA control siRNA

Following transfection with p54(nrb) or control siRNA,
IMR-90 cells were treated with 0.5Gy of '*’Cs gamma
radiation. Figure 2A shows the appearance of typical
immunostained cells either without irradiation or with
irradiation and a 0.5h or 2h recovery period. Figure 2B
and C provide quantification based on scoring by a
blinded observer. Transfected cell populations had a back-
ground of about 3 foci/cell in the absence of irradiation.
This was the same for p54 siRNA and control siRNA.
Transfected cells had a mode of about 14foci/cell at
30min after irradiation, roughly consistent with the
expected number of DSBs at this radiation dose (27,28).
Again, there was no difference between p54 siRNA and
control sSiRNA. As the cells recovered, a marked difference
between the two populations emerged. At the 2h time
point, control cells showed significant recovery, but
p54(nrb)-attenuated cells did not. At the 4h time point,
the difference between the control and p54(nrb) groups
persisted, although it had narrowed. At the 8h time
point, only a few repair resistant foci remained, with
again no significant difference between groups. Results
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Figure 2. Delay in resolution of y-H2AX foci in IMR-90 cells treated with p54(nrb) siRNA. IMR-90 cells were irradiated with 0.5 Gy at 36 h post-
transfection, allowed to recover for indicated times, fixed and stained with anti-y-H2AX. The antibody detects phosphorylation at H2AX Ser 139, a
marker of unrepaired DNA double-strand breaks. (A) Representative nuclei treated as indicated. (B) Histogram showing number of foci in mock-
irradiated cells. (C) Histograms showing number of foci in cells that were exposed to 0.5 Gy of ionizing radiation and allowed to recover for the

indicated times at 37°C.

suggest that although attenuation of p54(nrb) has no effect
on the initial level of DNA damage, it delays DSB repair.

Attenuation of p54(nrb) expression increases the frequency
of radiation-induced chromosomal aberrations

The finding that p54(nrb) siRNA treatment delayed, but
did not abolish, DSB repair, suggests that the primary
effect is on the rapid, initial phase of DSB repair, which
is believed to be mediated by the NHEJ pathway. Prior
studies have shown that most DSBs are repaired eventu-
ally, even in severely compromised genetic backgrounds

[e.g. DNA ligase IV-null (29)]. However, this delayed
repair, which has been attributed to ‘backup’ or ‘alterna-
tive’ pathways, may be less accurate and does not assure
reproductive survival (30-33).

To investigate whether the effect on the rapid, initial
phase of DSB repair was biologically significant, it was
necessary to establish stable cell lines with reduced
p54(nrb) expression. Because IMR-90 cells have a
limited lifespan in culture, they were unsuitable for
creating stable cell lines. Instead, we used HCT 116 a,
p53-positive human colorectal cancer cell line. HCT 116
cells have a near-diploid karyotype and are suitable for
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Figure 3. Chromosomal aberration assays. (A) Near-diploid HCT 116
colorectal carcinoma cells were transfected with indicated miRNA
plasmids to create stable cell lines. Cell clones were isolated, expanded
and characterized for p54(nrb) expression by immunoblotting as
described in ‘Material and Methods’ section. Replicate immunoblots
were probed with anti-p54(nrb) and anti-GAPDH as an internal
control. (B) Metaphase spreads were prepared and analyzed from
irradiated p54(nrb)-deficient HCT 116 cell line as described in
‘Materials and Methods’ section. A representative image is shown.
(C) Summary of chromosomal aberration data. Fifty metaphases were
analyzed for each clonal cell line. The two clonal cell lines of each type
(control and p54(nrb)-deficient) gave very similar results and the data
were pooled for analysis. P-values were determined using a two-tailed
Fisher’s exact test.

both chromosomal aberration and survival assays. We
transfected cells with a vector that produces miRNA by
processing of an EmGFP-encoding mRNA. The vector
also expresses a selectable drug-resistance marker.
Multiple clonal cell lines were isolated from each
miRNA-transfected population. All were positive for
EmGFP expression, which indicates the presence of
miRNA-bearing transcripts. The cell lines expressing
p54(nrb) miRNA showed markedly reduced levels of
p54(nrb) protein, relative to cell lines expressing control
miRNA (Figure 3A).

The stably transfected cell lines were exposed to 2 Gy
of ionizing radiation, allowed to recover, and arrested
at the first metaphase following irradiation. Figure 3B
shows a typical chromosome spread for irradiated,
p54(nrb) siRNA-transfected cells, and Figure 3C shows
a quantification of chromosomal abnormalities in each

treatment group. In non-irradiated cells, there was no
significant difference in the frequency of abnormal
metaphases between p54(nrb) and control miRNA-
transfected lines (P = 0.43). By contrast, in the 2Gy-
irradiated populations, p54(nrb) miRNA-expressing cells
had a significantly increased frequency of abnormal
metaphases (P = 0.014). The most common abnormalities
were acentric chromosomal fragments, suggesting the
presence of a subset of breaks that are not repaired
prior to chromosome replication. Double minute
chromosomes were the next most common aberration,
with chromatid-type breaks, deletions, translocations
and a dicentric chromosome present in a few instances
(Supplementary Table S1).

Attenuation of p54(nrb) decreases clonogenic survival
following irradiation

To measure radiation sensitivity, we performed clonogenic
survival assays in stable miRNA-expressing HCT 116 cell
lines as described in ‘Materials and Methods’ section.
Colony size was appreciably smaller for p54(nrb)
miRNA-expressing cells (Figure 4A), and the plating effi-
ciency in the absence of radiation was lower (16.3% versus
45%). The reduced colony size indicates slower growth of
the clones under the conditions used. Slower growth and
the lower plating efficiency cannot be attributed to changes
in DSB repair, because they were seen even in the absence
of exposure to ionizing radiation. There must be some
other cause, such as a defect in RNA synthesis, consistent
with previous reports that pS4(nrb) is involved in various
aspects of RNA biogenesis (see ‘Introduction’ section).

The radiation survival data are quantified in Figure 3B.
The survival curve for the control-transfected population
is typical for mammalian cells, with a ‘shoulder’ in the
0-2Gy region, reflecting repair of radiation-induced
DNA damage. The data can be fitted almost exactly
with a linear-quadratic model. By contrast, the p54(nrb)
miRNA-transfected population shows a nearly log-linear
response, with no evident shoulder. The difference
between the two «cell clones is highly significant
(P <0.001). Similar results were obtained with the other
stable cell lines (data not shown). The effectiveness of a
radiosensitizing treatment can be quantified based on the
horizontal shift in the survival curve at an arbitrarily
chosen level of survival (dose enhancement ratio), or
more robustly, by taking the ratio of the integrals under
the survival curves from zero to infinity (sensitization
enhancement ratio) (24). The inset shows the survival
data replotted to illustrate these integrals; the sensitization
enhancement ratio thus determined is 1.27, indicative of a
moderately strong effect.

We have also investigated the effect of pS54(nrb) on
clonogenic survival independently in siRNA-transfected
IMR90 human diploid fibroblasts (Supplementary
Figure 2S). There was an approximately 1.5-fold, statisti-
cally significant, decrease in survival at all radiation doses
tested. In this experiment, the plating efficiencies were low,
the shapes of the survival curves were atypical, and we
were not able to fit the curves with a quantitative model.
We believe that there was an interaction between toxicity
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Figure 4. Clonogenic survival assay. (A) Clonogenic survival assays
were performed as described in ‘Materials and Methods’ section.
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survival assays using clone number 2 for p54(nrb)-miRNA transfected
cells. Assays were performed in triplicate with standard errors shown.
Plating efficiency was 45% for non-irradiated control cells and 16.3%
for non-irradiated p54(nrb) knockdown cells. Ratio of surviving
fraction at 2Gy was 1.97. Inset shows fitted linear-quadratic curves
plotted using a linear axis. Mean inhibitory doses were determined
based on integrals under the curves from 0 to co. MID for control
cells was 2.35Gy and for p54(nrb) cells was 2.98 Gy and the sensitiza-
tion ratio was thus 1.27. Statistical analysis was performed as described
in Materials and Methods section. Radiobiological parameters were
as follows: control, o = —0.314 (95% CI from —0.218 to —0.410),
B =—0.054 (95% CI from —0.028 to —0.080), R*> = 0.996; p54(nrb)
o= —0.790 (95% CI from —0.652 to —0.928), B =0.015 (95% CI
from 0.057 to —0.027), R*>=0.992. The null hypothesis that the
survival data for the two different stable cell lines can best be described
by the same fitted curve was rejected based on an F-test (P <0.001).

of the transient transfection procedure and the stress of
the clonogenic survival assay that limited the ability to
perform a quantitative analysis. Despite this, results
were qualitatively consistent with those obtained using
the HCT 116 stable cell lines.

DISCUSSION

We have investigated the effect of p54(nrb) deficiency on
repair and survival following induction of DNA double
strand breaks. DSBs, which are produced by ionizing radi-
ation and certain recombination enzymes, are more diffi-
cult to repair, more cytotoxic and more destabilizing to
the genome than most other DNA damage (34). Three
lines of evidence indicate that attenuation of p54(nrb)
expression causes a deficiency in DSB repair in vivo:
delay in resolution of y-H2AX foci, an increase in chro-
mosomal aberrations at the first metaphase following radi-
ation exposure, and a decrease in clonogenic survival.
These repair and survival phenotypes were seen in two
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different cell types and with two different approaches for
gene silencing (siRNA and miRNA directed against
distinct sequence regions). The genetic studies presented
here complement previous findings that PSF<p54(nrb)
stimulates DNA end joining in a reconstituted biochemi-
cal system (20,21). Taken together, the evidence strongly
supports the involvement of p54(nrb) in the DNA damage
and repair response. The available genetic tools have not,
so far, allowed us to draw conclusions whether PSF is
required for DNA damage and repair in intact cells.

To our knowledge, there are as yet no reports of germ-
line p54(nrb) deficiency in humans or other mammalian
species. There has been a report of a translocation of PSF
and p54(nrb) to the TFE3 helix-loop-helix transcription
factor gene in human papillary renal cell carcinoma lines
(35). A hybrid transcript is expressed, but its role in
oncogenic transformation has not been established.
There have also been reports describing two different
gene trap alleles affecting the gene encoding TLS/FUS, a
different tandem RRM protein. In one case, deficiency
resulted in male sterility, modest radiosensitivity in
fibroblasts, and severe radiosensitivity in whole mice
(36). In the other, deficiency resulted in defective B-cell
development, spontaneous chromosomal instability and
perinatal death (37). These reports support a more
general hypothesis that multifunctional RRM proteins
affect both gene regulation and genome maintenance.

The phenotypic characterization of p54(nrb) knock-
down in human cells, presented here, does not provide
direct insight into how this protein influences DSB
repair. However, earlier studies showed that
PSF+p54(nrb) binds DNA directly via DNA binding
domain that overlaps the N-terminal region and RRM1
of the PSF subunit (38,39). In our previous studies,
PSF+p54(nrb) and Ku bound lincar DNA fragments
independently, but cooperated to form a functional
preligation complex (20). We suggest the same mechanism
may apply in vivo. This is consistent with recent
observations in our laboratory that PSF and p54(nrb)
rapidly relocalize to sites of laser microbeam-induced
DNA damage (Ha K. et al., manuscript in preparation).
It will be of interest to further investigate the repair defects
in p54-deficient cells, including whether both NHEJ and
HR are affected and whether the cells are sensitized to
DNA damaging agents other than ionizing radiation.

Another potential effect of p54(nrb) knockdown, which
is not mutually exclusive, is an effect on the synthesis and
processing of mRNAs for other repair proteins. Many
studies have shown that p54(nrb) affects synthesis and
processing of specific mRNAs, although to our knowledge
there is no direct evidence for an effect on levels of
mRNAs for DNA damage response genes. Indeed, we
show here that siRNA transfection does not change the
levels of the known DSB repair proteins, Ku70, Ku80 and
XRCC4, all of which participate in the rapid early phase
of DSB repair that is affected by p54(nrb) deficiency.

Our clonogenic survival assay showed that attenuation
of p54(nrb) expression largely eliminated the shoulder in
the radiation survival curve. This has potential clinical
significance, in that the shoulder region corresponds to
the dose range used for single clinical radiation fractions
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(~2 Gy). Inhibition of p54(nrb) in tumor cells would be
predicted to significantly increase therapeutic gain in
radiotherapy. In this respect, it is of interest that a
small, natural, virally encoded RNA has been shown to
inhibit the binding of the PSF<p54(nrb) to DNA (39).
Although this prior study dealt with promoter binding
activity, not with DNA repair effects, the finding that
there is cross-talk between DNA and RNA-binding sites
in the PSFe<p54(nrb) complex suggests a possible
approach for the development of radiosensitizers based
on RNAs or RNA analogs.

A potential concern regarding the survival data is that,
although the difference between wild-type and knockdown
cells is highly significant (P < 0.001), the magnitude of this
difference is relatively modest. It may be that the residual
activity in knockdown cells provides sufficient repair
function to explain the observed levels of survival.
Alternatively, other proteins may compensate for the
absence of p54(nrb). Human cells encode a closely
related protein, PSPla. It could be that PSPla partially
compensates for p54(nrb) function in deficient cells, a
possibility that has not yet been tested.

In addition to the role in DSB repair defined in the
present study, PSF and p54(nrb) participate, separately
or together, in diverse aspects of RNA biogenesis.
Although more than 25 published studies address these
functions, there is no consensus on their exact role: PSF
or p54(nrb) have been implicated in regulation of
transcriptional initiation, 3’-end formation, splicing and
nuclear-cytoplasmic transport. This apparent complexity
may reflect interaction of PSF and p54(nrb) with diverse
partner proteins. Androgen receptor (14,15,40), thyroid
hormone receptor (13), retinoid X receptor (13), TORC
protein (16) and RNA polymerase II (41) interactions
contribute to effects of PSF+p54(nrb) on RNA synthesis
initiation. XRN2 interaction contributes to effects on
3’-end formation (12). U5 and snRNP interactions con-
tribute to effects on splicing (42-44), and matrin 3 (10) and
PSP1 (11) interactions contribute to effects on nuclear-
cytoplasmic transport.

These observations raise the question whether there are
also specific partners involved in PSFe<p54(nrb) repair
function. Topoisomerase [ interacts directly with
PSF +p54(nrb) in vivo and in vitro (45,46) and has itself
been shown to migrate to sites of laser-induced DNA
damage (47). A more speculative candidate is PARP-1,
which senses single-strand breaks and, under some
conditions, DSBs. Like PSFe<p54(nrb), PARP-1 is
transiently recruited to sites of laser-induced DNA
damage, suggesting a common mechanism (48). Further
studies will be required to investigate these possibilities.
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