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ABSTRACT
Texture strongly influences the soil’s fundamental functions in forest ecosystems. In
response to the growing demand for information on soil properties for environmental
modeling,more andmore studies have been conducted over the past decade to assess the
spatial variability of soil properties on a regional to global scale. These investigations
rely on the acquisition and compilation of numerous soil field records and on the
development of statistical methods and technology. Here, we used random forest
machine learning algorithms to model and map particle size composition in ecoforest
polygons for the entire area of managed forests in the province of Quebec, Canada.
We compiled archived laboratory analyses of 29,570 mineral soil samples (17,901
sites) and a set of 33 covariates, including 22 variables related to climate, five related
to soil characteristics, three to spatial position or spatial context, two to relief and
topography, and one to vegetation. After five repeats of 5-fold cross-validation, results
show that models that include two functionally independent values regarding particle
size composition explain 60%, 34%, and 78% of the variance in sand, silt and clay
fractions, respectively, withmean absolute errors ranging from4.0% for the clay fraction
to 9.5% for the sand fraction. The most important model variables are those observed
in the field and those interpreted from aerial photography regarding soil characteristics,
followed by those regarding elevation and climate. Our results compare favorably
with those of previous soil texture mapping studies for the same territory, in which
particle size composition wasmodeledmainly from rasterized climatic and topographic
covariates. The map we provide should meet the needs of provincial forest managers,
as it is compatible with the ecoforest map that constitutes the basis of information for
forest management in Quebec, Canada.

Subjects Soil Science, Data Mining and Machine Learning, Forestry, Spatial and Geographic
Information Science
Keywords Machine learning, Soil mapping, Soil texture, Random forest, Photo interpretation,
Spatial data, Geostatistics, Soil samples, Forest inventory, Soil particle size

INTRODUCTION
Texture strongly influences the soil’s fundamental functions in forest ecosystems. In
particular, the relative content of particles within specific size ranges affects soil mineral
weathering rates (Kolka, Grigal & Nater, 1996), ion exchange and buffering capacity
(Wiklander, 1975), as well as sequestration of nitrogen and carbon (Silver et al., 2000; Telles
et al., 2003; Callesen et al., 2007). All these processes influence nutrient pools and cycling in
forest ecosystems. Soil texture also affects soil water holding capacity, water uptake by plants
and the overall hydrological cycle (Kern, 1995; Hultine et al., 2006; Saxton & Rawls, 2006),

How to cite this article Duchesne L, Ouimet R. 2021. Digital mapping of soil texture in ecoforest polygons in Quebec, Canada. PeerJ
9:e11685 http://doi.org/10.7717/peerj.11685

https://peerj.com
mailto:louis.duchesne@mffp.gouv.qc.ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11685
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.11685


as well as the physical stability and supporting functions of soils (Coutts, 1983; Ruel, 1995;
Schenk & Jackson, 2005). The importance of soil texture for the functioning of terrestrial
and forest ecosystems is highlighted by the fact that it is a key part of various types of
models that describe tree growth (Gustafson et al., 2017; D’Orangeville et al., 2018), species
distribution (Williams et al., 1996; Itoh et al., 2003), forest disturbances (Schulte et al., 2005;
Pourghasemi, 2016), biogeochemistry (Sverdrup & Warfvinge, 1993; Webb, Rosenzweig &
Levine, 1993), hydrology (Yin & Arp, 1993), and land surface (Verseghy, 2007), among
others.

In response to the growing demand for information on soil properties for environmental
modeling, more and more studies have been conducted over the past decade to assess the
spatial variability of soil properties on a regional to global scale (e.g., Grimm et al., 2008;
Hong et al., 2013; Liao et al., 2013; Mansuy et al., 2014; Forkuor et al., 2017; Hengl et al.,
2017). These investigations rely on the acquisition and compilation of numerous soil field
records and on the development of statistical methods and technology that allow users to
compute consistent and reliable spatial predictions of soil properties at various spatial scales
(McBratney, Mendonça Santos & Minasny, 2003; Sanchez et al., 2009; Arrouays et al., 2014;
Minasny & McBratney, 2016; Malone, Minasny & McBratney, 2017; Hengl & MacMillan,
2019).

The most advanced soil mapping methods involve producing predictions using optimal
statistical models that define statistical relationships between observed soil properties and
a set of rasterized environmental covariates that are relevant to explain the distribution
of soil properties in the entire area to be mapped (Malone, Minasny & McBratney, 2017;
Hengl & MacMillan, 2019). These covariates generally include information related to
climate, vegetation, relief and topography, parent material, geological age, spatial or
geographic position, and human or anthropogenic influences (McBratney, Mendonça
Santos & Minasny, 2003; Hengl & MacMillan, 2019). Some of these covariates are typically
derived from remote sensing data and digital elevation models, while machine learning
algorithms are increasingly used for statistical modeling (Khaledian & Miller, 2020;
Wadoux, Minasny & McBratney, 2020). For example, such an approach has been used
to predict various soil properties at a spatial resolution of 250 m on a global scale (Hengl
et al., 2017), for Africa (Hengl et al., 2015), for Argentina (Heuvelink et al., 2020) and for
the managed forests of Canada (Mansuy et al., 2014), and at a 5 m resolution in a 580 km2

agricultural watershed in southwestern Burkina Faso (Forkuor et al., 2017).
Despite their well-demonstrated usefulness for predicting and mapping soil attributes

(Viscarra Rossel et al., 2016), remote sensing data also have certain technical limitations
(Barnes & Baker, 2000; Bartholomeus, Epema & Schaepman, 2007; Cécillon et al., 2009;
Mulder et al., 2011; Hengl et al., 2017):
1. The covariates derived using remote sensing do not always cover the entire area to be

mapped, so missing pixels must be filled using space-filling algorithms.
2. Vegetation, cloud cover, and other adverse weather conditionsmay hamper the accurate

estimation of soil attributes from remote sensing data.
3. All covariates should be rasterized and scaled up or down to the desired resolution for

predictions. This process may result in a loss of information in the scaled database.
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4. The spectral signature of water surface and anthropogenic infrastructure such as urban
areas, roads, buildings, power plants, airports, landfills, mining waste, etc., are not
relevant to the mapping of soil properties. Therefore, these areas must be properly
masked.

5. Because they only capture the properties of the earth’s surface, spectral signatures may
be of little interest to map soils that present high vertical variability.

6. Temporal and spatial variation of soil properties such as soil moisture can reduce the
accuracy of spectra-based models.

7. In forested areas, the effectiveness of using the forest cover’s spectral signature as
an indicator of soil properties depends on indirect relationships between soils and
vegetation. However, tree phenology, natural and anthropogenic disturbances, and
forest dynamics induce spatial and temporal (seasonal to decadal) variations in forest
cover. Therefore, they add noise to these relations. Forests are much more dynamic
than soils, and short-term changes in forest cover do not necessarily translate into
changes in soil properties. This is especially true for the boreal forest, where fire, insect
infestations and logging are the main drivers of forest dynamics (Duchesne & Ouimet,
2008; Girard, Payette & Gagnon, 2008; Danneyrolles et al., 2019).
An alternative method to deriving environmental covariates from remote sensing data

is to use field soil information in combination with a traditional (conventional) soil map
(Hong et al., 2013; Hengl & MacMillan, 2019). Traditional soil (or ecoforest) maps are
typically generated by manually delineating, interpreting, and classifying the shape and
color of the surface and vegetation from stereoscopic multispectral aerial photographs
in order to form map units with similar characteristics (Soil Science Division Staff, 2017).
Soil characteristics are assumed to be relatively homogeneous within polygon boundaries.
When available, expert interpretation of the land surface can serve to precisely define soil
covariates over various areas of the landscape (Arrouays et al., 2014; Hengl & MacMillan,
2019). Field soil characterization and traditional soil maps are therefore one of the best
sources of soil mapping information (Wiklander, 1975; Arrouays et al., 2014; Hengl &
MacMillan, 2019).

In the province of Quebec, Canada, the ecoforest polygon map constitutes the basis
of information for forest management (MFFP, 2020a). Over the past 50 years, the entire
territory was analyzed every decade or so from black and white or infrared photographs
(scale: ∼ 1:15,000). Polygons with common characteristics regarding forest attributes
(composition, density, age, height), soil parent material, soil drainage, land slope, historical
disturbances and ecological type have been delineated and characterized. Water bodies,
farmland, unproductive land, roads and other non-forested areas are also delineated. The
minimum area for the delimitation varies from 1 to 8 ha, depending on the delimited
entity. Photo-interpretation follows standard protocols and is verified using a network of
checkpoints that photo-interpreters visit to validate information. The information obtained
is then rescaled. Full coverage (approximately up to the 52nd parallel) is publicly available
in the form of 1:20,000 ecoforest maps (MFFP, 2020b).

To describe the existing forest resources in detail, the forest attributes of each polygon
are also estimated from information compiled from forest inventory programs which are
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also run approximately every decade. As part of these surveys, several thousand soil samples
have been collected and analyzed over the years to determine their texture. However, these
laboratory analyses remain underutilized and, more importantly, they have never served to
estimate the spatial variability of soil texture at the scale of ecoforest polygons. Using these
precious data, the present analysis aims to map the texture of mineral soil at the scale of the
ecoforest polygons in Quebec, Canada. This will allow a more accurate characterization of
the spatial variability (2D) of soil texture which is currently roughly classified (fine, medium
or coarse texture) based on photo-interpretation of soil characteristics for each ecoforest
polygon.We hypothesised that soil particle size composition can bemodelled and predicted
from a set of environmental covariates, and that the most important model variables would
be those observed in the field and those interpreted from aerial photography regarding soil
characteristics.

MATERIAL AND METHODS
Study area
The study area corresponds to the forest area below the current northern limit of the
managed forest in the province of Quebec, Canada. It extends up to approximately lat. 52◦N
and covers approximately 583,000 km2, of which 434,667 km2 are classified as productive
forests. The normal mean annual temperature (1971–2000) varies approximately from
−2.6 ◦C to 7.4 ◦C, and annual precipitation ranges from 770 mm to 1,600 mm (Duchesne
et al., 2016). This territory comprises 3 different forest subzoneswhich aremainly associated
with variations in the mean annual temperature along the latitudinal gradient (Fig. 1).
They are, from south to north: the hardwood forest, the mixed forest, and the continuous
boreal forest (MRN, 2013). Based on available knowledge of the physiographic regions of
Eastern Canada, 5 soil provinces also characterize the study area (Lamontagne & Nolin,
1997): the St. Lawrence Lowlands, the Appalachians, the Laurentians, the Abitibi and James
Bay Lowlands, and the Mistassini Highlands (Fig. 1). They can be distinguished according
to parent material, topography, and climate (Lamontagne & Nolin, 1997).

Soil sampling and analysis
We used soil texture data from 29,570 mineral soil samples (17,901 sites) spread across
the entire study area (Fig. 2). The data come from 3 different provincial forest inventory
programs. The first program consists of more than 12,300 permanent sampling plots
(PSPs, which are 400 m2 circular plots) gradually set up and inventoried by provincial
forestry authorities since 1970 (MFFP, 2016). The PSPs are divided into 5 networks, each
with specific objectives (MFFP, 2014). The basic network was installed first; it contains the
largest number of plots (∼60% of the current total). The PSPs of this basic network are
distributed randomly over the entire territory, with a sampling intensity of 1 plot per 26
km2 in the hardwood forest, 1 plot per 103 km2 in the mixed forest, and 1 plot per 259
km2 in the continuous boreal forest subzone. From 1989 to 1994, this basic network was
supplemented by additional PSPs (∼25%) to increase the precision of forest growthmodels.
The remaining PSPs (∼15%) are part of 3 networks deployed respectively to monitor the
spread of insects and diseases, to obtain information on private forests and to document
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Figure 1 Forest subzones and soil provinces in Quebec, Canada.Maps were produced with QGIS
software, version 3.4 (QGIS, 2020). Basemap credit: c©2021 TerraMetrics, c©2021 Google, Esri, HERE,
Garmin, c©OpenStreetMap contributors, and the GIS User Community.

Full-size DOI: 10.7717/peerj.11685/fig-1

the effect of silvicultural treatments. Among the many variables recorded in PSPs, the first
diagnostic B (thickness >10 cm) and C soil horizons (Soil Classification Working Group,
1998) were sampled for soil texture analysis 1 to 3 m outside the circular plot, after digging
with a shovel and carefully observing the soil profile to select the desired horizons (MFFP,
2016). The relatively thin A horizon, generally characterized by the accumulation of organic
matter or the by the eluviation of clay, soil organic matter, iron, or aluminum (Ae), was not
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Figure 2 Spatial distribution of mineral soil texture analysis ( n = 29,570) from 3 provincial for-
est inventory programs in Quebec, Canada. PSP: permanent sampling plots; EOP: ecological observa-
tion plots; SIP: site index plots. The map was produced with QGIS software, version 3.4 (QGIS, 2020).
Basemap credit: c©2021 TerraMetrics, c©2021 Google, Esri, HERE, Garmin, c©OpenStreetMap contribu-
tors, and the GIS User Community.

Full-size DOI: 10.7717/peerj.11685/fig-2

sampled. A total of 19,255 soil texture analyses from 10,010 sites across Quebec’s managed
forests come from the PSP forest inventory program.

The second program is a major ecological inventory program that was carried out in
Quebec’s forests at the end of the last century (MRN, 1994). A total of 28,425 ecological
observation plots (EOPs, which are 400 m2 circular plots) were established from 1986
to 2000 to characterize the type of forest cover (composition, structure), understory
vegetation (indicator plants) and soil characteristics (e.g., geologic deposit, drainage).
Sampling intensity varies depending on the complexity of the terrain and vegetation, with
approximately 1 plot per 15 km2 in the hardwood forest, 1 plot per 20 km2 in the mixed
forest, and 1 plot per 25 km2 in the continuous boreal forest. The EOPs are distributed
along transects that are positioned to cover the types of landform present in each ecological
district and to probe specific features. The soil profile was completely characterized and the
first diagnostic B and C sol horizons were sampled at a single point located within or near
selected plots, with a frequency determined by the regional soil diversity (approximately
one third of the EOPs;MRN, 1994). If the C horizon was absent or unreachable, the sample
was taken as deep as possible in the soil profile. If the B horizon was absent or less than 10
cm thick, only the C horizon was sampled (MRN, 1994). This inventory program provides
soil texture analyses for a total of 9,476 soil horizons (3,765 for horizon B and 5,711 for
horizon C) from 7,085 sites across the managed forests of Quebec.

The third set of soil samples comes from the SIP program, a network set up to acquire
data on forest productivity of the main ecological types encountered in the province of
Quebec. It relies on tree disk sampling and stem analyses for site index determination
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(MRNF, 2008). At least 5 geographically well-distributed site index plots (SIP, circular
400 m2plots) were established in each of the 4 to 5 major ecological types found in each
ecological region. Among the many records measured in each SIP, the first diagnostic B
soil horizon (or C horizon if B is not present) was sampled for soil texture determination
at a single point within or near the selected plots (MRNF, 2008). The SIP program provides
soil texture data for 839 B horizons from 806 sites. For some unknown reason, 33 sites
have 2 samples in the database. The fact that soil texture analyses of these duplicates are
coherent for a given site suggests that these sites were sampled twice. Such duplicates in
the dataset can also be the result of errors such as wrong attribution of soil samples to
sampling locations or data entry errors. In any event, we chose not to arbitrarily discard
these observations from the analyses.

In the laboratory, soil samples were air dried, crushed, and sieved through a two mm
mesh sieve to exclude rock fragments. Particle size composition (sand [2-−0.05mm], silt
[0.05–0.002 mm] and clay [<0.002 mm] fractions) was analyzed using the Bouyoucos
hydrometer method (Bouyoucos, 1962). Samples were analyzed by external accredited
laboratories before 2001, then by the organic and inorganic chemistry laboratory of the
Direction de la recherche forestière.

Covariates
We compiled a set of 33 covariates including 22 variables related to climate, 5 related to
soil characteristics, 3 to spatial position or spatial context, 2 to relief and topography, and
1 to vegetation (Table 1). To build the model, we selected covariates that had all been
measured or observed in sampling plots of the 3 forest inventory programs along with
climate data that were estimable for these plots according to their geographic location (see
below). For mapping purposes, these covariates also had to have been characterized by
photo-interpreters (or estimated for climate data) for all ecoforest map polygons for which
we wanted to predict soil texture.

Climatic data include average annual values (1981–2010) of 22 variables. These
covariates were simulated using the stochastic weather generator of the BioSIM software
(Régnière et al., 2017). This model provides forecasts based on regional air temperature and
precipitation, interpolated from nearby weather stations and adjusted for differences in
elevation and location with regional gradients. Climate data were first estimated for each
tile of a 0.5′′ (∼1 km) resolution raster map, then extracted at the locations of sampling
plots and ecoforest polygon centroids. For this, we used the raster package, version 3.0–12
(Hijmans, 2020) in version 3.5.1 of the R software environment (R Core Team, 2019).

The soil was characterized using the diagnosed soil horizon (B or C), soil physical
environment classes, drainage classes, as well as the origin and depth of soil parent material.
We included soil horizon (B or C) as a predictor variable because depth is unknown for
PSPs and SIPs samples. In addition, having only 2 sampled depths does not allow the
modelling of vertical variability with spline or parametric depth functions (Ma et al.,
2021). We hypothesized that soil texture does not exhibit much variability between the B
and C horizons at a given site, compared to inter-site variability, and focussed primarily on
assessing the spatial variability of soil texture. The soil physical environment classes used in
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Table 1 List of environmental covariates used for soil texture modelling.

Category Covariates

Climate, annual averages (1981–2010)
1 Mean daily minimum temperature (◦C).
2 Mean daily maximum temperature (◦C).
3 Mean daily mean temperature (◦C).
4 Mean daily mean temperature during growing season1 (◦C).
5 Mean daily mean temperature in July (◦C).
6 Total number of days without frost (days).
7 Longest period of consecutive days without frost (days).
8 Growing season lengt h1 (days).
9 Growing degree-day summation over 5 ◦C (◦C).
10 Last frost day at spring (Julian day).
11 First frost day at falls (Julian day).
12 Aridity (mm)2.
13 Total precipitation (mm).
14 Total precipitation in June, July and August (mm).
15 Total precipitation during growing season1 (mm).
16 Total vapor pressure deficit (hPa).
17 Total vapor pressure deficit in June, July and August (mm).
18 Total Thornthwaite potential evapotranspiration (PET,

mm).
19 Snowfall proportion (%).
20 Total snowfall (mm of water).
21 Total radiation (MJ/m2).
22 Total radiation during growing season1(MJ/m2).

Soil characteristics
1 Soil horizon (diagnostic B or C).
2 Soil parent material: glacial without particular morphology

(1A); glacial characterized by its morphology (1B);
juxtaglacial (2A); proglacial (2B); fluvial (3); lacustrine
(4); marine and littoral (5-6); thick organic (7E); thin
organic (7T), slope and in situ weathered (8); eolian (9);
bedrock (R, ≥ 50% of exposed bedrock).

3 Thickness of the soil parent material: thick (1: > 1 m);
medium (2: ≥ 50 cm to 1 m); thin (3: ≥ 25 cm to 50 cm);
very thin (4: < 25cm); thin to very thin (5: < 50 cm, ≥ 25%
to < 50% of exposed bedrock); very thin or absent (6:
≥ 50% of exposed bedrock).

4 Soil drainage: excessively drained (0); somewhat excessively
drained (1); well drained (2); moderately well drained (3);
somewhat poorly drained (4); poorly drained (5); very
poorly drained (6); complex (16).

(continued on next page)
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Table 1 (continued)

Category Covariates

5 Soil physical environment: based on a combination of
synthetic soil texture (fine, medium, coarse) and synthetic
soil moisture regime (subhydric, hydric, mesic, xeric)
classes: Very thin (< 25 cm) mineral deposit, variously
textured, xeric to hydric moisture regime or thin to thick
mineral deposit, xeric to hydric moisture regime, very
stony without matrix (0); Thin to thick mineral deposit,
coarse texture, xeric or mesic moisture regime (1); Thin
to thick mineral deposit, medium texture, mesic moisture
regime (2); Thin to thick mineral deposit, fine texture,
mesic moisture regime (3); Thin to thick mineral deposit,
coarse texture, subhydric moisture regime (4); Thin to
thick mineral deposit, medium texture, subhydric moisture
regime (5); Thin to thick mineral deposit, fine texture,
subhydric moisture regime (6); Thin to thick mineral
deposit, hydric moisture regime, umbrotrophic (7); Thin to
thick organic or mineral deposit, hydric moisture regime,
minerotrophic (8); Thin to thick organic deposit, hydric
moisture regime, umbrotrophic (9). (Organic soils were
excluded from the modelling).

Spatial context
1 Bioclimatic domains (n= 7).
2 Bioclimatic subdomains (n= 12).
3 Ecological regions (n= 46).

Relief and topography
1 Altitude (m).
2 Slope: 0% to 3% (A); 4% to 8% (B); 9% to 15% (C); 16% to

30% (D); 31% to 40% (E); ≥41% (F); summit (S).

Vegetation
1 Forest cover: deciduous (relative basal area of coniferous

species < 25%); mixed (relative basal area of coniferous
species between 25% and 74%); coniferous (relative basal
area of coniferous species >75%); Non-forested (cover
density <25%).

Notes.
1Growing season length is defined as the period (number of days) between the last 3 consecutive days with frost (daily mini-
mum temperature <0 ◦C) in the spring and the first 3 consecutive days with frost in the fall.

2Aridity is the accumulation of monthly water deficit (difference between monthly Thornthwaite potential evapotranspiration
and monthly precipitation, zero if negative).

Quebec combine information from synthetic soil moisture regime and synthetic soil texture
classes (Table 1; MFFP, 2016; MFFP, 2020a). We also characterized relief and topography
using altitude and slope classes, and characterized forest cover using a simple 4-class system
(deciduous, mixed, conifers, or regeneration). Finally, we captured variability associated
with spatial position and context according to the bioclimatic domains, bioclimatic
subdomains and ecological regions of the Ecological Land Classification Hierarchy (MRN,
2013; MFFP, 2020c). These spatial entities respectively divide the studied area into 7, 12
and 46 ecological units that represent various combinations of physical environments,
climatic regimes, soil provinces, and vegetation. Therefore, these covariates potentially
capture some of the spatial variability associated with these environmental characteristics.
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We included these variables, which reflect the spatial context, to account for the influence
of environmental parameters that may have a local or regional influence on soil texture
and would not be accounted for by the other covariates (e.g., geologic materials and land
surface age since glacial retreat).

Statistical analysis and mapping
To ensure consistency between the predictions of sand, silt and clay fractions at each
coordinate (which should total 100%), we first computed the isometric log ratio (ILR)
to transform soil texture fractions with the compositions R package, version 1.40–4 (Van
den Boogaart, 2020), and used the 2 functionally independent values (V1 and V2) for
subsequent statistical modeling.

Sampling plot data and polygons of the ecoforestmapwere filtered to exclude agricultural
and unproductive forest lands, organic soils (fen, bog), anthropogenic infrastructure, and
water surfaces. Therefore, this study considers only productive forest land (defined as
having the potential to produce more than 30 m3 of timber per hectare in 120 years or less)
characterized by mineral soils.

We created dummy variables by converting all categorical variables to as many binary
variables as there are categories, using the caret R package, version 6.0-85 (Kuhn, 2020). We
then used tree-based random forest machine learning algorithms (method ranger from the
caret package) to predict the V1 and V2 orthogonal components of soil texture considering
all covariates in the analysis (133 covariates, including the converted dummy variables).
To fine-tune the models, we also used the caret package to identify optimal values of the
model tuning parameters based on the cross-validation performance. We used 5 repeats of
5-fold cross-validation, and tested a large range of tuning parameter values. The average
root-mean-square error was used to select the optimal model using the smallest value. We
also tested other machine learning algorithms, including gradient boosting, cubist, and
k-nearest neighbors, but with our dataset, the random forest algorithm performed much
better than these alternatives.

We evaluated the selected models by plotting observed vs. predicted values and
comparing slope and intercept regression parameters against the 1:1 line (Piñeiro et
al., 2008). We also computed the determination coefficient (R2), mean absolute error
(MAE) and mean bias error (MBE) statistics using the postResample function of the
caret package in the R programming environment (Willmott & Matsuura, 2005; Kuhn,
2020). This function calculates R2 by squaring the correlation between the observed and
predicted values. We performed this evaluation on the V1 and V2 orthogonal components
of soil texture and on the corresponding compositions (sand, silt and clay fractions)
back-transformed from the modeled ILR-transformed values. Finally, we assessed the
remaining spatial dependence structure of the model residuals by computing variograms
of the cross-validation residuals using the gstat R package, version 2.0-4 (Pebesma, 2004;
Gräler, Pebesma & Heuvelink, 2016).

After this parameterization, we used the models to predict the V1 and V2 orthogonal
components of soil texture and the back-transformed particle size composition (sand,
silt and clay fractions) for each ecoforest polygon of the provincial forest map. We also

Duchesne and Ouimet (2021), PeerJ, DOI 10.7717/peerj.11685 10/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.11685


estimated the 95% prediction intervals for V1 and V2 using the quantile regression
approach (Q.975–Q.025, Meinshausen, 2006; Vaysse & Lagacherie, 2017) using the ranger R
package, version 0.12.1 (Wright & Ziegler, 2017). In order to reduce computing time, we
produced provincial maps in the SIFORT mapping system to translate the conventional
ecoforest polygon map (vector or object-oriented images) into a grid of tiles (mixed
vector and raster images) separated by 15

′′

(∼375 m) (Pelletier, Dumont & Bédard, 2007).
Each tile’s attributes correspond to the information for the polygon at the center of the
tile on the conventional ecoforest map. This systematic sampling of the conventional
ecoforest polygon map (∼7.7 million polygons) results in a relatively high definition raster
map of Quebec’s forests (∼4.1 million tiles). In addition, to illustrate the variability of
forecasts at finer spatial scales, we produced polygon maps at a chosen location using
version 3.4 of QGIS software (QGIS, 2020). Particle size composition (sand, silt and clay
fractions) was presented on a ternary color scale where the hexadecimal RGB codes from
ternary compositions were computed with the tricolore R package, version 1.2.2 (Schöley
& Kashnitsky, 2020). We used the dplyr R package, version 0.8.3 (Wickham et al., 2019) for
data manipulation as well as the ggplot2 R package, version 3.3.0 (Wickham, 2016) and the
cowplot R package, version 1.0.0 (Wilke, 2019) for graphic production.

RESULTS
Model performance
The observed vs. predicted values of the V1 and V2 orthogonal components of soil texture
and the corresponding particle size composition (sand, silt, and clay fractions) are presented
in Figs. 3 and 4, respectively. The models explain 46% and 57% of the variance (R2) for
both orthogonal components, with mean absolute errors of 0.39 and 0.41 and mean bias
errors of ±0.001 (Fig. 3). For both models, slope and intercept parameters of the linear
regression between observed and predicted values are very close to the 1:1 line. After back
transformation, these models explain 60%, 34%, and 78% of the variance in sand, silt
and clay fractions, respectively, with mean absolute errors ranging from 4.0% for the clay
fraction to 9.5% for the sand fraction, and mean bias errors ranging from −1.0% to 1.2%
(Fig. 4).

Covariate importance
The measures of relative covariate importance in the V1 and V2 orthogonal component
models are presented in Fig. 5. The most important variables are those observed in
the field and interpreted from aerial photography regarding soil characteristics (soil
physical environment class and soil parent material, Table 1), followed by those pertaining
to elevation and climate, the latter all having comparable importance. Spatial context
(Ecological Land Classification Hierarchy), terrain slope, soil horizon (B or C), and forest
cover also contribute to the explained variance, but to a lesser degree.

Spatial dependence structure
Variograms illustrating the spatial dependence structure of the V1 and V2 orthogonal
components of particle size composition (sand, silt and clay fractions) and of the model’s
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Figure 3 Observed vs. predicted values of the V1 and V2 orthogonal components of each soil sample’s
particle size composition (sand, silt and clay fractions). The straight blue line corresponds to the linear
regression between observed and predicted values, and dotted lines represent the 1:1 line. The 0 values of
observed V1 that are aligned horizontally in the top graph correspond to observations with an identical
composition of sand and silt or to soils composed entirely of sand (100%), while those of observed V2 in
the bottom graph correspond to soils characterized by 0% clay. The lower rows of horizontally aligned V1
values (top graph) correspond to integer sand values of sandy soils ( >90%).

Full-size DOI: 10.7717/peerj.11685/fig-3

residuals are shown in Fig. 6. The fact that all 4 variables were found to fit spherical models
with a nugget effect denotes spatial structure in the data. Spatial structure was observed
over a range of 14.9 to 16.3 km. Spatial dependence between data can be quantified using
the nugget-to-sill ratio (NSR, Cambardella et al., 1994; Aidoo et al., 2015). Models captured
part of the spatial autocorrelation, as denoted by the greater NSR ratio for residuals than
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Figure 4 Observed soil texture composition (sand, silt and clay fractions) vs. predicted values, back-
transformed from ILR-transform (V1 and V2) predictions. The straight blue line corresponds to the lin-
ear regression between observed and predicted values, and dotted lines represent the 1:1 line.

Full-size DOI: 10.7717/peerj.11685/fig-4
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Figure 5 Relative measures of variable importance in the selected models of the two orthogonal com-
ponents (V1: left panel; V2: right panel) of soil texture composition (sand, silt and clay fractions).Dot
color indicates variable category. Only the 50 most important variables are shown. See Table 1 for covari-
ate definitions.

Full-size DOI: 10.7717/peerj.11685/fig-5

for observations. Nevertheless, a moderate degree of spatial autocorrelation remains in the
residuals.

Mapping
Figure 7 presents the gridded map (15′′ resolution) of soil particle size composition in
ecoforest polygons for the area of Quebec’s managed forest. At the provincial scale, we
visually distinguish the Abitibi and James Bay Lowlands soil province in the northwest of
the study area. It is characterized by flat topography, with organic deposits in lowland areas
in its northwestern part, and mostly fine-textured lacustrine or marine deposits at higher
altitudes in its eastern and the southern parts (Blouin & Berger, 2005). The fine-textured
mineral deposits originated from the proglacial Ojibway lake in its southern part, and from
the prehistoric Tyrell sea that existed during the retreat of the North American ice sheet in
its northern part.

Maps also highlight the medium-textured soils of the Appalachian soil province, located
south of the St. Lawrence River. This soil province is characterized by ridges of flattened
summits, rocky crests, undulating hills and valleys. The main parent materials are glacial
tills on mountaintops and slopes, fluvial deposits along streams, and organic deposits in
depressions.
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Figure 6 Variograms illustrating the spatial dependence structure of the V1 and V2 orthogonal com-
ponents of observed soil particle size composition of the B horizon and of the model’s residuals. The
lower dotted horizontal lines represent nuggets (y-axis intercept-related amount of short-range variabil-
ity in the data) and the upper lines represent the sills (total variance at which the model first flattens out).
Vertical dotted lines represent the range (distance beyond which data are no longer spatially correlated).
NSR: nugget-to-sill ratio.

Full-size DOI: 10.7717/peerj.11685/fig-6

Coarser-textured soils are observed in the Laurentians and the Mistassini Highlands soil
provinces, both located north of the St. Lawrence River and east of the Abitibi and James
Bay Lowlands soil province. The landscape of these two soil provinces consists of ridged
rolling hills, crests, and valleys; the main types of parent materials are sandy or gravelly
glacial till on hills, sandy or gravelly fluvial deposits in valleys and along water bodies, and
organic deposits in depressions.
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Figure 7 Griddedmap (15 s resolution) of soil texture composition (diagnostic B horizon) in ecofor-
est polygons of the managed forest of the province of Quebec, Canada.Only productive forest land char-
acterized by mineral soils was mapped. Agricultural and unproductive forest land, organic soils, anthro-
pogenic infrastructures, and water areas were excluded. Hillshade effect was added based on a 1km res-
olution digital elevation model. The map was produced with QGIS software, version 3.4 (QGIS, 2020).
Basemap credit: c©2021 TerraMetrics, c©2021 Google.

Full-size DOI: 10.7717/peerj.11685/fig-7

Finally, the map also highlights the coarse-textured soils of the St. Lawrence Lowlands
soil province in southern Quebec. Marine deposits in this soil province are from the
prehistoric Goldthwait (southern Quebec) and Laflamme (Lac Saint-Jean area) seas.
Fine-textured soils predominate at lower altitudes, while coarse-textured soil deposits are
more abundant at higher altitudes. However, the mapped forest soils in this soil province
are mainly coarse-textured; this can be explained by the fact that fine-textured soils are
predominantly farmlands (which were not mapped), and by the much higher density of
anthropogenic infrastructure in this region.

As examples, we also produced maps illustrating particle size composition of mineral
soils in ecoforest polygons at scales of 1:200,000 and 1:100,000, for a region located at
the southern edge of the Abitibi and James Bay Lowlands soil province, approximately
25 km south of Lebel-sur-Quévillon (Fig. 8). This region shows a transition from low
altitudinal fine-textured and sandy juxtaglacial and lacustrine deposits originating from
the prehistoric Lake Ojibway in the west, to medium- and coarse-textured soils in the
east, where somewhat thicker till deposits dominate. Organic soils, for which mineral soil
texture cannot be estimated, are also abundant in this region.

Mapping accuracy
Evaluation of the 95% prediction intervals of the V1 and V2 orthogonal components of
soil texture reveals that the estimates of the particle size composition are more precise for
mineral soils with coarse texture, and less precise for those with fine texture (Fig. 9). This
results in regional differences in mapping accuracy, as estimates of soil texture are less
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Figure 8 Maps of soil texture composition at two zoom levels, for a region at the southern edge of the
Abitibi and James Bay Lowlands soil province.Only productive forest land characterized by mineral soils
was mapped. Agricultural and unproductive forest land, organic soils, anthropogenic infrastructures, and
water areas were excluded. Maps were produced with QGIS software, version 3.4 (QGIS, 2020). Basemap
credit: c©2021 TerraMetrics, c©2021 Google.

Full-size DOI: 10.7717/peerj.11685/fig-8

accurate in regions dominated by fine-textured mineral deposits than in regions primarily
characterized by coarse-texturedmineral deposits. At a finer spatial scale, this also translates
into a difference in forecast accuracy between soil physical environment classes and soil
parent material types, which were the 2 most important variables in the models.

DISCUSSION
Model performance
From a set of 33 covariates (133, if we include the converted dummy variables), our models
respectively explain 60%, 34%, and 78% of the variance (MAE = 9.6%, 7.9%, 4.0%) in
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Figure 9 Griddedmap (15 s resolution) of the 95% prediction intervals of the V1 and V2 orthogo-
nal components of soil texture composition (B horizon) in ecoforest polygons of the province of Que-
bec.Only productive forest land characterized by mineral soils was mapped. Agricultural and unproduc-
tive forest land, organic soils, anthropogenic infrastructures, and water areas were excluded. Maps were
produced with QGIS software, version 3.4 (QGIS, 2020). Basemap credit: c©2021 TerraMetrics, c©2021
Google.

Full-size DOI: 10.7717/peerj.11685/fig-9

sand, silt and clay fractions of 29,093 soil samples distributed throughout the managed
forest of the province of Quebec, Canada. By comparison, Hengl et al. (2017) explained
73% to 79% of these soil characteristics (MAE = 6.6% to 9.0%) from a set of 158 remote
sensing-based soil covariates for more than 600,000 globally distributed soil samples (about
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150,000 soil profiles). More precisely, we explained a smaller proportion of the variance
in the silt fraction, but we modeled clay fraction with higher precision (smaller error). In
contrast, Mansuy et al. (2014) explained only 20%, 13% and 43% of the variance in sand,
silt, and clay fractions of 538 sample plots distributed throughout the Canadian managed
forest from a set of 12 topographic and climatic soil covariates. Their forecast was also
much less precise than our results and than the global models of Hengl et al. (2017).

A closer look at the SoilGrids map of clay content (https://soilgrids.org/, Hengl et al.,
2017) reveals that global predictions completely fail to characterize the fine-textured soils
of the Abitibi and James Bay lowlands soil province in Quebec, Canada (Fig. 7), probably
due to the very low number of soil samples from this region. Also, as compared to our
polygon map, global and Canadian forecasts of soil texture were provided for mineral as
well as for organic soils, apparently due to the inability to discriminate organic deposits
in the mapping exercise. In addition, despite the higher spatial resolution of the SoilGrids
and Canadian maps (250 m), rasterized predictions are somewhat smoothed over the
territory. By comparison our polygon map shows much more spatial variability in terms
of particle size distribution (Figs. 7–8). The rendering of these abrupt spatial transitions
between polygons is made possible by the characterization and delineation of soils by
photo-interpreters. Since photo-interpretation also facilitates the determination of land
usage at a relatively fine spatial scale, our polygon map provides forecasts for mineral
soils from an entire region in southern Quebec characterized by Mansuy et al. (2014) as
agricultural land (and therefore, not mapped), while excluding land with anthropogenic
infrastructure.

The cross-validation procedure, which involves splitting the original dataset repeatedly
into calibration and validation datasets, is commonly used to validate predictive models of
soil characteristics, because collecting additional independent samples is often impractical
(Hengl & MacMillan, 2019). This procedure does not rely on data that is independent
of the original sampling design. Thus, if the sampling is biased or unrepresentative, the
validation procedure may not reveal the model’s true accuracy. However, if the sampling
is unbiased—as we are confident was the case in this study—the randomly selected subsets
provide unbiased estimators of the model’s true accuracy (Hengl & MacMillan, 2019).

Variable importance
The most important variables in our soil texture models are soil physical environment
classes and soil parent material, followed by altitude and variables regarding climate, which
all have a comparable importance (Fig. 5, Table 1). Most important rasterized covariates
used for the Canadian soil texture maps by Mansuy et al. (2014) are 4 climate variables (3
variables related to air temperature and 1 to precipitation) and 4 topographic variables
(aspect, slope, elevation, and watershed stream). In Hengl et al. (2017) global models, the
most important covariate to predict soil texture, by far, is depth (up to 2 m) below the soil
surface. This suggests that a large part of the explained variance of the∼600,000 soil samples
stems from the vertical variability of observations among the ∼150,000 soil profiles. In
contrast, our evaluation ofmodel performance and variable importancemainly refers to the
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spatial variability of soil texture over the studied area. Indeed, we used only 1 or 2 samples
per plot (29,570 mineral soil samples from 17,901 sites) for model parameterization.

We hypothesized that soil texture does not vary much between the B and C horizons
at a given site, compared to inter-site variability. Thus, we focussed primarily on assessing
the spatial variability of soil texture. Nevertheless, we included soil horizon (B or C) in the
modelling exercise to take into account the variability of soil texture associated with soil
horizon and, indirectly, with sampling depth. Our analyses of each variable’s importance
revealed that horizon does not rank among the most important variables in our models
(Fig. 5). This in itself provides evidence that the vertical variability in soil texture is small
compared to spatial variability. In addition, tests for association revealed that the clay
fractions of paired soil samples of B and C horizons were closely correlated (Pearson’s
product moment correlation coefficient of 0.86, t = 183, df = 11 996, p-value <0.001).

After depth below the soil surface, the most important variables in global models of soil
texture are mean monthly precipitation, mean monthly temperatures, monthly MODIS
(Moderate Resolution Imaging Spectrometer) perceptible water vapor images, and digital
elevation model-parameters (Hengl et al., 2017). The great importance of climatic variables
in global models translates into smoothed forecasts at a local scale. Our results confirm
that climate and remote sensing covariates are less relevant for soil texture mapping than
the characterization and delineation of soil characteristics by trained photo-interpreters.
For example, soil physical environment class 6 (40% clay on average) and 3 (30% clay
on average) as well as class 2 (8% clay on average) and class 1 (5% clay on average)
are among the most important variables in the models (Table 1, Fig. 5). Similarly, fine-
textured lacustrine deposits (41% clay on average), coarse-textured glacial deposits without
particular morphology (8% clay on average) and proglacial deposits (4% clay on average)
are also among the most important discriminating variables of soil texture (Table 1, Fig. 5).

Spatial dependence structure
Although our models explain much of the spatial variation in the data, moderate spatial
autocorrelations remain in the model residuals. Regionally, spatial interpolation (kriging)
of residuals might improve predictions. Hybrid regression-kriging models apparently
performed better than individual models for digital mapping of soil organic carbon
(Lamichhanea, Kumara & Wilsona, 2019). However, combining kriging of residuals with
random forest predictions did not always outperform random forest predictions alone
(Lamichhanea, Kumara & Wilsona, 2019). As suggested for global soil maps, kriging of
residuals would only marginally improve forecasts at the provincial scale, and would come
at significant computing cost (Hengl et al., 2017). Combining kriging of residuals with
random forest predictions also raises issues related to prediction error propagation. The
accuracy gains that could result from kriging of residuals as well as the methodology to be
used for propagation of uncertainty remain to be established.

Hengl et al. (2018) proposed another framework for spatial prediction with random
forest algorithms, inwhich buffer distances from sample coordinates are used as explanatory
variables to incorporate spatial structure into the modeling process. Regionally, it could
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also be used to improve predictions; however, it is not adapted for the analysis of large soil
sample datasets as the one used in the present study (Hengl et al., 2018).

Mapping accuracy
The assessment of 95% prediction intervals allowed us to characterize the spatial
distribution of uncertainties associated with the orthogonal components of particle size
composition estimated from a set of environmental covariates. The comparison of observed
and predicted values (Fig. 4) and the maps of the prediction intervals (Fig. 9) indicate that
soils containing more than about 25% of clay are less frequent, and that their particle size
composition (up to 80% clay) is more difficult to estimate accurately. Thus, models are
more imprecise for fine-particle soils characterized by high clay content.

Many sources of uncertainty can affect the overall accuracy of mapping, including
field sampling, data entry errors, laboratory analysis, characterization of covariates
at sampling sites and by photo-interpreters, polygon delineations, climatic covariate
estimations, short-range variability, etc. (Hengl & MacMillan, 2019). Our prediction
interval maps only refer to the accuracy of the mathematical model; they do not reflect
the imprecision of the photo-interpreted covariates, which remains poorly documented.
Better quantification of the accuracy of the expert interpretation of land surface and of
covariate characterization by photo-interpreters at targeted sites would allowmore accurate
mapping of the cumulative error associated with soil texture predictions (Kempen et al.,
2010). However, this shortcoming only applies when prediction accuracy is evaluated
at locations where field data are not available. It does not affect the evaluation of model
performance and of prediction uncertainty at sites where covariates have been characterized
by field observers.

Soil characteristics are known to be difficult to estimate with precision. Our estimates
compare favorably to other similar exercises, particularly thanks to the high sampling
intensity, the availability of expert interpretation of the land surface, and the delineation of
ecoforest polygons from aerial photography for the entire territory studied. However, the
approach used in this study cannot easily be extrapolated to other territories where such
information is not available. Also, the propagation of the prediction error associated with
V1 and V2 orthogonal components of soil texture to the back-transformed particle size
composition (sand, silt and clay fractions) is a challenge that requires further research.

CONCLUSION
We used soil texture data from 29,570 mineral soil samples from 17,901 soil profiles to
model and map particle size composition in ecoforest polygons of the provincial ecoforest
map of Quebec, Canada, using a set of 33 covariates. Our results compare favorably with
previous soil texture mapping studies for the same territory, in which soil texture was
modeled mainly from rasterized climatic and topographic covariates. Relative measures of
variable importance in the models confirm that the characterization and delineation of soil
characteristics by trained photo-interpreters are more relevant for soil texture mapping
than climate and remote sensing covariates. Depending on the needs, additional rasterized
environmental covariates and methods that incorporate spatial structure into the modeling
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process could be considered to improve predictions at a local scale. Nevertheless, with
mean absolute prediction errors ranging from 4.0% for the clay fraction to 9.5% for the
sand fraction, the map we provide should meet the needs of provincial forest managers, as
it is compatible with the ecoforest map that constitutes the basis of information for forest
management in the province. It could also help refine the contours of soil provinces and
subregions, which have only been roughly delineated on a large scale and only as far north
as 51◦N, based on available knowledge of the physiographic regions of Eastern Canada.
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