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Unfilled elastomers often suffer from poor fracture resistance at high temperature where
viscoelastic dissipation is low. A molecular design based on multiple interpenetrating
networks composed of a brittle filler network isotropically prestretched to a value λ0 by
swelling it in an extensible matrix leads to a dramatic increase of fracture energy Γc , typ-
ically attributed to sacrificial bond scission creating a dissipative damage zone ahead of
the propagating crack. However, the molecular mechanisms controlling the size of the
damage zone when the crack propagates are currently unknown. Here, we combine flu-
orogenic mechanochemistry with quantitative confocal mapping and mechanical testing
to characterize both Γc and the extent of bond scission in the sacrificial network
detected on the fracture surfaces for different stretch rates and temperatures. We find
that increasing the prestretch λ0 of the filler network leads to a large increase in Γc
mainly at temperatures well above the glass transition temperature of the elastomers,
where viscoelasticity is inactive, but also at lower temperatures where both mechanisms
are coupled. Yet, we show that there is no direct linear relation between the extent of
filler network scission and Γc . We mainly attribute the large increase in Γc to the dilu-
tion of highly stretched strands in the entangled and unstretched matrix, which delocal-
izes stress upon bond scission and effectively protects the matrix network from scission
and the material from crack growth. Delaying the localization of bond scission by net-
work design is a promising strategy that will guide molecular designs able to toughen
elastomers even in the absence of viscoelastic dissipation.
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Elastomers find numerous applications both in classical engineering and more recently
in areas such as the biomedical field, wearable electronics, or soft robotics, where their
flexibility and reversible elastic deformability are essential. Yet, it has long been known
that they remain limited in their usage temperature by an intrinsic embrittlement as
temperature increases well above their glass transition temperature (1, 2). This limita-
tion has been investigated in detail with conventional unfilled elastomers and also with
tougher grades filled with nanoparticles (3).
Indeed, while the incorporation of hard filler nanoparticles in the soft elastomer

matrix leads to toughening, viscoelasticity still plays a major role in energy dissipation.
The nanoparticles simply delocalize efficiently the regions that are exposed to high
strain rates and high strains, create nanocavities (4), and generally enhance the strain
seen by the elastomeric matrix. All of these mechanisms may still be present at temper-
atures well above the glass transition temperature of the elastomers (Tg). However, the
lack of viscoelasticity of the matrix material at high temperature clearly reduces the
stretch at break of the elastomer (3) so that, with the notable exception of strain-
crystallizing filled natural rubber, all filled and unfilled elastomers suffer from a dra-
matic decrease in strength and toughness as the temperature is increased.
In 2003, Gong and coworkers (5) introduced a different strategy to toughen soft

hydrogels, relying on the creation of an interpenetrating double network structure,
where a brittle network (playing the role of the filler) is swollen and stretched in a duc-
tile second network of polymer (the matrix). This molecular design strategy was later
extended to elastomeric materials (6, 7), demonstrating the generality of the toughen-
ing mechanism due to multiple interpenetrating networks.
It is now well accepted that mechanical reinforcement in such multiple network gels

or elastomers relies on the presence of sacrificial bonds embedded in the material (the
stiff and brittle filler network) (8, 9). These sacrificial bonds break preferentially during
crack propagation, leading to the presence of a damaged region extending toward the
bulk of the material (6, 10–12). Tanaka (13) and Brown (12) attributed the toughen-
ing to the enhanced energy dissipation during the steady-state propagation of this local
damaged region ahead of the crack tip. Experimental evidence for the existence of such
extended damage at the crack tip (ranging from 100 μm up to few millimeters) has
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been obtained for double network hydrogels by atomic force
microscopy (AFM) (14), optical microscopy (11), and mecha-
nochemistry (10), with some studies showing a correlation
between the increase in fracture energy and the size of the dam-
aged zone (6, 11). Similar qualitative observations were
obtained for multiple network elastomers (MNE) by using
mechanoluminescent probes (6) and fluorescent probes (15).
However, the exact mechanisms accounting for the transfer of
stress at the molecular scale between the filler network and the
matrix and the role played by the filler network prestretch on
material reinforcement remain to be clarified.
Reinforced soft materials, and MNE in particular, can be

loaded over a wide range of strain rates and temperatures, beg-
ging the question of the role played by viscoelastic dissipation on
the fracture process. In hydrogels, the few studies which probed
a rate effect showed a weak dependence of fracture energy on
crack velocity (16, 17). Concerning the effect of temperature on
fracture energy, while an interesting study has been recently pub-
lished to probe the toughness of salt-containing gels below freez-
ing temperature (18), little has been done at temperatures higher
than ambient for gels in part due to experimental difficulties in
avoiding evaporation. Due to their viscoelasticity, fracture prop-
erties of filled and unfilled elastomers (without any solvent) can
show a strong dependence on temperatures (19) and the results
form the base of viscoelastic models of fracture (20, 21). How-
ever, how viscoelasticity couples with bond scission in reinforced
multiple networks is currently not known.
Recently developed mechanophore strategies (6, 7) can act as a

quantitative reporter for the level of bond scission in materials
(22) and have the potential to illuminate those issues. Quantitative
mechanochemistry has recently revealed that in simple elastomers,
energy dissipated by bond scission occurs relatively far from the
crack plane and contributes significantly to the fracture energy,
while being closely coupled to the level of viscoelastic dissipation
during crack propagation (22). In MNE, a large population of
prestretched strands are introduced in the material. Upon stretch-
ing of the MNE, some of these strands will be overloaded at
much lower values of macroscopic strain than the main bond pop-
ulation and lead to sacrificial bond scission (23, 24). Since, in the
range of explored temperatures, the force to break a covalent bond
is much less dependent on the temperature than viscoelastic fric-
tion, we could expect sacrificial bonds to act in a similar way,
independent of temperature.
In this study, we probed the effect of strain rate and temper-

ature on the fracture of MNE and investigated how the
macroscopic fracture energy Γc couples with viscoelastic energy
dissipation and sacrificial bond scission. We focused on simple
and multiple network elastomers, where the filler network, syn-
thesized first, was tagged with the damage-reporting anthra-
cene-based cross-linking molecule. Fracture experiments carried
out at various temperatures and stretch rates were combined
with postmortem confocal microscopy observations of the frac-
ture surfaces at room temperature, providing insights on the
intrinsic couplings between network architecture, viscoelastic
dissipation, and bond scission in reinforced soft matter.

Results

Preparation and Bulk Mechanical Properties of Multiple
Network Elastomers. As shown in Fig. 1A, and previously
described in more detail (7, 24), we synthetized multiple net-
work elastomers based on poly(methyl-acrylate) (PMA) and
poly(ethyl-acrylate) (PEA) through successive swelling and
polymerization steps. We started by the synthesis of the

sacrificial filler networks with a total cross-link density of 4 ×
1025 m�3 to 5 × 1025 m�3 [extracted from the fit of the
stress–strain curves and corresponding to an average of 320 to
370 C-C bonds per network chains; SI Appendix, section SI.3;
Slootman et al. (22)]. In these networks, 5% of the cross-
linkers are replaced by a mechanosensitive Diels Alder cross-
linker (DACL), which becomes fluorescent upon scission and
can thus operate as a quantitative reporter of chain damage
(22). These networks are then swollen in a bath of methyl acry-
late or ethyl acrylate monomers and cross-linker, which are
subsequently polymerized at a much lower cross-link density of
0.01 mol% relative to monomer (typically, the monomer of the
matrix and filler are the same). These swelling and polymeriza-
tion steps can be repeated several times to obtain double and
triple networks, respectively. As shown in SI Appendix, Fig. S2,
the mechanical properties of labeled and unlabeled samples are
identical within experimental error.

As proposed by Millereau et al. (7), it is interesting to com-
pare these materials according to the prestretch λ0 of the filler
network, where we have λ0 ¼ 1 for single network elastomers
(bare filler network) and typically λ0 ≈ 1:6 for double networks
(one matrix swelling and polymerization step) and λ0 ≈ 2:3 for
triple networks (two successive swelling steps). Fig. 1B shows
representative stress-stretch curves of the model PMA materials
in uniaxial extension with the three levels of filler prestretch. As
shown in these stress/strain curves and described previously (7,
24), the network prestretch shifts the onset of strain hardening
toward decreasing strains. If we rescale these curves by plotting
the effective stress applied on the first network rFN ¼ λ20rN as
a function of the effective strain seen by the filler network
λFN ¼ λ0λ, we observe a good collapse of the strain hardening
part of the mechanical response of the three materials (Fig. 1C
and SI Appendix, Fig. S3), demonstrating that the first network
is effectively carrying most of the load in uniaxial extension in
the nonlinear regime of the stress–stretch curve (7). Remark-
ably, under this normalization, it appears clearly that the aver-
age effective stretch at break of the filler network strands
increases markedly depending on the prestretch, namely, to
λFN ≈ 4, 5:5, and 7:5 for single networks (SN), double net-
works (DN), and triple networks (TN) (see blue, red, and black
vertical arrows), respectively. This result suggests that pre-
stretching and diluting the filler network delays the onset of
crack propagation. Note that no significant change in linear vis-
coelastic properties (SI Appendix, Fig. S4C) is measured for
these three networks that share a nearly identical Tg.

Fracture Toughness of MNE at Various Temperatures. To
probe in more detail how the structure of these materials affects
their strength and their limiting extensibility, we propagate
cracks in uniaxial extension in single-edge notched samples and
extract the fracture energy Γc (J.m�2) for each experimental
condition by using Greensmith’s approximation (22, 25) (SI
Appendix, section SI.2). Stress–strain curves of these notched
samples are shown in Fig. 2A for experiments carried out with
PMA-based MNE at 25 °C (plain curves) and 80 °C (dashed
curves). For identical initial notch lengths, Γc scales with the
integral under the stress–stretch curve to fracture, and we
clearly observe a large increase in Γc for increasing values of the
prestretch λ0 (comparing blue, red, and black mechanical
curves). Note that although the critical stretch at break λc
decreases with increasing prestretch, the critical stretch at break
of the filler network λFN, which takes into account the filler
network prestretch, increases (Fig. 1C and SI Appendix,
Fig. S3).
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When carrying out crack-propagation tests at various tempera-
tures, we observe an increase in Γc with decreasing temperature
(comparing plain and dashed curves, corresponding to tempera-
tures of 25°C and 80°C) consistent with a more viscoelastic
and dissipative character. However, Fig. 2B shows that while a
higher temperature dramatically decreases Γc for single networks
in agreement with previous work (1, 22), the effect is much less
marked for the double networks (λ0 ¼ 1:6) and even more so
for the highly prestretched triple networks (λ0 ¼ 2:3). Qualita-
tively, similar trends have been found over a larger range of tem-
peratures for PEA-based materials (SI Appendix, Fig. S6).
To further analyze the macroscopic fracture behavior of these

different network architectures, we report in Fig. 2C the frac-
ture energy Γc as a function of the critical stretch at break of
notched samples λc noting that all samples have nearly identical
notch lengths of ∼0.9 ± 0:25 mm. We include in this plot the
response of both PEA and PMA networks as circles and
squares, respectively, where the PEA material has a lower glass
transition temperature of �18 °C. Although these two net-
works have distinct glass transition temperatures and hence dis-
tinct viscoelastic properties in the range of temperatures probed
here, we observe three families of curves for the various levels
of prestretch. As expected, when increasing the degree of pre-
stretch, the fracture energy Γc reaches larger absolute values at
lower critical strain, due to network stiffening.
Following a similar idea as in Fig. 1C and ref. 7 regarding

the composite nature of multiple networks, it is tempting to
rescale Γc and λc accounting for the prestretch λ0 of the filler
network. We thus plot in Fig. 2D the evolution of Γcλ

2
0=Σ0,

the dissipated energy Γc per mole of filler network strands
crossing the fracture plane, as a function of λcλ0, the critical
strain of the filler network at the onset of crack propagation.
Physically, this is equivalent to considering the fracture energy
per sacrificial network strand crossing the fracture plane as a
function of the average stretch in the tensile direction of the

filler network at the fracture point. Although experiments with
different initial notch lengths would have given different values
of λc, the point of this graph is the excellent collapse of the
data in Fig. 2D in a single envelope for distinct material pre-
stretches and glass transition temperatures. The existence of
this master curve of the locus of fracture points is analogous to
the fracture envelope proposed by Smith for simple network
elastomers at different strain rates and temperatures (26). How-
ever, it is observed here to apply remarkably well to distinct
materials, when considering the effective strain at break λcλ0
and the fracture energy per network strand Γc � λ20 associated
with the filler network. This global exponential rescaling char-
acterizes the key role played by the filler network on the elastic
properties of these materials and the highly nonlinear deforma-
tion response of the filler network.

Damage Quantification in Multiple Network Elastomers. In
order to rationalize the large changes in toughness observed
when varying network architecture and viscoelasticity, we
take advantage of the mechanophores incorporated in the
sacrificial filler network to quantitatively characterize the
level of filler network damage following crack propagation.
As schematically shown in Fig. 3A, when connected to a
chain under tension, the mechanophore cross-linker can
undergo a force-induced scission leading to the activation
of its fluorescence. As reported in our previous work on
simple network elastomers (22), the degree of mechano-
phore activation and fluorescence intensity in the sample
following crack propagation can then be used to account
representatively and quantitatively for the fraction of bro-
ken chains in the tagged network (here, the sacrificial filler
network), when using a dilute concentration of mechano-
phore cross-links.

After propagating cracks in the material at different loading
rates and temperatures for each material, we map postmortem the
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Fig. 1. Mechanics of MNE in uniaxial extension. (A) Synthesis of multiple network elastomers, with subsequent swelling and polymerization steps. The filler
network is represented in blue and the matrix network in green. Orange cross-links represent mechanosensitive DACL cross-links. (B) Nominal stress rN as
a function of strain λ for unnotched PMA multiple network elastomers, with three levels of network prestretch (blue, red, and black corresponding to
λ0 ¼ 1, 1:6, and 2:3, respectively, i.e., simple, double, and triple network). (C) Normalized nominal stress rFN ¼ rN:λ

2
0 carried out by the filler network as a

function of the effective strain λFN ¼ λλ0 seen by the filler network. Vertical arrows indicate the effective filler network strain at break.
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fluorescence signal due to mechanophore activation postmortem
along the propagation path of the crack by performing confocal
microscopy scans normal to the crack surface (Fig. 3C and SI
Appendix, section SI.5). These scans allow us to extract the spatial
maps of mechanophore activation and filler network damage close
to the crack edge, as shown in Fig. 3C. These damage maps are
found to depend strongly on both the network architecture, char-
acterized by the level of prestretch of the filler network (comparing
λ0 ¼ 1:6 and λ0 ¼ 2:3), and on the viscoelasticity of the material

at the given conditions (comparing fracture at an identical stretch
rate of _λ = 3 × 10�3 s�1 at 25°C and 80°C). From Fig. 3C, we
can already see that increasing the degree of prestretch of the filler
network and increasing viscoelasticity—two factors leading to an
increase in toughness Γc , see Fig. 2A—also lead to a net increase
of the amount and spatial extension of bond scission in the filler
network.

To quantitatively analyze the level of damage and bond scis-
sion, we extract as shown in Fig. 3D the spatial profile of the

A B

C D

Fig. 2. Fracture toughness of multiple network elastomers. (A) Stress-stretch curves of notched samples of PMA elastomers with different degrees of filler
network prestretch λ0 and temperatures. Plain lines (25 °C) and dotted lines (80 °C), stretch rate of 3 × 10�3 s�1. Blue, red, and black lines correspond to sin-
gle (λ0 ¼ 1), double (λ0 ¼ 1:6), and triple networks (λ0 ¼ 2:3), respectively. (B) Variation of Γc with temperature (same color legend as in A). (C) Γc as a function
of the critical stretch at break λc for notched samples of PMA-based (circles) and PEA-based (squares) networks (same color legend as in A). (D) Evolution of
the fracture energy per mole of filler chains crossing the interface Γcλ

2
0=Σ0 as a function of the effective filler network strain at break λcλ0 for notched sam-

ples of PMA- and PEA-based MNE. Dashed line is an exponential fit for λcλ0 > 1:8. The value of Σ0 is taken as 1.8 × 1017 ch/m2. Note that all notched samples
have nearly identical notch lengths of ∼ 0:9 ± 0:25 mm.

C

D

A B

Fig. 3. Damage quantification in the filler network of the multiple network elastomers. (A) Schematic principle for chain damage detection through the
scission-induced activation of the cross-linker mechanophore. (B) Schematic of confocal imaging plane in fractured samples. (C) Local intensity map due to
mechanophore activation in PMA networks with increasing prestretch (Top to Bottom) and conditions of increasing viscoelasticity (80 °C and 25 °C, Left to
Right, respectively). Plain and dashed red lines correspond to double networks (λ0 ¼ 1:6) at 80 °C and 25 °C. Plain and dashed black lines correspond to triple
networks (λ0 ¼ 2:3) at 80 °C and 25 °C. The two materials are rendered with distinct intensity scales. (Scale bar, 100 lm.) (D) Damage profile ϕ normal to the
crack edge, for the four conditions in C.
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local damage ϕðzÞ in the sacrificial network for increasing dis-
tances z from the crack plane. We define here ϕ as the local
fraction of broken chains in the filler network, measured directly
from the level of mechanophore activation (SI Appendix, section
SI.5, details the measurement and quantification method). While
damage appears very localized in the double network at high
temperature (condition i), it progressively delocalizes over larger
distances from the fracture plane and the overall quantity of
broken bonds increases for conditions of increasing viscoelasti-
city (comparing i and ii) and increasing prestretch (comparing
i and iii).
Interestingly, we find under all conditions a relatively

smooth and progressive decay of local damage with distance
from the crack surface. These measurements are distinct from
the observation of a well-defined local damage zone with sharp
boundaries at the crack tip, as reported in an earlier study on
double network hydrogels (11). Under some conditions of large
viscoelasticity and large prestretch (e.g., in triple networks of
PMA at 25 °C; SI Appendix, Fig. S8), we further observe a bulk
level of damage in the material [i.e., ϕ z !∞ð Þ ! ϕbulk ≠ 0).
This bulk activation can reach up to ϕbulk ≈ 3% and correlates
well with the macroscopic stretch at break. This observation
suggests that bulk activation occurs under conditions where the
effective stretch on the network chains in the bulk reaches their
limiting extensibility upon material failure (Discussion). The
appearance of the fracture surface is also dependent on fracture
conditions and position along the fracture length. Most materi-
als show a relatively smooth fracture surface, but rough fracture
surfaces can also appear in conditions associated with low visco-
elasticity and intermediate prestretch (e.g., Fig. 3 C, i and SI
Appendix, Fig. S9).
We now compare these damage results with those of fracture

energy Γc (J�m�2). As we previously proposed (22), it is
instructive to extract Σ (strands�m�2), an integrated interfacial
quantity characterizing the density of broken strands per unit
surface of crack. This quantity can be simply extracted by sum-
ming the local damage inside the material along a unit area, as
Σ¼ 2νx∫ ϕ zð Þdz where νx (m�3) is the density of polymer
strands per unit volume of filler network initially present. This
quantity can be defined for both smooth and rough profiles of
the fracture surface (SI Appendix, Fig. S9). Under conditions
where bulk damage is present, Σ is defined as the excess of
chain scission at the crack tip Σ¼ 2νx∫ ½ϕ zð Þ �ϕbulkÞdz .
Interestingly, spatial variations in the level of local damage of
the filler network are observed over millimetric distances
along the crack path in all samples, with sacrificial bond scis-
sion being systematically smaller close to the initial notch and
larger on the opposite side of the sample. We obtain for the
four samples reported here an average value of Σ near the

fracture surface of ΣðiÞ ¼ 7:4 × 1018, ΣðiiÞ ¼ 8:3 × 1019,
ΣðiiiÞ ¼ 1:7 × 1020, and ΣðivÞ ¼ 2:7 × 1020 strands�m�2.

As we previously proposed (22), it is instructive and convenient
to normalize this areal damage Σ by ΣLT, the areal density of sac-
rificial network strands crossing a plane in the material. The ratio
Σ=ΣLT accordingly represents the additional density of broken
sacrificial strands compared to the limiting situation where crack
propagation would lead to broken strands along a single material
mesh size. For unswollen single networks (λ0 ¼ 1), ΣLT can be
estimated as ΣSN

LT ¼ 1=2 � vx < R2
0>

1=2, with νx the volume den-
sity of cross-linking points and < R2

0>
1=2 the average distance

between cross-links, expressed as a function of the network param-
eters (7) (SI Appendix, section SI.3). For swollen multiple
networks, ΣLT is reduced by the areal dilution factor due to
network prestretch and expressed as ΣLT ¼ ΣSN

LT=λ
2
0. We find

values of ΣLT of the order of 2 × 1017, 8 × 1016, and 2 ×
1016 strands�m�2 for single, double, and triple networks,
respectively (Table 1). Under the four conditions of Fig. 3, we
thus obtain Σi=ΣLT ≈ 95, Σii=ΣLT ≈ 1, 000, Σiii=ΣLT ≈
4, 800, and Σiv=ΣLT ≈ 7, 600. These results also provide an
estimate of the width of the zone where sacrificial bonds break
in units of mesh size and show that the length over which sac-
rificial bonds break when the crack propagates is of the order
of hundreds of microns, a surprising result that will be dis-
cussed later. The results shown on Fig. 3C also clearly show
that the extent of sacrificial bond scission is affected both by
the network architecture (degree of prestretch λ0) and by the
viscoelastic effects (due to stretch rate).

Coupling between Damage, Fracture Energy, and Viscoelasticity.
The methodology and analysis described above have been car-
ried out for a range of strain rates and temperatures, and values
of Γc and of Σ=ΣLT have been measured for each condition.
Following the methodology proposed in our previous work and
detailed in the SI Appendix SI.3 and SI Appendix, Fig. S4, we
assumed that time-temperature superposition can legitimately
be used here. We first plot in Fig. 4A the evolution of the frac-
ture energy Γc as a function of a rescaled crack velocity
aT � vcrack. The average crack propagation velocity vcrack is
extracted from the stress/strain curves and rescaled here by a
time–temperature superposition factor aT This factor character-
izes matrix viscoelasticity through the temperature difference
between the temperature at which the fracture test was carried
out and the glass transition temperature of the matrix network.
Indeed, PMA and PEA materials have distinct glass transition
temperatures Tg of 18 °C and �18 °C, respectively, leading to
distinct viscoelastic behavior at room temperature and above.
The use of this rescaled crack velocity allows us to compare
elastomers made from these two monomers and access a large

Table 1. List of analyzed and synthetized samples*

Sample name λ0

Monomer in
filler network

Monomer in matrix
and Tg (°C)

Areal density of
chains, ΣLT Symbol Elastic moduli

SN.EA 1 EA EA (�18 °C) 1.8 × 1017 m�2 1 MPa
SN.MA 1 MA MA (18 °C) 1.9 × 1017 m�2 1.15 MPa
DN.EA.EA 1.6 EA EA (�18 °C) 6.7 × 1016 m�2 1.3 MPa
DN.MA.MA 1.6 MA MA (18 °C) 7.7 × 1016 m�2 1.9 MPa
DN.MA.EA 1.5 MA EA (�18 °C) 8.9 × 1016 m�2 1.2 MPa
TN.EA.EA 2.3 EA EA (�18 °C) 3.1 × 1016 m�2 1.7 MPa
TN.MA.MA 2.3 MA MA (18 °C) 3.6 × 1016 m�2 2.2 MPa

*EA, ethyl(acrylate); MA, methyl(acrylate).
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range of viscoelastic conditions (SI Appendix, Fig. S4). It is
important to note that even during steady-state crack propaga-
tion the strain rate varies spatially and the average crack velocity
characterizes here the range of strain rates that material points
near the fracture surface have experienced during the propaga-
tion of the crack (21, 27, 28).
Remarkably, using this rescaled crack velocity allows us to

successfully collapse the fracture energy (Fig. 4A) of materials
possessing a similar architecture (given by the filler network
prestretch, in blue, red, and black) but fractured at distinct
temperatures and composed of distinct matrix monomers
(squares and circles for EA and MA). The success of this rescal-
ing, even for a mixed material composed of a minority PMA
filler and a majority PEA matrix (green), shows that the visco-
elastic properties of the matrix (used for the rescaling) contrib-
ute strongly to the observed toughening.
For each material with a given prestretch λ0 ¼ 1, 1:6, and

2:3, we can thus express phenomenologically the fracture energy
as Γλ0c ≈ Γλ0, �c � ½1þ fλ0 aTvcrackð Þ� with Γλ0, �c , a threshold fracture
energy for conditions of low viscoelasticity, and fλ0 , a function of
the reduced crack velocity aTvcrack characterizing the evolution
of the fracture energy for large viscoelastic dissipation. Impor-
tantly, and consistent with Fig. 2, we observe a strong increase
in the threshold fracture energy Γλ0, �c when increasing the net-
work prestretch, with Γλ0,�c reaching 30 J�m�2, 400 J�m�2, and
2, 400 J�m�2 for single, double, and triple networks, respectively,
(horizontal dashed lines). In viscoelastic conditions, the fracture
energy is well approximated by a power-law behavior, Γc ∼
aT � vcrackð Þα (oblique dashed lines). Although the general evolu-
tion of Γc with aT�vcrack is the same, the absolute values of Γc are
very different for the three classes of materials and the power-law

exponent α, which characterizes the sensitivity of the material to
viscoelastic dissipation decreases with increasing prestretch.

In summary, a larger prestretch leads to both a large increase
in threshold fracture energy when viscoelastic dissipation is low
and to a weaker sensitivity to viscoelastic dissipation. Since for
these elastomers low viscoelasticity requires a high temperature,
we find that the multiple network architecture is the most
effective relative to conventional elastomers (λ0 = 1) at high
temperature.

Discussion

Coupling of Network Damage and Fracture Energy. To ratio-
nalize the remarkable performance of the multiple network
architecture in conditions of low viscoelasticity at high temper-
ature, we turn to the analysis of bond scission in these materi-
als. As mentioned above, when plotting the areal density of
bond scission �Σ ¼ Σ=ΣLT as a function of aT:vcrack, we observe
qualitatively similar trends in the evolution of the damage, with
a threshold value at low crack velocity, which increases for
increasing prestretch (Fig. 4B, horizontal dashed lines) and a
power-law increase at larger crack speed for increasing viscoelas-
ticity (Fig. 4B, oblique dashed lines).

Given these similar trends, it is tempting to try to directly
correlate the measured fracture energy with the areal density of
broken sacrificial bonds Σ, as shown in Fig. 4C. If a Lake and
Thomas argument holds for the energy dissipated per broken
strand (29) and this is the only dissipative mechanism during
crack propagation, one would expect a linear relation between
Γc and Σ. Yet, although both quantities appear qualitatively
correlated, we fail to see a linear relation independent of visco-
elasticity and material’s degree of prestretch. Over this linear

BA

C

Fig. 4. Rate effects in fracture energy and damage activation in PMA and PEA network. Fracture energy (A) and normalized damage Σ=ΣLT (B) as a function of
rescaled crack propagation velocity aT � vcrack for EA (square) and MA (circle); SN (blue) DN (red), and TN (black) networks; and the mixed double network DN.MA.EA
(green). We observe a threshold in Γc and Σ=ΣLT for low aTvcrack. For large crack propagation velocity, the fracture energy and areal damage can be well approxi-
mated by a power-law scaling Γc ∼ aT � vcrackð Þα and Σ=ΣLT ∼ aT � vcrackð Þβ , with α¼ ½0:36; 0:2; 0:18� and β¼ ½0:32; 0:3; 0:28�, respectively, for increasing prestretch
λ0 ¼ 1;1:6;2:3½ �. (C) Variation of the fracture energy Γc as a function of the total areal density of broken sacrificial bonds Σ for DN (red circles) and TN (black
circles). The dashed lines are power-law fits Γc ∼ Σγ , with γ ¼ 0:66 and γ ¼ 0:73 for DN and TN, respectively.
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scale, the fracture energy is found to increase instead sublinearly
with the areal density of broken bonds, as Γc ∼ Σγ, with
γ ≈ 0:6� 0:7. These observations call for a more refined inter-
pretation of the couplings between bond scission and fracture
energy.
Threshold bond scission at high temperature. To rationalize the
increase in the threshold fracture energy Γλ0,�c with increasing
prestretch λ0, we first focus on the observation in Fig. 4 A and
B of a threshold level of sacrificial bond scission Σ

ΣLT
at low vis-

coelasticity, which increases strongly when increasing the pre-
stretch, from Σ ≈ ΣSN

LT for λ0 ¼ 1, to Σ ≈ 102 �ΣDN
LT for

λ0 ∼ 1:6, and up to Σ ≈ 103 �ΣTN
LT for λ0 ∼ 2:3. The increase

in threshold damage accordingly implies that in the absence of
additional dissipation mechanisms such as viscoelasticity, the
threshold number of layers of broken bonds necessary for the
crack to propagate increases strongly when diluting the filler
network, i.e., bonds break much further away from the fracture
plane. Even in absolute terms, Σ increases by a factor of 200
between SN and TN.
Understanding this effect of the molecular architecture on

crack propagation is nontrivial. Considering the highly disor-
dered nature of the filler network, the propagation of a macro-
scopic fracture in this material amounts to the nucleation of a
localized percolating damage pathway. The increase in the total
damage necessary for the crack to propagate would thus imply
a delayed nucleation of this percolating pathway. Since no or
little viscoelastic dissipation is present under these conditions,
the corresponding mechanism must depend on the local archi-
tecture of the material and on the redistribution of stress upon
chain scission.
It is first instructive to examine statistical models of failure in

disordered networks, such as the so-called fiber bundle models
(30), which provide an analogy with the disordered structure of
the random filler network. A key parameter describing failure
in these random networks is the redistribution of load follow-
ing the rupture of a single strand (or fiber). In the first limit of

local load sharing, the load following a rupture event is mainly
redistributed to the neighboring strands, which leads to a rapid
localization of damage through avalanches and ultimately fail-
ure (Fig. 5A). In the opposite limit of equal load sharing, all of
the intact strands share equally the load of a broken strand,
delaying localization of damage and macroscopic failure (Fig. 5
B, i). These limits correspond to extremes with respect to the
spatial correlations in stress redistributions, and it is possible to
interpolate in between to account for elastic correlations follow-
ing a rupture event (31), leading accordingly to a transition
between the critical and the mean-field behavior or, in other
words, between correlated and random bond scission.

Based on these general concepts, we can now describe in more
detail our vision of the role played by the network structure in
delaying crack nucleation in MNE. In a single network, as
shown schematically in Fig. 5A, the presence of a crack leads to
stress concentration at the crack tip. Under threshold conditions,
the load following a scission event is probably redistributed to
the very neighboring strands, and bonds fracture in a correlated
and localized way very close to the fracture surface (22), in quali-
tative agreement with the Lake and Thomas model (32).

As pictured in Fig. 5B, the mechanism of failure we propose
for MNE is completely different. Far from the tip (regime i),
bond scission occurs randomly in the filler network for the
shorter and more highly stretched strands; upon scission of a
single highly stretched strand, the load is redistributed by
entangled matrix chains over an extended volume of matrix
and filler network (depending on dilution) and not simply on
the neighboring filler network strand (in the spirit of the equal
load sharing scheme described above). The matrix network(s)
must play a major role in this delocalization mechanism.
Indeed, as demonstrated by Millereau et al. (7), the reinforce-
ment is not observed when the matrix network(s) is replaced by
oligomers or solvent or when the volume fraction of filler net-
work is too high. The presence of the unstretched and
entangled matrix is thus essential to carry and redistribute the

Direct localisation following

chain rupture, leading to correlated

scission and catastrophic failure

A

Crack propagation : rupture of the matrix

through the highly damaged filler network

BSingle Network Multiple Network

(i)

(iii)

(i)(ii)
(iii)

Delocalisation and random

damage of the filler network

Transition to correlated scission

and formation of a highly damaged zone
(ii)

Fig. 5. Onset of crack propagation in MNE. The pictured mechanisms are at play under threshold conditions (no viscoelastic dissipation). (A) In a single net-
work, chain rupture (yellow stars) leads to direct localization of the stress to the neighboring chains (red area), leading to correlated scission of adjacent
chains (black arrows and yellow stars) and propagation of a localized crack. (B) In MNE, the failure mechanism is completely different. (i) Following chain rup-
ture of the dilute filler network (yellow stars), stress is delocalized over a large area (red area and black arrows), through interactions between the filler
network and the entangled matrix. Far away from the crack tip, this delocalization mechanism allows for random damage in the first network, with no inter-
action between chain scission events. (ii) Closer to the crack tip, bond scission starts to occur in a correlated fashion (smaller red area and black arrows),
leading to the creation of an extended damage zone, with holes in the filler network and transfer of stress to the matrix. (iii) At the tip of this zone, the crack
propagates through localized failure of this softened zone. Red stars represent the presence of damage in the filler network. Green stars characterize the
localized rupture of the matrix network.

PNAS 2022 Vol. 119 No. 13 e2116127119 https://doi.org/10.1073/pnas.2116127119 7 of 11



load upon scission of a sacrificial bond, and this stress transfer
further away from the broken bond can only work if the filler
is dilute and the matrix is unstretched or weakly stretched. In
this regime, bond scission can be described by a mean-field
model as proposed by Lavoie et al. (33) and Bacca et al. (34) in
their damage models where the stretch relative to the unde-
formed state of the MNE must be the same for all networks.
Hence, the probability of strand scission only depends on λ0λ.
SI Appendix, Fig. S3 B and D show that the bulk value of λ0λ
at propagation increases significantly with prestretch, and if the
strain fields around the crack tip are similar, regime i will
extend much further from the tip of the crack as λ0 increases.
Closer to the tip two other mechanisms become active. At

some distance from the tip, the failure of the filler network
bonds becomes correlated, causing the opening of large holes
and extensive transfer of stress to the matrix with a pronounced
softening (domain ii of Fig. 5B). The existence of this large-
scale stress transfer mechanism from filler network to matrix
network close to the crack tip for high values of λ0 has recently
been demonstrated for elastomers (15) and is well-documented
for gels (10, 11, 14). Depending on boundary conditions, this
softening can lead to an increase in stretch in the damaged
zone which greatly increases the energy dissipated per broken
bond (7). The formation of this softened damage zone is due
to a transition from a mean-field situation where the probabil-
ity of scission of a given strand is uniquely dependent on the
stretch experienced by that strand to a correlated scission of
filler network bonds where the probability of scission of a given
strand is dependent on whether adjacent strands are broken or
not. Such a non–mean-field scission presumably leads to the
formation of larger-scale holes and cracks in MNE. It appears
reasonable to assume that this transition from mean-field scis-
sion to correlated scission occurs above a certain value of stretch
of the filler network λλ0. Hence, the more the filler network is
prestretched, the lower the value of macroscopic experimental
stretch where this transition can occur.
Finally, the steady state propagation of the crack requires the

localized failure of this softened zone as shown in scheme iii of
Fig. 5B. Regarding this final step, the hypothesis made by
Brown (12) is that the crack will propagate when the strain
energy stored in the damaged zone is sufficiently large to create
a stress concentration at the tip of the crack (green stars in
scheme iii of Fig. 5B), which is able to break the bonds of the
damaged network (matrix and filler networks) (12). This
hypothesis of failure due to a stress concentration in the highly
damaged zone [inspired by the failure criterion of a plastic zone
in a glassy polymer (35, 36)] is difficult for us to verify directly
since we do not have access to the local strain energy or exact
size of the highly damaged zone. However, the threshold values
reported on Fig. 4 A and B suggest that the criterion of propa-
gation is not directly proportional to the total areal density of
broken sacrificial bonds (SI Appendix, Fig. S10). This propaga-
tion criteria must be more complex, involving other dissipative
or damage mechanisms very close to the crack plane, as
described above. The difference between DN and TN suggests
that filler network scission in DN is more efficient at dissipat-
ing energy than in the TN. Such complex multiscale bond scis-
sion mechanisms are in principle only strain dependent and
inherently strain rate independent. In the absence of viscoelas-
ticity slowing down the crack (threshold conditions), they
would result in a fast propagation, once the criterion of propa-
gation outlined above is met.
While mechanism iii has to be by definition very localized

and requires the failure of both filler and matrix strands, regime

ii and i only involve the failure of the filler network. Our
mechanochemistry data show that, at the propagation point,
damage occurs over a larger and larger volume as the degree of
prestretch of the filler network and the stretch rate increase
(Figs. 4B and 5B ). This is a key result of our investigation
showing that the complex process of delay in correlated bond
scission and transfer of the stress to the matrix is able to create
a much larger damage zone before the crack can propagate. We
can interpret this effect as an interplay between mean-field scis-
sion far from the tip, creating a large damage zone for large λ0
(regime i) and delayed propagation of the crack through a
highly damaged zone, where the stress is transferred to the
matrix (regime ii and iii). Because of the complexity of the
multiscale process, predicting the onset of regime ii and of
regime iii at the crack tip as a function of λ0 remains a chal-
lenge and requires a molecular criterion related to the network
architecture. Recent simulation studies may provide hints on
the nature of such criteria (37, 38).
Coupling of sacrificial bond scission with viscoelasticity and mac-
roscopic deformation. We can now address the role played by
viscoelasticity in the increase in fracture energy Γc and its cou-
pling to sacrificial bond scission. For single networks (λ0 = 1),
viscoelastic dissipation can couple to bond scission through
macroscopic strains at the crack tip (22). To probe more closely
this coupling in this series of MNE, we plot in Fig. 6A the evo-
lution of the areal density of broken chains Σ as a function of
the macroscopic strain at break λc for notched samples having
all the same initial notch length. For a given material and notch
length, Σ increases with λc, i.e., with increasing viscoelasticity,
and for a given λc, Σ increases with increasing prestretch (com-
paring blue, red and black points). Interestingly, focusing on
the result of the double network (red points), sacrificial bond
scission appears first independent of λc and then clearly
increases for λc > 2.

It is then interesting to rescale the data, following similar
ideas motivating Fig. 2D, by plotting in Fig. 6B the areal den-
sity of broken sacrificial bonds Σ, as a function of λ0λc, the
effective stretch of the filler network when the crack propagates.
This normalization leads to a clear collapse of the data for the
three levels of prestretch, from which we can identify three suc-
cessive regimes. In regime 1, only observed for λ0 = 1, visco-
elasticity is coupled with localized bond scission and controls
the crack tip stretch.

In regime 2 mainly observed for λ0 = 1.6 far from Tg, Γc
increases (Fig. 2D) but Σ stays constant (Fig. 6B). Viscoelastic
dissipation is weakly coupled to bond scission, with Σ ≈ cst ≈
8 × 1018 strands�m�2 controlled by the complex mechanism
described above (Fig. 5) and viscoelasticity acting as an additive
dissipative mechanism without much influence on the crack tip
strains.

Regime 3 kicks in when the filler network chains become
highly stretched, for which we observe a strong exponential
coupling with macroscopic deformation with Σ ∼ �eα�λcλ0 for
λcλ0 > 3:2, with α¼ 1:75. The upper axis shows the same data
as a function of λ0λc=λmax, the effective strain normalized by
the average limiting extensibility of the sacrificial chains λmax ∼
5:1 (SI Appendix). The observed transition between these two
regimes occurs for λcλ0 ∼ 0:6 � λmax, suggesting that this change
of regime in sacrificial bond scission occurs when filler network
chains approach their maximal extensibility.

In summary, under conditions of low viscoelasticity, fracture
propagation is limited as discussed above, by the propagation
of a crack in the matrix network, leading to a threshold amount
of filler network bond scission before propagation can occur
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(Fig. 4B and 5B). This threshold level is highly dependent on
the network prestretch and controls also the threshold fracture
energy.
For each material, increasing viscoelasticity leads to an

increase in the bulk strain at break λc and the strains at the
crack tip. However, the situation differs for the three types of
network.
In single networks, chain rupture leads to direct localization,

correlated bond scission, and catastrophic failure (Fig. 5A), and
most probably there is no well-defined softened zone. In this
case, viscoelasticity increases the required energy release rate to
propagate the crack at a certain speed and increased bond scis-
sion is a consequence of the higher crack tip strains (22).
Because of this localization of rupture, no mechanism prevents
the crack from moving even very slowly and threshold values of
Σ=ΣLT and Γλ0,�c are very low.
In MNE, when the effective bulk strain at break on the filler

network remains small compared to its limiting extensibility,
i.e., λ0λc < 0:6 λmax, the material forms a highly damaged zone
at the crack tip. In this regime, fracture energy can then be sim-
ply expressed as the sum of a constant contribution due to
bond scission at the damage percolation threshold and a strain
rate-dependent viscoelastic contribution (Fig. 6C, λ0λc ≪ λm).
If the effective strains on the filler network become larger, i.e.,
λ0λc > 0:6 λmax, the local probability of bond scission at the

crack tip increases strongly, leading to an increase in the overall
amount of bond scission Σ=ΣSN for increasing viscoelasticity
and increasing strains (Fig. 6C, λ0λc ≈ λm). However, the
increase in sacrificial bond scission in this second regime
appears more as a consequence of the increase in viscoelastic
dissipation through the increase in local strains at the crack tip,
rather than the cause for the reinforcement of the network
when increasing viscoelasticity. Indeed, as evidenced in Fig.
2D, no such cross-over is observed when plotting the normal-
ized fracture energy Γcλ

2
0 as a function of the effective strain

λcλ0.

Variation of threshold fracture energy with prestretch. These
observations pose the question of the existence of an optimal
value of initial prestretch of the filler network to toughen the
elastomer in the threshold regime at low viscoelasticity. In par-
ticular, when the strands of the filler network are close to their
limiting extensibility already under static conditions, one may
ask whether such a sacrificial network can still effectively delay
crack propagation through the mechanism described in Fig. 5.

Fig. 7 shows the threshold fracture energy Γλ0,�c as a function
of prestretch for a series of PEA-based MNE (details of synthe-
sis and mechanical properties in SI Appendix, Fig. S5 and ref.
7). Given the value of Tg at �18 °C, this situation is close to
threshold conditions. Although no damage data are available

A B

C

Fig. 6. Coupling of chain scission with viscoelastic dissipation and macroscopic deformation. (A) Areal density of broken chains Σ as a function of strain at
break λc , giving an estimation of the relative damage zone width during propagation. (B) Areal density of broken chains Σ as a function of the effective filler
network strain at break λcλ0. (C) Schematic illustrating the coupling of bond scission with macroscopic deformation. At low viscoelasticity, bond scission
reaches a threshold value associated with damage percolation in the filler network (regime 1). At high viscoelasticity, two regimes can be observed, depend-
ing on the effective stretch on the filler network. When this effective stretch λcλ0 is much smaller than the limiting extensibility λm, bond scission and visco-
elastic dissipation are decoupled, leading to a purely additive contribution (regime 2). In the limit where λcλ0 ≈ λm, additional bond scission occurs due to
coupling with the macroscopic deformation field in the material (regime 3).
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for this series, it is clear that there appears to be a threshold pre-
stretch λ0 ≈ 2, above which Γc increases more slowly.
Following Fig. 5, the creation of the energy dissipating dam-

age zone is due to the delay in correlated bond breakage which
initially increases with dilution as seen in the first regime of
Fig. 7, for λ0 ≤ 2. However, when the filler network becomes
close to its maximum stretch (λ0 ≥ 2), the transition from
regime i to ii and ii to iii must occur at increasingly lower val-
ues of macroscopic stretch, which causes the saturation
observed in Fig. 7.
This saturation is here observed at λ0 ≈ 2, for which the

effective critical stretch at break on the filler network is
λ0λc ≈ 3:3, approaching its limiting extensibility λlimit ¼ 5:1 (SI
Appendix, Fig. S7) (7).

Conclusion. We have simultaneously quantified the fracture
energy and the extent of molecular damage occurring near the
fracture surfaces in a series of prenotched multiple network
elastomers tested at different stretch rates and temperatures.
We find that while bond scission and viscoelastic dissipation
are roughly proportional to each other in simple networks, the
introduction of a prestretched sacrificial network creates a clear
threshold level of bond scission for the crack to propagate that
is still active in the absence of viscoelastic dissipation. This
threshold value of bond scission necessary for crack propagation
in MNE increases with prestretch λ0 and has an almost two
orders of magnitude toughening effect at T ≫ Tg where visco-
elastic dissipation is minimal.
We showed with mechanochemistry that the large increase

in the threshold Γc for MNE is correlated to the existence of a
large damage zone (over hundreds of network mesh sizes) ahead
of the propagating crack, where filler network bonds break. We
propose that bond scission in MNE occurs in three stages as
described in Fig. 5: (i) mean-field bond scission of the filler net-
work far from the crack tip, (ii) correlated bond scission of the
filler network closer to the tip leading to increased stretchability
of this highly damaged zone, and (iii) localized scission of the
matrix bonds in this highly damaged region, conducting to

crack propagation. The existence of a large minimum size of
the damage zone in MNE is due to a rate-independent mecha-
nism of stress delocalization that delays the correlated bond
scission needed to grow a crack.

The values of the local stretch λ where the transition between
these mechanisms is observed vary with network structure and
decrease with filler network prestretch λ0. There is however a
hard limit to the accessible filler network prestretch given by
the average chain length between cross-links, above which cor-
related filler network damage (ii) and matrix failure (iii) may
occur at too close values of stretch, leading to a saturation of Γc
with increasing λ0.

This mechanism of stress delocalization introduces a thresh-
old for crack nucleation that effectively protects elastomers
from crack propagation even at a high temperature. This
threshold damage remains active at lower temperatures, where
viscoelastic dissipation additionally contributes to toughness.
These results may have important implications on the design of
intrinsically tough elastomers. In conventionally filled elasto-
mers where nanoparticle fillers may play a role of sacrificial net-
work, highly fractal fillers that form a network at low volume
fraction may be intrinsically more effective at delaying crack
nucleation, a mechanism which could become more important
at high temperature.

Materials and Methods

Sacrificial filler networks are synthesized from a solution of monomer, cross-
linker, mechanophore cross-linker, and ultraviolet (UV) initiator. In these net-
works, 5% of the cross-linkers are replaced by a mechanosensitive DACL. These
networks are then swollen to equilibrium in a bath of methyl acrylate or ethyl
acrylate monomers and cross-linker, which are subsequently UV polymerized.
These swelling and polymerization steps can be repeated several times to obtain
double and triple networks, respectively. Details are described in SI Appendix,
section SI.1. Uniaxial tensile tests of unnotched and notched samples were car-
ried out on an Instron 5565 tensile testing machine at a constant stretch rate,
and details on the experimental set-up for mechanical measurements and mea-
surement of the fracture energy and crack propagation speed are described in SI
Appendix, section SI.2. The characterization of the areal chain density of the filler
network in multiple networks was estimated from the analysis of the stress-strain
curves and the analysis method is described in SI Appendix, section SI.3. The
series of polyethyl acrylates was synthesized in the presence of solvent that was
eventually evaporated. Details of the composition and mechanical properties are
shown in SI Appendix, section SI.4. Finally, we present in SI Appendix, section
SI.5, the confocal set-up and the quantitative image analysis (following image
collection, vignetting and flatfield correction, and calibration of fluorescence
intensity) and we discuss the bulk activation in TN.DA.MA.MA samples and the
analysis of bifurcations and inhomogeneous crack front in DA.DN.EA.EA.

Data Availability. All study data are included in the article and/or SI Appendix.
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Fig. 7. Variation of the fracture energy as a function of degree of pre-
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cessive regimes of , respective strong and weak increases of Γc with λ0.
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