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Obesity is an excess accumulation of body fat. Its progression rate has remained high in
recent years. Therefore, the aim of this study was to diagnose important differentially
expressed genes (DEGs) associated in its development, which may be used as novel
biomarkers or potential therapeutic targets for obesity. The gene expression profile of E-
MTAB-6728 was downloaded from the database. After screening DEGs in each
ArrayExpress dataset, we further used the robust rank aggregation method to
diagnose 876 significant DEGs including 438 up regulated and 438 down regulated
genes. Functional enrichment analysis was performed. These DEGs were shown to be
significantly enriched in different obesity related pathways and GO functions. Then
protein–protein interaction network, target genes - miRNA regulatory network and
target genes - TF regulatory network were constructed and analyzed. The module
analysis was performed based on the whole PPI network. We finally filtered out STAT3,
CORO1C, SERPINH1, MVP, ITGB5, PCM1, SIRT1, EEF1G, PTEN and RPS2 hub genes.
Hub genes were validated by ICH analysis, receiver operating curve (ROC) analysis and
RT-PCR. Finally a molecular docking study was performed to find small drug molecules.
The robust DEGs linked with the development of obesity were screened through the
expression profile, and integrated bioinformatics analysis was conducted. Our study
provides reliable molecular biomarkers for screening and diagnosis, prognosis as well as
novel therapeutic targets for obesity.

Keywords: adiposities, obesity, differentially expressed genes, modules, protein–protein interaction network

INTRODUCTION

Obesity has long been part of the larger metabolic disorder and affects a large proportion of the
global population particularly in the Western World (1). Obesity is diagnosed on the basis of body
mass index (1). Obesity occurs in children age between 5 to 19 years as well as more common in
women than in men (2). Countless surveys have proved that obesity is an key risk factor for heart
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disease (3), hyperlipidaemia (4), hyperinsulinaemia (5),
hypertension (6), atherosclerosis (7), insulin resistance (8) and
cancer (9). Important candidate genes and relevant signaling
pathways linked with obesity remains largely unknown. As a
result, seek of an earlier diagnosis and better prognosis, deeper
understanding of genetic and molecular mechanisms about
obesity is necessary.

Previous reports demonstrate that many genes and signaling
pathways participate in obesity. Polymorphisms in UCP2 and
UCP3 were responsible for development of obesity (10). TNFa
and lipoprotein lipase were important for advancement of
obesity (11). SLC6A14 (12) and JHDM2A (13) were lined with
pathogenesis of obesity. Human salivary (AMY1) and pancreatic
(AMY2) amylase genes were diagnosed with growth of obesity
(14). Signaling pathways such as inflammatory signaling
pathway (15), TLR4 signaling pathway (16), calcineurin-
dependent signaling pathways (17), mTOR Complex1–S6K1
signaling pathway (18) and leptin-signaling pathway (19) were
important for development of obesity. Therefore, it is meaningful
to explore the precise molecular mechanisms involved in obesity
and thus find a valid diagnostic way and generate an advance
therapeutic strategy.

In present trends, the application of high-throughput analysis
in gene expression profiling is becoming more valuable in clinical
and medical research (20), molecular classification (21),
prognosis prediction (22), diagnoses (23) and new targeted
drug discovery (24). In this study, the original microarray data
(E-MTAB-6728) was downloaded from ArrayExpress database
(https://www.ebi.ac.uk/) and analyzed to get differently
expressed genes (DEGs) between obesity persons and lean
persons (normal controls). Subsequently, gene ontology (GO),
pathway enrichment analysis, protein–protein interaction
network construction and analysis, module analysis, target
gene - miRNA interaction network construction and analysis,
and target gene - TF interaction network construction and
analysis to discover the key genes and pathways closely related
to obesity. Finally, selected hub genes were validated by
immunohistochemical (IHC) analysis, receiver operating
characteristic curve (ROC) analysis and RT-PCR. This current
investigation aimed at using bioinformatics tools to predict the
key pathways and genes in obesity that can hold a value for target
based therapeutic means.
MATERIALS AND METHODS

Microarray Data
The microarray expression profile of E-MTAB-6728 was
downloaded from ArrayExpress (https://www.ebi.ac.uk/). E-
MTAB-6728 was based on A-MEXP-1171 - Illumina
HumanHT-12 v3.0 Expression BeadChip and was submitted
by Bjune et al. (25). The E-MTAB-6728 dataset about expression
of genes from obesity persons compared to lean persons (normal
controls).There are twenty-four samples including twelve obesity
persons and lean persons (normal controls). The overall design
of the experiment was microarray analysis of adiposities from
obese patients versus adipocytes from lean persons (controls).
Frontiers in Endocrinology | www.frontiersin.org 2
Identification of DEGs
The raw data files were acquired for the analysis as IDAT files
(Illumina platform) forms and were converted into gene symbols
and then processed to background correction and quantile data
normalization using the effective multiarray average algorithm in
the beadarray package (26). The analysis was carried out via R
software (version 3.5.2). Hierarchical clustering analysis was
applied to categorize the samples into two groups with similar
expression patterns in obesity persons and lean persons (normal
controls). The paired Student’s t-test based on the Limma package
in R bioconductor was used to diagnose DEGs between two
experimental conditions (27). Multiple testing corrections were
performed by the Benjamini–Hochberg method (28). Then, the
Log2 Fold change (log2FC) was determined. We selected up
regulated DEGs with | log2FC | > 0.524 and FDR < 0.05, and
down regulated DEGs with | log2FC | < -0.394 and FDR < 0.05
were considered as the cutoff values.

Pathway and Gene Ontology (GO)
Enrichment Analysis of DEGs
The BIOCYC, Kyoto Encyclopedia of Genes and Genomes
(KEGG), REACTOME, Pathway Interaction Database (PID),
GenMAPP, MSigDB C2 BIOCARTA, PantherDB, Pathway
Ontology and Small Molecule Pathway Database (SMPDB)
databases are a knowledge base for systematic analysis,
annotation, and visualization of gene functions. The GO
database can add functional classification for genomic data,
including categories of biological processes (BP), cellular
component (CC), and molecular function (MF). GO analysis is
a prevalent genes and gene products annotating approach.
ToppCluster (https://toppcluster.cchmc.org/) (29) is an online
tool for gene functional classification, which is a key foundation
for high-throughput gene analysis to understand the biological
importance of genes. In the current investigation, in order to
analyze the functions of DEGs, Pathway and GO enrichment
analysis were conducted using the ToppCluster online tool;
p<0.05 was set as the cutoff point.

Integration of PPI Network
and Module Analysis
The mentha (https://mentha.uniroma2.it/) (30) is a biological
database designed to predict protein-protein interaction (PPI)
information. The DEGs were mapped to STRING to evaluate the
interactive relationships, with a confidence score >0.9 defined as
significant. Then, integration of protein-protein interaction
(PPI) network was visualized using cytoscape software (version
3.8.2) (http://www.cytoscape.org/) (31). The plug-in Network
Analyzer identified hub genes based on mathematical calculation
methods such as node degree (32), betweenness (33), stress (34)
and closeness (35) the number of genes within centrality
mathematical calculation methods were represented the
significance of the disorder. The PEWCC1 was applied to
screen modules of PPI network with degree cutoff = 2, node
score cutoff = 0.2, k-core = 2, and max. depth = 100 (36). The
functional enrichment analysis in the module was performed
by ToppCluster.
June 2021 | Volume 12 | Article 628907
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Construction of Target Genes - miRNA
Regulatory Network
MiRNA of target genes were explored combined with the human
miRNA information (miRNet database, (https://www.mirnet.ca/)
(37), recorded using TarBase, miRTarBase, miRecords,
miR2Disease, HMDD, SM2miR, PhenomiR, PharmacomiR,
EpimiR and starBase databases, and visualized using the
Cytoscape software (31).

Construction of Target Genes - TF
Regulatory Network
TFs of hub genes were explored combined with the human TF
information (NetworkAnalyst database, http://www.
networkanalyst.ca) (38), recorded using ENCODE database,
and visualized using the Cytoscape software (31).

Validation of Hub Genes
Immunohistochemical (IHC) analysis of adipose tissues was
performed utilizing human protein atlas (www.proteinatlas.
org) (39). ROC analysis was performed using pROC package
(40) in R. ROC analyses were estimated for diagnostic value of
hub genes. When the AUC value was > 0.7, the hub genes were
considered to be capable of distinguishing obesity persons from
normal lean with excellent specificity and sensitivity.

Detection of the mRNA Expression of the
Hub Genes by RT-PCR
D12 (ATCC CRL-3280) cell line for obesity and D16 (ATCC
CRL-3281) cell line a normal control were purchased from the
American Type Culture Collection (ATCC) (Maryland, USA).
D12 cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) F12 medium, which contains 10% fetal bovine serum.
D16 cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) F12 medium, which contains 10% fetal bovine serum.
The culture temperature is 37°C and CO2 concentration is 5%.
Total cellular RNA was extracted from cell culture with 1 ml TRI
Reagent® (Sigma, USA). Reverse transcription cDNA kit
(Thermo Fisher Scientific, Waltham, MA, USA) and random
primers were used to synthesize cDNA. RT-PCR was performed
using QuantStudio 7 Flex real-time PCR system (Thermo Fisher
Scientific, Waltham, MA, USA). The conditions for RT-PCR
amplification were as follows: 95°C for 120 seconds followed by
40 cycles of 95°C for 15 seconds, annealing temperature for 45
seconds. Each sample was run in triplicate. Relative expression
level for each target gene was normalized by the Ct value of b-
actin (internal control) using a 2 −DDCT relative quantification
method (41). The primer pairs used in the experiments are listed
in Supplementary Table 1.

Molecular Docking Studies
The module SYBYL-X 2.0 perpetual software was used for Surflex-
Docking of the designed molecules. The molecules were sketched
by using ChemDraw Software and imported and saved in sdf.
format using Openbabelfree software. The one co-crystallized
protein from each of ERBB2, STAT3 and HSPAB8 were selected
for docking studies. The protein structures of ERBB2, STAT3 and
Frontiers in Endocrinology | www.frontiersin.org 3
HSPAB8 of PDB code 1MFL, 5OOW and 3CWG was retrieved
from Protein Data Bank (42–44). Together with the TRIPOS force
field, GasteigerHuckel (GH) charges were added to all designed
molecules and the standard ant-obesity drug Orlistat, for the
structure optimization process. In addition, energy minimization
was carried out using MMFF94s and MMFF94 algorithm process.
Protein processing was carried out after the incorporation of
protein. The co-crystallized ligand and all water molecules were
removed from the crystal structure; more hydrogen’s were added
and the side chain was set. TRIPOS force field was used for the
minimization of structure. The designed molecules interaction
efficiency with the receptor was represented by the Surflex-Dock
score in kcal/mol units. The interaction between the protein and
the ligand, the best pose was incorporated into the molecular area.
The visualization of ligand interaction with receptor is done by
using discovery studio visualizer.
RESULTS

Data Normalization
Each array was normalized (centered) by quantile data
normalization using the beadarray package in R bioconductor.
As shown in Figures 1A, B, raw expression data were normalized
after preprocessing; median-centered values demonstrated that the
data were normalized and thus it was possible to cross-compare
between obesity persons and lean persons (normal controls).

Identification of DEGs Between Obese
Patients and Lean Persons
To preliminarily understand the mechanism contributing to the
obesity, 24 patients [12 obesity persons and 12 lean persons
(normal controls)] were selected for subsequent analysis. Based
on the analysis, a total of 876 DEG compose of 438 genes had
been expressed highly and about 438 genes had been shown to
decrease expression in obesity and are listed in Supplementary
Table 2. The FDR <0.05 was as a threshold value. Heat map is
shown in Figure 2. Volcano plot for DEGs is shown in Figure 3.

Pathway and Gene Ontology (GO)
Enrichment Analysis of DEGs
To further investigate the biologic functions and mechanisms of
the DEGs, pathway and GO enrichment analyses were
performed using ToppCluster tool. Pathway enrichment
analysis revealed that the up regulated genes were mainly
enriched in thyroid hormone metabolism II (via conjugation
and/or degradation), ECM-receptor interaction, IL6-mediated
signaling events, collagen formation, C21 steroid hormone
metabolism, genes encoding collagen proteins, integrin
signalling pathway, hypertension and suprofen pathway, and
are listed in Supplementary Table 3. Similarly, down regulated
genes were mainly enriched in superpathway of methionine
degradation, ribosome, FoxO family signaling, eukaryotic
translation elongation, propanoate metabolism, CDK
regulation of DNA replication, p38 MAPK pathway, glycine,
serine and threonine metabolic, and glycine, serine and
June 2021 | Volume 12 | Article 628907
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A B

FIGURE 1 | Box plots of the gene expression data before (A) and after normalization (B). Horizontal axis represents the sample symbol and the vertical axis
represents the gene expression values. The black line in the box plot represents the median value of gene expression. (A1-A12 = adipocytes from lean persons; B1-
B12 = adipocytes from obese patients).
FIGURE 2 | Heat map of differentially expressed genes.
FIGURE 3 | Volcano plot of differentially expressed genes. Genes with a significant change of more than two-fold were selected.
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threonine metabolism, and are listed in Supplementary Table 4.
GO analysis results showed that up regulated genes were
significantly enriched in blood vessel morphogenesis,
extracellular matrix and growth factor binding, and are listed
in Supplementary Table 5. Similarly, down regulated genes were
mainly enriched in organic acid biosynthetic process, cytosolic
small ribosomal subunit and structural constituent of ribosome,
and are listed in Supplementary Table 6.

Integration of PPI Network and
Module Analysis
The PPI network of up regulated genes consisted of 7271 nodes and
16270 edges (Figure 4) and down regulated genes consisted of 7276
nodes and 19862 edges (Figure 5) constructed in the mentha
Frontiers in Endocrinology | www.frontiersin.org 5
database and visualized using Cytoscape software. Based on the
menthadatabase, theDEGswith thehighestPPI scores identifiedby
the four centrality methods are shown in Supplementary Table 7.
There are 5 up regulated genes selected as hub genes, such as
HSPA8, HSPA5, YWHAH, STAT3 and ERBB2, and 5 down
regulated genes selected as hub genes, such as ESR1, ARRB1,
CSNK2A2, RBBP4 and NR3C1. A significant module was
obtained from PPI network of DEGs using PEWCC1, including
module 1 contains49nodes and99 edges (Figure6A) andmodule 2
contains 66 nodes and 754 edges (Figure 6B). Functional
enrichment analysis revealed that genes in these modules were
mainly involved in PI3K-Akt signaling pathway, regulation of
nuclear SMAD2/3 signaling, ribosome, eukaryotic translation
elongation, metabolism of amino acids and derivatives, disease,
FIGURE 4 | Protein–protein interaction network of up regulated genes. Green nodes denotes up regulated genes.
FIGURE 5 | Protein–protein interaction network of down regulated genes.
June 2021 | Volume 12 | Article 628907
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cellular amide metabolic process, establishment of protein
localization to endoplasmic reticulum, monocarboxylic acid
biosynthetic process translation, translational initiation,
macromolecule catabolic process and cytosolic small
ribosomal subunit.

Construction of Target Genes - miRNA
Regulatory Network
To further understand the regulatory network between miRNAs
and target genes, through miRNet database were constructed by
Cytoscape. As shown in Figure 7, the miRNA-regulated network
with 2613 nodes (miRNA: 2261; target gene: 352) and 17260
edges was obtained for up regulated target genes and Figure 8,
the miRNA-regulated network with 2685 nodes (miRNA: 2327;
target gene: 358) and 19827 edges was obtained for down
regulated target genes. Different target genes regulated by
miRNAs are shown in Supplementary Table 8. SOD2 had
been predicted to regulate 257 miRNAs (ex; hsa-mir-3144-3p),
CCND1 had been predicted to regulate 251 miRNAs (ex; hsa-
mir-7706), TUBB2A had been predicted to regulate 193 miRNAs
(ex; hsa-mir-5692c), CCND2 had been predicted to regulate 179
miRNAs (ex; hsa-mir-7162-3p), TMEM189 had been predicted
Frontiers in Endocrinology | www.frontiersin.org 6
to regulate 146 miRNAs (ex; hsa-mir-548z), BTG2 had been
predicted to regulate 247 miRNAs (ex; hsa-mir-6075), TXNIP
had been predicted to regulate 228 miRNAs (ex; hsa-mir-3194-
3p), MED28 had been predicted to regulate 203 miRNAs (ex;
hsa-mir-6861-5p), CNBP had been predicted to regulate 197
miRNAs (ex; hsa-mir-4651) and MKNK2 had been predicted to
regulate 195 miRNAs (ex; hsa-mir-3650).

Construction of Target Genes - TF
Regulatory Network
To further understand the regulatory network between TFs and
target genes, through NetworkAnalyst database were constructed
by Cytoscape. As shown in Figure 9, the TF-regulated network
with 629 nodes (TF: 336; Gene: 293) and 6293 edges was obtained
for up regulated target genes and Figure 10, the TF-regulated
network with 2685 nodes (TF: 342; Gene: 299) and 8597 edges was
obtained for down regulated target genes. Different target genes
regulated by TFs are shown in Supplementary Table 9. YWHAH
had been predicted to regulate 70 TFs (ex; MAZ), LYZ had been
predicted to regulate 62TFs (ex; TFDP1),HPhadbeenpredicted to
regulate 60 TFs (ex; KLF9), TRAM2 had been predicted to regulate
54 TFs (ex; KLF16), CCND1 had been predicted to regulate 51 TFs
June 2021 | Volume 12 | Article 628907
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FIGURE 6 | (A) Module of up regulated genes. The green nodes denote the up regulated genes (B) Module of down regulated genes. The red nodes denote the
down regulated genes.
FIGURE 7 | The network of up regulated genes and their related miRNAs. The green circles nodes are the up regulated genes, and chocolate diamond nodes are
the miRNAs.
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(ex; EZH2), EFNA1 had been predicted to regulate 91 TFs
(ex; TFDP1), MED16 had been predicted to regulate 85 TFs (ex;
MAZ), RWDD2A had been predicted to regulate 82 TFs (ex;
KDM5B), ADD3 had been predicted to regulate 82 TFs (ex;
SAP30) and AIP had been predicted to regulate 82 TFs (ex; PHF8).

Validation of Hub Genes
Immunohistochemical analysis demonstrated that the
expression of STAT3, CORO1C, SERPINH1, MVP and ITGB5
were highly expressed in adipose tissues, whereas PCM1, SIRT1,
EEF1G, PTEN and RPS2 were low expressed in adipose tissue
(Figure 11I) and Box plots is showed in Figure 11II. Validated
by ROC curves, we found that 10 hub genes had high sensitivity
and specificity, including STAT3 (0.951), CORO1C (0.799),
SERPINH1 (0.924), MVP (0.938), ITGB5 (0.938), PCM1
Frontiers in Endocrinology | www.frontiersin.org 7
(0.826), SIRT1 (0.799), EEF1G (0.913), PTEN (0.833) and
RPS2 (0.840) (Figure 12). The 10 hub genes might be
biomarkers of obesity and have positive implications for early
medical intervention of the disease.

Detection of the mRNA Expression of the
Hub Genes by RT-PCR
The adipocytes were removed to detect the mRNA expression
levels of hub genes in the PPI network, including STAT3,
CORO1C, SERPINH1, MVP, ITGB5, PCM1, SIRT1, EEF1G,
PTEN and RPS2. It was found that the mRNA expression levels
of STAT3, CORO1C, SERPINH1, MVP and ITGB5 were
significantly increased in the obesity compared with the
control group. Furthermore, the results illustrate that the
mRNA expression levels of PCM1, SIRT1, EEF1G, PTEN and
FIGURE 8 | The network of down regulated genes and their related miRNAs. The red circles nodes are the down regulated genes, and chocolate diamond nodes
are the miRNAs.
FIGURE 9 | TF ‐ gene network of predicted target up regulated genes. (Blue triangle - TFs and green circles- target up regulated genes).
June 2021 | Volume 12 | Article 628907
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RPS2 were significantly decreased in the obesity compared with
the control group (Figure 13). Therefore, the RT-PCR results of
the hub genes were consistent with the bioinformatics analysis.

Molecular Docking Studies
In the present research, the docking simulations are performed
to identify the active site conformation and major interactions
responsible for complex stability with the ligand receptor.
Designed novel molecules containing four membered more
sensitive b-lactam ring, the four membered and performed
docking studies using Sybyl X 2.1 drug design software.
Molecules containing b-lactam ring is designed which is easily
reacting group Figure 14A, based on the structure of anti-obesity
Frontiers in Endocrinology | www.frontiersin.org 8
drug orlistatfour membered ring Figure 14B, has potent pancreatic
lipase inhibitory activity. Themolecules were designed based on the
structure of the standard anti-obesity drug orlistat. The one protein
in each of three over expressed genes of ERBB2, its co-crystallized
protein of PDB code 1MFL,HSPAB 8its co-crystallized protein of
PDB code 5OOW and STAT 3its co-crystallized protein of PDB
code of 3CWG respectively selected for docking studies. The
investigation of designed molecules was performed to identify the
potential molecule. The most of the designed molecules with
respect to the standard anti-obesity drug orlistat, obtained
C-score greater than 5. The C-score greater than 5 are said to be
an active, among total of 32 designed molecules fewmolecules have
excellent good binding energy (C-score) greater than 7 respectively.
FIGURE 10 | TF‐gene network of predicted target down regulated genes. (Blue triangle - TFs and red circles- target up regulated genes).
FIGURE 11 | I) Immunohisto chemical l (IHC) analyses of hub genes were produced using the human protein atlas (HPA) online platform. II) Box plot for IHC analysis
of hub genes (A) STAT3 (B) CORO1C (C) SERPINH1 (D) MVP (E) ITGB5 (F) PCM1 (G) SIRT1 (H) EEF1G (I) PTEN (J) RPS2.
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FIGURE 12 | ROC curve validated the sensitivity, specificity of hub genes as a predictive biomarker for obesity prognosis. (A) STAT3 (B) CORO1C (C) SERPINH1
(D) MVP (E) ITGB5 (F) PCM1 (G) SIRT1 (H) EEF1G (I) PTEN (J) RPS2.
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FIGURE 13 | Validation of hub genes by RT- PCR. (A) STAT3 (B) CORO1C (C) SERPINH1 (D) MVP E) ITGB5 (F) PCM1 (G) SIRT1 (H) EEF1G (I) PTEN (J) RPS2.
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The molecule ND4, FU5 and PF5 obtained score of 7.242, 7.659
and 7.842 with 1MFL and the molecules PM6, ND1, ND3, ND5,
ND6, PF5 and PF6 obtained score of 7.5269, 7.6271, 8.0824, 7.6595,
7.0792 and 7.2659 with 3 CWG and the molecules PM4, PM6,
ND1, ND5, ND6, PF4, and PF obtained good binding score of
7.1631, 8.8312, 7.3781, 7.9872, 7.9567, 7.0213 and 7.0386 with
5OOW respectively. The molecules found binding score 5-6 is
PM1, PM2, PM3, PM4, PM5, PM6, PM7, PM8, ND1, ND2, ND3,
ND5, ND6, ND7, ND8, FU1, FU2, FU3, FU4, FU7, FU8, PF1, PF2,
PF3, PF4, PF6, PF7, PF8 and standard olistat (STD) with 1MFL and
PM2, PM6, FU17, FU18, FU19, FU20, FU23, PF26, PF27, PF28
and PF32 with 3CWG, and PM1, PM2, PM3, PM5, PM7, PM8,
ND2, ND3, ND4, ND7, ND8, FU1, FU2, FU3, FU4, FU5, FU6,
FU7, FU8, PF1, PF2, PF3, PF6, PF7 and PF8 5OOW respectively.
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No molecules obtained binding score with less than 5 respectively;
the values are depicted in Supplementary Table 10. The molecule
PF5 has good binding score with all three proteins and ND1, ND3,
ND5 and ND6 obtained good binding score with 3CWG and
5OOW. The molecule ND5 has highest binding score and is very
close with standard olistat, the interaction with protein 5OOW and
hydrogen bonding and other bonding interactions with amino
acids are depicted by 3D (Figure 15) and 2D (Figure 16) images.
DISCUSSION

Due to the heterogeneity of obesity, obesity was still a disease
with high rates of prevalence. This might be due to the scarcity of
A B

FIGURE 14 | (A) Scheme of designed molecule (B) Structure of orlistat.
FIGURE 15 | 3D Interaction of ND5 with 5OOW.
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valid biomarkers for detection of obesity and of valid treatment
for obesity. Therefore, molecular mechanisms of obesity are
necessary for scientists to find the treat and diagnosis method
of obesity. Because of the fast advancement of bioinformatics
analysis, it is more convenient to find out the genetic
modification in obesity. Bioinformatics analysis enables us to
explore the gene, the genetic change in obesity, which had been
proved to be a better approach to identify novel biomarkers.

In our study, a total of 876 DEGs were diagnosed from gene
expression dataset, consisting of 438 up regulated genes and 438
down regulated genes in obese patients compared to lean
persons. Study showed that PTGDS (prostaglandin D2
synthase) (45), LBP (lipopolysaccharide binding protein) (46),
EGFL6 (47), STAT3 (48) and HDAC9 (49) were closely
associated with obesity. The expression level of CYP11A1 (50)
and WNT11 (51) were linked to cancer progression, but these
genes might be novel target for obesity. A previous study showed
that expression of GPR146 played an important role in insulin
resistance (52), but these genes might be novel target for obesity.
Aberrant expression of RFX1 (53) and (54) are noticeable factors
in the heart disease, but these genes might be novel target for
obesity. CLDND1 expression predicted poor therapeutic
outcomes of hypertension patients (55).

Functional enrichment analysis of DEGs was implemented.
SULT1A1 (56), SULT1A2 (56), COL6A1 (57), COL6A2 (58),
SOS1 (59), STAT1 (60), COL5A2 (61), RND3 (62), COL15A1
(63), CBS (cystathionine-beta-synthase) (64), MCM6 (65),
TNFRSF12A (66), FMOD (fibromodulin) (67), TYMP
(thymidine phosphorylase) (68), ALPL (alkaline phosphatase,
biomineralization associated) (69), EFEMP1 (70), MFAP4 (71),
IGFBP5 (72), GLUL (glutamate-ammonia ligase) (73), HACD1
(74) and SCP2 (75) have been reported to be biomarkers of heart
disease or play a vital role in its pathogenesis, but these genes
might be novel target for obesity. Several studies have shown that
expressions of COL1A2 (76), COL3A1 (77), EEF2K (78),
ANGPT1 (79), NOTCH3 (80) and TGFBR2 (81) can be a
strong prognosis biomarker in patients with hypertension, but
these genes might be novel target for obesity. DAG1 (82), ITGAV
(integrin subunit alpha V) (83), LAMA5 (84), SPP1 (85),
COL11A1 (86), COL12A1 (87), SERPINH1 (88), RHOC (89),
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RPL14 (90), RPL29 (91), RPS12 (92), RPS15A (93), RPS2 (94),
RPS27 (95), RPS3 (96), RBL2 (97), EEF1D (98), ACACA (acetyl-
CoA carboxylase alpha) (99), ORC2 (100), PHGDH
(phosphoglycerate dehydrogenase) (101), SHMT1 (102),
NRCAM (neuronal cell adhesion molecule) (103), NRP2 (104),
RSPO3 (105), SRPX2 (106), THY1 (107), CD248 (108), CLEC3B
(109), CST3 (110), CTHRC1 (111), GPC1 (112), ACSS2 (113)
and HSD17B12 (114) have been extensively reported as a tumor
biomarkers, but these genes might be novel target for obesity.
The results obtained were consistent with studies that role of
LAMB3 (115), THBS1 (116), TIMP1 (117), LOX (lysyl oxidase)
(118), MMP9 (119), HSD11B1 (120), ITGB2 (121), HMOX1
(122), SOD2 (123), AKR1C3 (124), MAT2B (125), FOXO1
(126), FOXO3 (127), SIRT1 (128), ACACB (acetyl-CoA
carboxylase beta) (129), ELK1 (130), MAP3K5 (131), CTH
(cystathionine gamma-lyase) (132), AMOT (angiomotin)
(133), CCDC80 (134), CXCL10 (135), ERBB2 (136), KLF4
(137), LEP (leptin) (138), MFGE8 (139), SLIT2 (140), TNMD
(tenomodulin) (141), ADAMTS5 (142), ELN (elastin) (143),
HTRA1 (144), LUM (lumican) (145), MFAP5 (146), IL1RN
(147), ACADL (acyl-CoA dehydrogenase long chain) (148),
AGT (angiotensinogen) (149), FADS1 (150), PDK4 (151),
PER2 (152) and SLC27A2 (153) in obesity. CDKN1B was shown
to be a potential predictor of advanced hyperinsulinemia (154),
but this gene might be novel target for obesity. Reports illustrate
that CXCL12 (155) and IGFBP6 (156) and ELOVL6 (157) were
expressed in patients with insulin resistance, but these genesmight
be novel target for obesity.

Furthermore, by constructing PPI networks and moduleas,
we identified some key genes that provide new insights for
obesity diagnosis, prognosis, and drug target identification.
Expression of the HSPA8 (158) and CKB (159) were correlated
with disease grades of hypertension, but these genes might be
novel target for obesity. Recent studies have proposed that
HSPA5 (160), YWHAH (161), ESR1 (162), PTEN (163),
IRAK1 (164), CYR61 (165) and ZBTB16 (166) are involved in
obesity. Previous reports demonstrate that SPTAN1 (167),
STEAP2 (168), NEK6 (169), ARRB1 (170), FBXO11 (171),
UBR2 (172), INTS6 (173), CDK14 (174). LMO2 (175), MSN
(176), TAGLN2 (177), SRSF3 (178), SAFB (179), SIN3A (180),
TRIM24 (181) and AUTS2 (182) appears to be constitutively
activated in cancer, but these genes might be novel target for
obesity. CSNK2A2 expression might be regarded as an indicator
of susceptibility to heart disease (183), but this gene might be
novel target for obesity. COPG2, FBL, CSNK2B, PCM1, ZNF581,
KHDRBS1, RBMX, RBBP4 and DCAF7 are novel biomarkers
for obesity.

Target genes - miRNA regulatory network and target genes -
TF regulatory network were constructed and analyzed. A previous
study reported that CCND1 (184) and HP (185) were expressed in
obesity. CCND2 (186) and TXNIP (187) are a potential marker for
the detection and prognosis of insulin resistance, but these genes
might be novel target for obesity. Other research has revealed that
BTG2 was expressed in obesity (188). Expression of MED28 (189)
and EFNA1 (190) might participate in cancer progression, but
these genes might be novel target for obesity. TUBB2A,
June 2021 | Volume 12 | Article 628907
FIGURE 16 | 2D Interaction of ND5 with 5OOW.
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TMEM189, CNBP, LYZ, TRAM2, MED16, RWDD2A, ADD3
and AIP are a novel biomarkers for obesity.

However, this investigation had some limitations. Primarily, the
mechanisms of several hub genes in the pathological process of
obesity remain unclear, warranting needs further investigation.
Moreover, the success of our small molecule drug compound
screening in reducing obesity remains to be assessed.

In conclusion, in this study, we determined that STAT3,
CORO1C, SERPINH1, MVP, ITGB5, PCM1, SIRT1, EEF1G,
PTEN and RPS2 might be critical genes in the development and
prognosis of obesity through bioinformatics analysis combined
with validations. However, it is essential that further experiments
are carried out and clinical data made available to confirm the
results of our investigation and guide the discovery of future gene
therapies against obesity.
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86. Garcıá-Pravia C, Galván JA, Gutiérrez-Corral N, Solar-Garcıá L, Garcıá-
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Masdeu M, et al. HMOX1 as a Marker of Iron Excess-Induced Adipose
Tissue Dysfunction, Affecting Glucose Uptake and Respiratory Capacity in
Human Adipocytes. Diabetologia (2017) 60(5):915–26. doi: 10.1007/s00125-
017-4228-0

123. Aguer C, Pasqua M, Thrush AB, Moffat C, McBurney M, Jardine K, et al.
Increased Proton Leak and SOD2 Expression in Myotubes From Obese Non-
Diabetic Subjects With a Family History of Type 2 Diabetes. Biochim Biophys
Acta (2013) 1832(10):1624–33. doi: 10.1016/j.bbadis.2013.05.008

124. Svensson PA, Gabrielsson BG, Jernås M, Gummesson A, Sjöholm K.
Regulation of Human Aldoketoreductase 1C3 (AKR1C3) Gene Expression
in the Adipose Tissue. Cell Mol Biol Lett (2008) 13(4):599–613. doi: 10.2478/
s11658-008-0025-6

125. Zhao C, Chen X, Wu W, Wang W, Pang W, Yang G. MAT2B Promotes
Adipogenesis by Modulating SAMe Levels and Activating AKT/ERK
Pathway During Porcine Intramuscular Preadipocyte Differentiation. Exp
Cell Res (2016) 344(1):11–21. doi: 10.1016/j.yexcr.2016.02.019

126. Farmer SR. The Forkhead Transcription Factor Foxo1: A Possible Link
Between Obesity and Insulin Resistance. Mol Cell (2003) 11(1):6–8. doi:
10.1016/S1097-2765(03)00003-0

127. Boal F, Roumegoux J, Alfarano C, Timotin A, Calise D, Anesia R, et al.
Apelin Regulates FoxO3 Translocation to Mediate Cardioprotective
Responses to Myocardial Injury and Obesity. Sci Rep (2015) 5:16104.
doi: 10.1038/srep16104

128. Zillikens MC, Meurs JB, Rivadeneira F, Amin N, Hofman A, Oostra BA, et al.
SIRT1 Genetic Variation is Related to BMI and Risk of Obesity. Diabetes
(2009) 58(12):2828–34. doi: 10.2337/db09-0536
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