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Purpose. With the development of digital X-ray imaging and processing methods, the categorization and analysis of massive digital
radiographic images need to be automatically finished. What is crucial in this processing is the automatic retrieval and recognition
of radiographic position. To address these concerns, we developed an automatic method to identify a patient’s position and body
region using only frequency curve classification and gray matching.Methods. Our newmethod is combined with frequency analysis
and gray image matching. The radiographic position was determined from frequency similarity and amplitude classification. The
body region recognition was performed by image matching in the whole-body phantom image with prior knowledge of templates.
The whole-body phantom image was stitched by radiological images of different parts. Results. The proposed method can
automatically retrieve and recognize the radiographic position and body region using frequency and intensity information. It
replaces 2D image retrieval with 1D frequency curve classification, with higher speed and accuracy up to 93.78%. Conclusion.
The proposed method is able to outperform the digital X-ray image’s position recognition with a limited time cost and a simple
algorithm. The frequency information of radiography can make image classification quicker and more accurate.

1. Introduction

Digital X-ray imaging technique has generated massive
amounts of clinical image data in radiology departments
every day. These data need to be classified, retrieved, and
analyzed in Picture Archiving and Communication Systems
(PACS) or Radiology Information Systems (RIS). The urgent
requirements to process these massive image data demand an
automated and computationally efficient approach [1, 2].
Among these approaches, image classification, radiographic
position identification, and artificial intelligence analysis are
the most widely used ones. In this sense, the retrieval of
images and the learning of radiographic position are the most
fundamental parts.

Traditional medical image retrieval is semimanual, which
obtains clinical information from manually retrieved image
annotations and databases. The disadvantage of this
approach involves human errors and operator variations,
which is labor intensive and results in lower accuracy [1].

Automated methods using image retrieval technique are
based on image features such as color [2, 3], texture [4],
and shape [5]. Wang et al. proposed a dynamic interpolation
method to achieve stereo microscopic measurements, but the
scheme required a large quantity of matching elements [6].
Histograms were also widely used for image retrieval but
had its relevant disadvantages [7, 8]. Other image retrieval
techniques such as wavelet transform (WT) [9], Fourier
transform (FT) [10], local binary pattern (LBP) [11], and
Tamura texture features [12] can recognize an image type
through library searching and image classification. How-
ever, position information cannot be automatically deter-
mined with these algorithms. Besides, these methods lack
recognition on imaging organ tracking as researched by
Jiao et al. [13].

Pattern recognition can automatically process and ana-
lyze digital images as mentioned by Paparo et al. [14, 15].
Feature selection method reported by Silva et al. [16] and
Hussain [17] was used in traditional learning algorithms
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such as support vector machine (SVM) and k-means for
image retrieval but needs large datasets for training. Medical
expert systems as discussed elsewhere [18, 19] used mixed
algorithm to extract target area. Multilayer perceptron neural
networks (MLPNN) can identify tissues and diseases as
discussed in other places [20–22]; however, the process is
complex and the processing time is too long for clinical use.
Recently, the well-known deep learning algorithm has also
been introduced to medical image processing and achieved
equivalent results compared with professional expertise
[23–25], but the data quantity and accuracy have remained
a debate [26].

Therefore, in this paper, a method that combines
frequency curve classification with gray scale matching for
image retrieval and matching is proposed. It uses a whole-
body phantom image as the template mask for anatomical
and radiographic location marking, with shorter time cost
and higher accuracy.

2. Materials and Methods

2.1. Image Preprocessing. Raw digital radiographic image
data typically has large dynamic range and gray level
features. Therefore, we use linear histogram stretching
and a median filter for noise reduction. The respective
equations are

FH x, y = 65535
B − A

⋅ f x, y − A , 1

where

A =min f x, y ,
B =max f x, y ,

2

and

Fw x, y =med f x − R, y − l , R, l ∈ w 3

w is 5.

2.2. The Phantom X-Ray Image Masks. X-ray imaging phan-
toms are physical analogs of human body shapes and tissues
as studied by Dewerd and Kissick [27]. Plastic and nylon are
used to simulate the outline of the human body, bones, and
primary tissues for whole-body radiography. We took X-ray
imaging of the brain, cervical spine, chest, lumbar spine,
pelvis, and limbs of a whole-body phantom (Whole Body
Phantom PBU-50, Kyoto Kagaku, Japan) by using Digital
Radiology DR (Wan dong HF50, Beijing, China). Each of
the images was processed by adjusting the histogram, filter-
ing, performing rigid translations, and scaling [28] and then
fitted into a whole-body radiographic image. We also per-
formed contrast-limited adaptive histogram equalization
(CLAHE) for handling the variation in X-ray exposures.

For recognition of the radiographic positions after
completing the input image matching, we performed the
anatomical definition to a phantom template; the matrix of
images is 2000× 800, and the height of the corresponding
body is 165 cm without gender. For the information of

the image, diagnostician can use different ranges to define
different organs, such as head size ranging from [260, 1]
to [540, 285] and lung size ranging from [250, 130] to
[560, 365], as shown in Figure 1. For the frontal image,
there are seven radiographic positions and six radiographic
target organs. The phantom template defines the target
template for subsequent matching based on automatic
identification and X-ray photography posture.

2.3. Classification Based on Image Frequency. Radiographic
images have special frequency and amplitude characteristics,
which are position dependent. These characteristics of the
frequency curve can be used for classifying the type of image
(for a given radiological position) and extract the texture of
the organ.

2.4. The Characteristics of X-Ray Image Frequency. We use
the fast Fourier transform (FFT) of the organ images to
obtain the frequency spectrum as follows:

F u, v = 1
MN

〠
M−1

x=0
〠
N−1

y=0
f x, y ⋅ e−j2π ux M+vy N , 4

Heart range
Head range

Lung range
Cervical spine
range

Figure 1: The whole-body phantom’s X-ray mask and the examples
of partial anatomical definition.

2 Journal of Healthcare Engineering



where M and N are the image resolution and u and v are
coordinates in the frequency domain. From the frequency
image and 2D curve, we find that the effective anatomical
contours concentrate on the minimum 2% of the frequency
curve. In Figure 2, the frequency curve at each position is
the average of 10 images of the same radiological position
in the same coordinate system, and the curve features
shown are significantly different among the positions.
Partly, the differences of some positions such as the lungs
and limbs are not reflected in the frequency curve; thus,
we offer the areas under the curve (AUCs), whose values
of the lungs and limbs have obvious differences. Combined
with frequency curve and AUCs, differences of positions
can be obviously shown. The radiological positions are
the head, lungs, lumbar (spine), pelvis (abdominal), joint
(knee), and limbs.

In X-ray images, organs or tissue has a characteristic
frequency response, even in different samples and different
radiological positions. For example, the chest imaging using
appropriate exposure parameters shows lung texture details
and the lung signal captured in certain frequency bands. As
shown in Figure 3, which shows the average frequency curve
of 10 lung X-ray images, there is a peak in the low-frequency
range, which corresponds to a lung texture detail (extracted
using a Butterworth filter). For comparison, a similar peak
in the averaged knee curve corresponds to bone trabeculae
as plotted in Figure 4.

2.5. Classification Based on Image Frequency. The frequency
curves for six radiographic positions were used as the
standard library for comparison with arbitrary input images,
and the similarity between input image and standard library
was determined by the mean variance of the vector frequency
curve. The input image is f w ; the corresponding
amplitude-arranged vector is A1, A2,…, An ; the six fre-
quency curves, F w , are used as a standard for comparison
with arbitrary input images in the library and have

amplitudes of B1, B2,…, Bn . The mean-variance similarity
between the input image and the reference organ image is

a = sqrt
〠n

i=1 f w − F w ⋅ ∧2
length f w

,

a = sqrt sum f w − F w ⋅ ∧2
length f w

5

The cosine of the angle θ between the two images can be
described as follows:

cos θ =
〠n

i=1 f w ⋅ F w

〠n

i=1 f w 2 ⋅ 〠n

i=1 F w 2
= f w ⋅ F w

f w ⋅ F w

6

The smaller mean-variance is and the closer the cosine
value is to 1 (indicates an angle closer to zero), the greater
the similarity is. Matching 6 curves yields 6 mean-variance
values, and then bubble sort is performed to determine the
two mean-variances with the highest absolute value. The
absolute values of the top two are less than 0.02, compar-
ing the cosine similarity between the wave curves of the
source image and organs which corresponds to the top
two mean-variances. The organ which is the closest to
mean-variance is considered the same as the organ of
the source image. Six organs had mean-variances with
standard frequency curves, and the reciprocal of that for
all organs is plotted in Figure 5, as histograms. Higher
reciprocal of mean-variance signifies greater similarity.

2.6. Image Matching Based on Matrix Multiplication and
Correlation Coefficient. After the vector calculations based
on image frequency have been performed, we determine
the types of the images that are the most similar to the
standard organ curve according to the shape of their
curves and mean variances. The input image will be
matched against the whole-body phantom mask so that
the organ field is defined. This step involves matrix multi-
plication and the correlation coefficient.

In (7), (8), and (9), the input image after preprocessing is
Finput x, y and the 2% part of the frequency curve is f w .
The image has been finished by classification based on image
frequency, and the phantom image is denoted as p m, n . (In
(7), (8), and (9), p m, n represents image patches whose fre-
quency is not within the minimum 2% range. The range of p
m, n represents the image from top to bottom.) By finding
themaximumvalues ofM andR, regionT can be found,which
is the intersection of M and R shown in the phantom image
and also the target recognized region.

M =
Finput x, y ⋅ p m, n

Finput x, y 2
=
〠

m
〠

n
Finput x, y ⋅ p m, n

〠
m
〠

n
Finput x, y

2
,
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Figure 2: Frequency curves and the AUCs for various anatomical
regions.
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R =
〠
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n
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,

8

T =M R 9

The maximum values of M and R have been solved,
respectively, by the matrix multiplication and correlation
coefficient, between the input image and phantom image. T
is a region corresponding to the phantom area and is
indicated by a bright box. To improve the processing speed,
the matrix of the input and phantom images is reduced
(maintaining image proportions).
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Figure 3: (a) From top to bottom: the chest X-ray image, the image frequency curve, and the chest X-ray image with inversed gray
scale. (b) From top to bottom: chest X-ray image by Butterworth filtering, the image frequency curve, and the chest X-ray image with
inversed gray scale. (c) From top to bottom: lung texture image reconstructed by the filtered frequency information, the frequency curve,
and the lung texture image with inversed gray scale.
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2.7. Implementation of the Overall Algorithm. For any
input image being preprocessed, the 2D Fourier transform
will be taken and the lowest 2% frequency curve of the
image is obtained. Compared with 6 predefined curve
types and the input image type (radiographic position),
the curve is classified by calculating the curve similarity
and the mean variance. Next, the image is matched in
the phantom image by finding the maximum value of
matrix similarity. The final matching region, which corre-
sponds to a priori knowledge of the patient’s anatomical
field, is shown in the phantom as the result. The workflow
is shown in Figure 6.

3. Results and Discussion

217 clinical radiological images were randomly collected in
this study, from the Radiology Department of Taishan
Medical University. The radiological position and body

region in all images have been automatically recognized
by our method. The results were verified by the clinical
physicians of the Radiology Department. For comparison,
the input images were also processed by dot matrix
matching, correlation matching, and histogram retrieval
algorithms. The accuracy rates and the processing times
are shown in Table 1. The accuracy between the proposed
method and any other methods has a statistically signifi-
cant difference (p < 0 005).

The results have shown that the proposed algorithm has
the highest accuracy and robustness for all images (6 position
types); the average organ recognition accuracy was 93.78%
and the average judgment time was 0.2903 s.

The proposed method is better than other benchmark
methods; moreover, the method can obtain the radiographic
position’s description from the anatomical knowledge in the
phantom image and reduce the processing time and recogni-
tion accuracy. What is more, compared with some effective
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Figure 4: (a) From top to bottom: the knee X-ray image and the knee image frequency curve. (b) From top to bottom: the knee X-ray image by
Butterworth filtering and the image frequency curve by filtering. (c) From top to bottom: the trabeculae texture image reconstructed by the
filtered frequency information and the frequency curve.
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approach such as the large margin local estimate (LMLE)
[15] and deep learning network [24], the LMLE method only
achieved less than 90% accuracy with 10% data as the train-
ing set. Although the convolution neural network in [24]
achieved more than 90% accuracy in most image data, the
approach needs 7000+ image slices and a most recently
equipped computer (i7 3.4GHz, 16GB RAM) for neural net-
work training, while our method only needs simple matrix
multiplication and correlation coefficient which can be

calculated on a multicore computer with less time and more
than 90% of the accuracy.

The sample results of the radiographic position recog-
nition are shown in Figure 7, by matching rectangular
areas and annotated text. This integrated method can accu-
rately mark the photograph site on the phantom images.
We can get the information of photography range and
photography sites according to early anatomical definition
in phantom-pixel area. For different images with the same
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Figure 5: The reciprocal of mean-variance between 6 organs and the standard frequency curve.
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position type, the image matching can show the regional
differences in the whole-body phantom image. For exam-
ple, in Figure 7, three different cervical spine images have
been identified and shown in different cover areas.

The human body model was represented by a phantom
template X-ray image. The phantom was developed to mimic
the human body X-ray attenuation parameters. The radiogra-
phy of the phantom was closely approximated to the real
human, even though the model structure was only simplified
to themacroscopic shape of the organs. For example, the lung
phantom made of plastic can simulate the lung contour and

segments but did not include the pulmonary veins and nod-
ules. In the X-ray image of the phantom, the macroscopic
profile of the lung is authentic for the imaging modality.
The majority of conventional radiography sites are matched
accurately by using this phantom image approach. For the
detection of the contours of the lungs and the heart, the
independent frequency or gray information is not sufficient.

The histogram and gray intensity are widely used for
image similarity detection. Histogram matching has the
advantage of being fast and no limitation by image size. How-
ever, it cannot determine the position and scope information.

Input image

Classification by the typical curves

The absolute value of first a and
second a < 0.02?

Determine organ

Comparison of cosine cos �휃

Matrix multiplication algorithm-
based organ range specified matches the body

Algorithm based on correlation coefficient of
body organ range specified matches

Yes

No

The intelligent recognition of towards the direction and positioning range

Figure 6: Workflow.

Table 1: The accuracy rate of four different radiographic position matching methods.

Radiographic
positions

Dot matrix matching
algorithm (%)

Correlation matching
algorithm (%)

Histogram retrieval
algorithm (%)

Current
algorithm (%)

Average time of current
algorithm (s)

Head 83.3 100.0 50.0 100.0 0.2808

Lungs 47.4 71.9 45.6 100.0 0.2918

Lumbar 45.6 66.7 40.5 100.0 0.2934

Pelvis 35.3 41.2 41.2 66.7 0.2919

Joint 90.9 100.0 27.3 100.0 0.2903

Limbs 75.8 56.8 56.6 96.0 0.2936

Average 63.1 72.7 43.5 93.7 0.2903
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The method presented in this paper obtains robust frequency
characteristic curves from X-ray information. The templates
of different anatomical features have distinct frequencies
and amplitudes. Comparison of input images and template
only needs to take 2% effective frequency characteristics.

We extract a 1D curve from a 2D image, which accelerates
and simplifies the image-matching algorithm. For 5.5GB
image data consisting of 217 images, the total processing time
was 414.6 s.

Although our method was performed well for all of the
test images, the algorithm has some limitations. The major
obstacle is the poor result for nonstandard radiography; the
matched result will be in the wrong position in the phantom
image. For these cases, in a subsequent study, we plan to
develop more standard phantom models, such as for babies,
animals, and separate male and female bodies, in order to
obtain more appropriate phantom images.

4. Conclusions

In this paper, we proposed a method for the automatic
recognition of a radiographic position and body field, based
on frequency curve classification and gray information of

digital radiographic images. Compared with image analysis
methods based on complex pattern recognition algorithm,
the proposed method can extract more information about
the patient’s position. The frequency classification in this
work has good sensitivity and robustness to reduce the errors,
which is caused by variations in the lighting environment
(image exposure, detector sensitivity). This method is a fast
1D classification for 2D images and can be used for automatic
feature extraction and be applied to big data calculations.
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Judgment result
Radiographic range:

Upper boundary: vertex of the head
The lower boundary: the fourth
thoracic vertebra
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spine
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Radiographic location: AP view of cervical
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Figure 7: The automatic recognition results for three cervical spine images.
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