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Decision effect of a deep‑learning 
model to assist a head computed 
tomography order for pediatric 
traumatic brain injury
Sejin Heo1,2, Juhyung Ha3, Weon Jung2, Suyoung Yoo2, Yeejun Song2, Taerim Kim1,2 & 
Won Chul Cha1,2*

The study aims to measure the effectiveness of an AI‑based traumatic intracranial hemorrhage 
prediction model in the decisions of emergency physicians regarding ordering head computed 
tomography (CT) scans. We developed a deep‑learning model for predicting traumatic intracranial 
hemorrhages (DEEPTICH) using a national trauma registry with 1.8 million cases. For simulation, 
24 cases were selected from previous emergency department cases. For each case, physicians made 
decisions on ordering a head CT twice: initially without the DEEPTICH assistance, and subsequently 
with the DEEPTICH assistance. Of the 528 responses from 22 participants, 201 initial decisions were 
different from the DEEPTICH recommendations. Of these 201 initial decisions, 94 were changed 
after DEEPTICH assistance (46.8%). For the cases in which CT was initially not ordered, 71.4% of 
the decisions were changed (p < 0.001), and for the cases in which CT was initially ordered, 37.2% 
(p < 0.001) of the decisions were changed after DEEPTICH assistance. When using DEEPTICH, 46 
(11.6%) unnecessary CTs were avoided (p < 0.001) and 10 (11.4%) traumatic intracranial hemorrhages 
(ICHs) that would have been otherwise missed were found (p = 0.039). We found that emergency 
physicians were likely to accept AI based on how they perceived its safety.

Medical artificial intelligence (AI) modules have been developed for use in various  fields1–4. The role of AI in 
medicine is quite diverse as AI is involved in a wide range of medical care processes in various ways, from diag-
nosis to predicting  prognoses5–9. AI approaches can be categorized into several types based on their functions 
as clinical practice tools: (1) analysis of complex medical data to derive medical insights, (2) image data analysis 
and interpretation, and (3) monitoring continuous medical data to plan appropriate treatment strategies and 
follow-up2.

Several clinical decisions are required during routine medical care processes; accurate and rapid clinical 
decisions are directly linked to effective patient  outcomes10–13. It has been proven that AI assistance in clinical 
decisions improves diagnoses and treatment processes in terms of accuracy and timeliness in well-designed 
 interventions6,14–18. However, most studies only describe the mechanisms of AI impact using mathematical and 
computational  methods19; few studies focus on the clinical decision-making process, e.g., explaining the effec-
tiveness of a machine learning (ML)-based clinical decision support program.

Immediate clinical decision-making is particularly important in the emergency department (ED)20–22, where 
decisions such as obtaining a head CT for a pediatric patient are the most  challenging23–25. Head CT is a simple 
yet critical decision, because while the head CT is a diagnostic tool of choice for intracranial hemorrhage (ICH)26, 
it is also associated with an increase in  malignancies27,28.

Conventional head CT clinical decision rules, such as Pediatric Emergency Care Applied Research Network 
(PECARN) rules, have been introduced to guide clinical decisions; however, the rules require detailed history 
and are difficult to apply in clinical  practice29–31. AI prediction models have been developed to overcome such 
limitations. Although models for head CT scans with good performance and accuracy have been  developed25,32,33, 
their impact on clinical decision-making has not been explored.

OPEN

1Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of 
Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea. 2Department of Digital Health, Samsung 
Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic 
of Korea. 3Department of Computer Science, Indiana University Bloomington, Bloomington, IN, USA. *email: 
wc.cha@samsung.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-16313-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12454  | https://doi.org/10.1038/s41598-022-16313-0

www.nature.com/scientificreports/

This study aims to measure the effectiveness of the deep-learning model for predicting traumatic ICH (DEEP-
TICH) in the decisions of emergency physicians regarding head CTs, and to evaluate the factors associated with 
the effectiveness of DEEPTICH.

Results
Prediction model performance. DEEPTICH predicted ICHs such as cerebral contusion, subdural hem-
orrhage, epidural hemorrhage, subarachnoid hemorrhage, intraventricular hemorrhage, intracerebral hemor-
rhage, and cerebellar hemorrhage, but not microhemorrhage. DEEPTICH obtained a value of 0.927 (95% CI 
0.924–0.930) for the area under the receiver operating characteristic curve (AUROC) on internal validation 
from the 80,508 cases in the national database, and 0.886 (95% CI 0.878–0.895) AUROC on external validation 
based on the local hospital database (Fig. 1). In the external validation sets, the overall sensitivity, specificity, 
positive predictive value, and negative predictive value for clinical performance were 0.95, 0.67, 0.02, and 0.99, 
respectively. The specificity was lower for patients under 3 years. The detailed clinical performance values by age 
group are shown in Supplementary Table S1.

Demographics for decision simulation study. A total of 22 emergency physicians completed 24 simu-
lation test cases and surveys. We obtained 528 responses for the simulation test case. The participants com-
prised eight junior residents of postgraduate year (PGY) 2 and 3, nine senior residents of PGY 4 and 5, and five 
specialists. The most common age group was 30 to 40 years, with 12 of them (54.5%) having an average age of 
31.5 years. Ten (45.5%) participants had more than five years of experience each (Table 1).

The influence of recommendation directions. Figure 2 shows the flows of the responses by partici-
pants regarding the head CT binary decision before and after the DEEPTICH recommendation. The responses 
in which the initial decision was the same as the DEEPTICH recommendations (n = 327, 61.9%) were excluded. 
We analyzed the responses that were different from the initial decision and the DEEPTICH recommendations 
(n = 201, 38.1%).

Of the 201 responses, 56 decisions were not to order head CTs as the initial decision; however, when DEEP-
TICH recommended the head CT, 40 of the 56 (71.4%) decisions were changed, i.e., respondents decided to 

Figure 1.  Receiver operating characteristics (ROC) curve for internal validation outcome on the time-
validation set.
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order head CTs (p < 0.001). When DEEPTICH recommended not to order head CTs, only 54 (36.6%) of the 145 
initial decisions to order CTs were changed (p < 0.001).

We analyzed the responses of all the five-scale head CT ordering willingness scores based on DEEPTICH rec-
ommendation (n = 528). We found considerable score changes and decision augmentations according to DEEP-
TICH recommendation. In cases where DEEPTICH advised head CTs, the mean of the willingness score changed 
from 3.46 to 3.97 (Δwillingness, 0.51). In cases where DEEPTICH advised not to order head CTs, the mean score 
changed from 2.69 to 2.27 (Δwillingness, − 0.42). The detailed results are presented in Supplementary Table S2.

The physician’s factor of influence. It was observed that when DEEPTICH recommended not to order a 
head CT, the decision effect differed based on the age and experience of the physician. Relatively inexperienced 
physicians were more likely to accept the recommendation than experienced physicians (− 43 (29%) vs. − 11 

Table 1.  Characteristics of the physician. Demographic characteristics of participants (n = 22). PGY post 
graduate year.

Gender, n (%)

Male 11 (50.0)

Female 11 (50.0)

Age, n (%)

20–30 8 (36.4)

30–40 12 (54.5)

 ≥ 40 2 (9.1)

Age, mean (SD) 31.5 (4.0)

Physician experience, n (%)

Junior resident (PGY 2 & 3) 8 (36.4)

Senior resident (PGY 4 & 5) 9 (40.9)

Specialist 5 (22.7)

Work years, n (%)

 < 5 years 12 (54.5)

 ≥ 5 years 10 (45.5)

Figure 2.  Ordering a head CT binary decision results on the simulation cases.
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(7.3%), p < 0.001). Physicians older than 40 years did not change their decision, even though most of the physi-
cians in the age group of 30–40 years did so: 0 (0.0%) vs. − 36 (20.0%), p = 0.021 (Table 2).

Factors associated with AI acceptance. We conducted univariate and multivariate logistic analyses to 
identify the factors associated with the effectiveness of DEEPTICH. The participants were more likely to accept 
AI recommendations when the PECARN risk was high (Odds ratio (OR), 15.02; 95% CI 1.60–473.38) and when 
the initial head CT decision was no (OR, 2.68; CI 1.08–6.88) (Table 3). We also conducted a logistic regression 
on the survey outcomes; no item was associated with the effectiveness of DEEPTICH.

DEEPTICH effectiveness by PECARN risk. We analyzed head CT decisions prior to and after DEEP-
TICH recommendation using PECARN risk rules (Table 4). For cases of age less than 2 years old, using DEEP-
TICH could have avoided 15 (13.6%) unnecessary CTs (p < 0.001) for every 110 low risk head injury patients. For 
every 44 high risk head injury patients, 15 (34.1%) necessary CTs were properly ordered (p < 0.001). For cases 
older than 2 years old, using DEEPTICH could have avoided 18 (16.4%) unnecessary CTs (p < 0.001) for every 
110 low risk head injury patients. DEEPTICH did not induce significant decision changes in the intermediate 
group for all ages.

Table 5 presents the overall clinical outcomes using DEEPTICH. When using DEEPTICH, 46 (11.6%) unnec-
essary CTs were avoided (p < 0.001) and 10 (11.4%) all traumatic ICHs that would have been otherwise missed 
were found (p = 0.039).

Survey outcome. The survey outcomes are presented in Table 6. Regarding general medical AI, only seven 
(31.8%) participants had prior experience, and five (22.7%) had the technical knowledge. In addition, 16 par-
ticipants (72.7%) did not have sufficient knowledge regarding data-driven AI, but had the intention to learn, 
and their belief in the positive impacts of AI was significantly high (Intent, 20 [90.9%]; Optimism, 21 [95.5%]).

Among the participants, 19 (86.4%) responded that they understood the mechanisms of DEEPTICH. The 
participants mostly disagreed with DEEPTICH regarding clinical safety. Only 15 (68.2%) participants agreed 
with the recommendations on clinical safety, whereas five (22.7%) participants disagreed with the quality of 
information obtained from DEEPTICH.

Discussion
To the best of our knowledge, this is the first study to develop a decision simulation study design and to inves-
tigate the acceptance of AI in clinical decisions by physicians. Most AI-based clinical decision support system 
(AI-CDSS) studies have reported improved diagnostic accuracy or efficiency based on the agreements with AI 

Table 2.  Changes in the decision to order a head CT based on the physician’s characteristics. n (%) of 
physicians who answered ordering a head CT. Post hoc analysis. 30–40 vs ≥ 40, p < 0.001.

Physician’s characteristics

DEEPTICH 
recommendation on head 
CT Total responses

Before DEEPTICH 
recommendation (n, %)

After DEEPTICH 
recommendation (n, %) Decision change (n, %) p-value

Work years

Yes

0.689

 < 5 years (n, physician 
number) n = 108 78 (72.2%) 100 (92.6%) 24 (22.2%)

 ≥ 5 years n = 90 64 (71.1%) 81 (90.0%) 17 (18.9%)

Physician experience 0.527

Junior resident (PGY 2 & 3) n = 72 48 (66.7%) 64 (88.9%) 18 (25.0%)

Senior resident (PGY 4 & 5) n = 81 64 (79.0%) 79 (97.5%) 15 (18.5%)

Specialist n = 45 30 (66.7%) 38 (84.4%) 8 (17.8%)

Age 0.189

20–30 n = 72 51 (70.8%) 65 (90.3%) 14 (19.4%)

30–40 n = 108 75 (69.4%) 99 (91.7%) 26 (24.1%)

 ≥ 40 n = 18 16 (88.9%) 17 (94.4%) 1 (5.6%)

Work years

No

 < 0.001

 < 5 years n = 180 83 (46.1%) 40 (22.2%)  − 43 (23.9%)

 ≥ 5 years n = 150 62 (41.3%) 51 (34.0%)  − 11 (7.3%)

Physician experience 0.073

Junior resident (PGY 2 & 3) n = 120 51 (42.5%) 25 (20.8%)  − 26 (21.7%)

Senior resident (PGY 4 & 5) n = 135 57 (42.2%) 36 (26.7%)  − 21 (15.6%)

Specialist n = 75 37 (49.3%) 30 (40.0%)  − 7 (9.3%)

Age 0.021

20–30 n = 120 50 (41.7%) 32 (26.7%)  − 18 (15.0%)

30–40 n = 180 76 (42.2%) 40 (22.2%)  − 36 (20.0%)

 ≥ 40 n = 30 19 (63.3%) 19 (63.3%) 0 (0.0%)
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by  doctors34,35. However, before considering the effectiveness of an AI approach on accuracy, it is necessary to 
know in detail its function in the clinical decision-making process.

In this study, we developed DEEPTICH, a deep-learning model for predicting traumatic ICHs. DEEPTICH 
had higher AUROC than previously known pediatric head CT  rules36. Because the rate of traumatic brain injury 
(TBI) is higher in younger age groups than in older age groups, this difference in data was considered when set-
ting the model threshold, which made DEEPTICH have less specificity in younger age  group37,38.

Table 3.  Logistic regression analysis of factors affecting effectiveness of machine learning model to assist head 
CT order. PGY post graduate year.

Univariate Multivariate

OR 95% CI p-values OR 95% CI p-values

Gender 0.962

Female (Reference)

Male 1.01 (0.58–1.77) 0.962

Age  < 0.001

20–30 (Reference)

30–40 1.55 (0.85–2.84) 0.154 2.10 (0.88–5.18) 0.100

 ≥ 40 0.06 (0.00–0.32) 0.008 0.09 (0.00–0.86) 0.078

Physician experience 0.006

Junior resident (PGY 2 & 3) (Reference)

Senior resident (PGY 4 & 5) 0.71 (0.37–1.34) 0.289 0.87 (0.31–2.44) 0.795

Specialist 0.30 (0.14–0.63) 0.002 0.89 (0.15–5.21) 0.896

Work years  < 0.001

 < 5 years (Reference)

 ≥ 5 years 0.33 (0.18–0.59)  < 0.001 0.4 (0.12–1.27) 0.124

PECARN risk  < 0.001

Low (Reference)

Intermediate 1.62 (0.90–2.93) 0.104 0.93 (0.43–2.01) 0.859

High 25.91 (4.91–479.14) 0.002 15.02 (1.60–473.88) 0.045

Risk—age 0.014

 < 2 (Reference)

 ≥ 2 0.49 (0.28–0.87) 0.014 0.66 (0.34–1.29) 0.222

Initial CT binary decision  < 0.001

Yes (Reference)

No 4.21 (2.19–8.42)  < 0.001 2.68 (1.08–6.88) 0.036

Table 4.  Ordering a head CT decision result according to risk of cases.

Age PECARN risk
Before DEEPTICH recommendation, n 
(%) After DEEPTICH recommendation, n (%) p-value

 < 2 years

Low (n = 110) 37 (33.6) 22 (20.0)  < 0.001

Intermediate (n = 110) 49 (44.5) 54 (49.1) 0.372

High (n = 44) 28 (63.6) 43 (97.7)  < 0.001

 ≥ 2 years

Low (n = 110) 53 (48.2) 35 (31.8)  < 0.001

Intermediate (n = 110) 76 (69.1) 74 (67.3) 0.619

High (n = 44) 44 (100.0) 44 (100.0) –

Table 5.  Clinical impact of the model in the study. ICH intracranial hemorrhage, n, (%) the number of 
responses who answered ordering a head CT. a Avoidable head CT cases were defined as those whose CT results 
were finally negative in a low and intermediate risk.

Case characteristics
Before DEEPTICH recommendation, 
n (%)

After DEEPTICH recommendation, 
n (%) p-value

Avoidable head CT  casesa (n = 396) 191 (48.2) 145 (36.6)  < 0.001

Any ICH findings in head CT (n = 88) 70 (79.5) 80 (90.9) 0.039
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Subsequently, we identified that the effect of AI on decision making of the physician is influenced by various 
factors; one of those factors is the recommendation direction (positive vs. negative). We found that when the 
suggestion direction of the model is positive, emergency physicians are more likely to accept the recommenda-
tions of the model; whereas, when the suggestion direction of the model is negative, the decision change differs 
based on work years and age of the physician, suggesting that inexperienced clinicians are significantly more 
likely to be influenced by AI tools than experienced clinicians.

We demonstrated that DEEPTICH is effective, even when the AI-CDSS and the initial decisions of physicians 
are the same. After realizing that AI-CDSS concur with their initial decision, the level of confidence increased 
significantly, which is important, because clinical decisions are often challenged by non-clinical factors, both 
socially and psychologically.

As DEEPTICH only predicts ICHs, excluding microhemorrhages, there may be some reluctance in adopt-
ing its recommendations by clinicians because microhemorrhages are a clinically important sign of significant 
diffuse TBI. Despite ICH being the most common pediatric TBI for neurosurgical  intervention39,40, for a more 
effective and reliable model, the prediction of other abnormalities must be considered.

We believe that DEEPTICH can make an impact in improving clinical outcomes. Overall, DEEPTICH is 
helpful in reducing unnecessary head CTs and missed ICH cases. Although, the model decision effect is not 
significant in the intermediate group, approximately 70% of children in the low- or high-risk groups of head 
trauma can benefit from using DEEPTICH through enhanced ordering head CT in high risk groups and decreas-
ing ordering head CT in low risk groups.

The survey outcome indicated that physicians were concerned about the clinical safety and information qual-
ity of DEEPTICH. Therefore, we propose that for the clinical use of medical AI, development information, such 
as data processing and modeling should be described in a greater detail to physicians to alleviate their concerns.

Consequently, considering the results and sensitivity of DEEPTICH, we suggest using DEEPTICH with 
conventional head CT rules in optimizing the prevention of adverse outcomes and unnecessary head CTs. This 
model can be used to supplement standard head CT rules even if the case history is not filled out or it has been 
24 h since the last visit, especially for doctors with less experience.

This study has two limitations. First, the simulation cases are not representative of real-world pediatric 
TBI populations; there is a greater proportion of low-risk TBI patients in the real world, therefore the decision 
effect and clinical performance of the model may be different. Second, the simulation cases were non-randomly 
selected; in the selected cases, DEEPTICH results were correlated to real cases. Therefore, we did not evaluate 
the accuracy and superiority of DEEPTICH in this well-designed decision simulation study. When implement-
ing DEEPTICH in a real-world clinical setting, the rate of AI acceptance by the physician might be different.

We found that AI acceptance was affected by multiple factors, such as the characteristics of the physician, 
risk of cases, and the recommendation of DEEPTICH, making it difficult to predict the effect of the model in 
the real world. Therefore, when implementing AI CDSS in clinical scenarios, we suggest considering the model 

Table 6.  Participant’s response to survey (n = 22).

Agree
n (%)

Disagree
n (%)

AI in general

Prior experience
Did you attend the lecture or seminar regarding medical AI? 7 (31.8) 15 (68.2)

Technical knowledge
Have you learned about coding such as C language for tensorflow, python, and R? 5 (22.7) 17 (77.3)

Knowledge
Do you have enough knowledge of data driven AI? 6 (27.3) 16 (72.7)

Optimism
Do you think AI will have a positive impact on medicine? 21 (95.5) 1 (4.5)

Intent
Do you have an intention to learn medical AI? 20 (90.9) 2 (9.1)

AI in this study (DEEPTICH)

Comprehension
I understood the mechanism of the DEEPTICH 19 (86.4) 3 (13.6)

Reliability
I trust the recommendation of the DEEPTICH 19 (86.4) 3 (13.6)

Clinical safety
I believe that DEEPTICH is safe for use in clinical settings 15 (68.2) 7 (31.8)

Perceived compatibility
The recommendation of the DEEPTICH is easy to understand 20 (90.9) 2 (9.1)

Information quality
The quality of DEEPTICH recommendation is sufficient to make a clinical decision 17 (77.3) 5 (22.7)

Doctor-patient relationship
DEEPTICH can help improve doctor-patient relationships 18 (81.8) 4 (18.2)

Potential effectiveness
DEEPTICH can be clinically effective in improving patient treatment quality and prognosis 19 (86.4) 3 (13.6)
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performance along with its acceptance by physicians. To assess improvements in the clinical outcomes, rand-
omized clinical trials in real-world setting are required.

Conclusions
DEEPTICH affects decisions of emergency physicians to order head CTs, as demonstrated by the decision simula-
tion study. The effectiveness of the model is more significant when the model recommends ordering of head CTs.

Methods
This study was approved by the Institutional Review Board (IRB) of Samsung Medical Center IRB Nos. 2020-07-
072 and 2020-09-218. We conducted the decision simulation study from April 26, 2021 to June 5, 2021. Informed 
consent was obtained from all participants. We confirm that all the experiments were performed in accordance 
with the relevant guidelines and regulations.

Deep‑learning model for predicting traumatic intracranial hemorrhages (DEEPTICH) develop‑
ment in clinical decision support system (CDSS). Dataset for deep learning. Two data sources were 
used in this study: the ED-based injury in-depth surveillance (EDIIS) database, and the trauma registry database 
of the Samsung Medical Center (SMC). The EDIIS dataset was used for model training and internal validation; 
the SMC dataset was used for external validation and to investigate the effectiveness of DEEPTICH. Detailed 
data selection criteria are provided in Supplementary Fig. S1.

The EDIIS database was established based on the International Classification of External Causes of Injuries 
by the World Health Organization. The database includes prehospital records, clinical findings, diagnosis, treat-
ment, dispositions in the ED, inpatient information, demographics, and injury-related factors of the patients. 
Information of 1.8 million patients from 25 EDs were included in this surveillance database. Each participating 
hospital assigned coordinators for data collection and management, and the Korea Centers for Disease Control 
regularly checked the quality of the entire data from the 25 EDs. In this study, the records of 750,000 patients 
with head injuries from January 1, 2011 to December 31, 2017 were used for derivation and time-split validation.

The SMC database contains medical records from a tertiary academic hospital in South Korea with approxi-
mately 2000 beds and an average of 200 ED patient visits per day. This database includes the records of pro-
cedures and clinical notes, as well as the same information collected in EDIIS. The SMC dataset was collected 
from January 1, 2012 to December 31, 2019, with 67,578 patient records. These data were used for multi-center 
validation in this study.

Model training for deep learning. We used the patient demographics, vital signs, mental status, injury-related 
factors, date and time-related information regarding the injury onset and visit, and symptoms for predictors. 
Demographics included the age and sex. Vital signs included the respiratory rate, body temperature, systolic and 
diastolic blood pressure, and pulse rate. Mental status data included the “alert, verbal, pain, unresponsive” scale 
and Glasgow coma scale (GCS) scores. Injury-related factors included the injury mechanism, activity during 
the injury, alcohol-related factors, intentions, place of the injury, material causing the injury, and the time taken 
from injury onset to the visit. Time-related predictors included the injury onset and visit date and time informa-
tion, such as the day of the week and hour of the injury onset.

Multiple outcomes were used for training the model. The primary outcome was ICH, such as cerebral con-
tusion, subdural hemorrhage, epidural hemorrhage, subarachnoid hemorrhage, intraventricular hemorrhage, 
intracerebral hemorrhage, and cerebellar hemorrhage. Other outcomes, such as TBIs other than ICH, visit 
dispositions, and operations related to head injuries were considered as secondary outcomes. The purpose of 
secondary outcomes was to improve the prediction performance of the model in multi-task learning.

Machine learning algorithm. Multi-task learning was used for the ML algorithm to classify the ICHs and sec-
ondary outcomes. Multi-task deep learning is a method of training multiple learning tasks simultaneously dur-
ing the training phase. The advantage of multi-task learning is that it can exploit useful information based on 
the commonalities and differences in the different tasks during training. In our case, there were commonalities 
and differences in hemorrhages and other TBIs, visit dispositions (patients with ICHs and serious TBIs are more 
likely to be admitted to the hospital), and head-injury related operations (some ICHs require acute interven-
tions).

Algorithm threshold selection. There were numerous options to select an appropriate threshold for binary 
prediction for the DEEPTICH, including the Youden index, thresholds for generating the best F-1 score, 
0.97/0.95/0.9 sensitivity, and mean threshold among groups of populations whose outcome was 1. We generated 
case examples for each option, and each option was reviewed by a clinician. Finally, the best threshold selected 
as a negative predicted value in each age group was 0.99 because it best reflected the clinical decision-making in 
real clinical circumstances.

Participants for decision simulation study. The participants were residents and specialists in ED of 
the SMC, a single tertiary academic hospital in South Korea. We defined DEEPTICH effectiveness as a change 
in a head CT decision based on the DEEPTICH recommendation when the initial decision of the participant 
differed from the DEEPTICH recommendation. We calculated the DEEPTICH effectiveness mean and SD for 
five emergency physicians, which were respectively 51.0% and 10.6%. We derived the appropriate number of 
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participants as 20, with the width of the 95% confidence interval as ± 5%. We conducted a study involving 22 
emergency physicians, while considering study failures.

Simulation cases selection. We conducted a simulation study using pediatric cases because the decision 
of ordering a head CT in the pediatric population is more challenging than that in adult patients. We selected 24 
simulated pediatric cases who visited the ED with a fall down mechanism from the SMC validation dataset. We 
stratified cases based on the PECARN rule and patient age (Supplementary Table S3).

This study focused on the effectiveness of AI regarding the decision of the physician, not its accuracy, and 
therefore selected only cases in which DEEPTICH had the same results as the patient outcome. We performed 
a trend test (Cochran Armitage test) and Spearman correlation analysis to verify the validity of the simulated 
cases. For high-risk cases, we confirmed that the extent of the decision on the head CT ordering was significant, 
and that the head CT ordering willingness on a five-point scale was high.

Four sub-questions were asked for each case. Sub-questions 1 and 2 were asked before the DEEPTICH rec-
ommendation, and sub-questions 3 and 4 were asked after the DEEPTICH recommendation. Sub-questions 1 
and 3 were identical to the head CT order binary decision. Sub-questions 2 and 4 were also identical to those 
concerning the willingness of head CT ordering, i.e., five-point scale score. The participants answered all four 
sub-questions. DEEPTICH presented three pieces of information: (1) the ICH probability of the case; (2) a top 
percentage of probability of an ICH in the same age group; and (3) a head CT order decision from the DEEP-
TICH. The process of the simulation scenario is shown in Textbox 1.

Survey development. We performed a survey to investigate the factors affecting the DEEPTICH effective-
ness. The survey consisted of five questions regarding general medical AI and seven questions regarding the AI 
used in this study (i.e., the DEEPTICH).

Study process. Consent was obtained from all participants. The participants were provided with the model 
information and the PECARN rules. Using the PECARN rules was left to the discretion of the physician, and its 
frequency was not measured. We explained the characteristics and development of DEEPTICH and its clinical 
performance, i.e., the sensitivity, specificity, negative predictive value, and positive predictive value. Details of 
model development are in the Supplementary Method. The participants were asked to answer four sub-questions 
for each simulation case: they were required to answer two questions before the DEEPTICH recommendation 
and the same two questions after DEEPTICH recommendation (Textbox 1). The simulation case was viewed in 
a Q-card format. After the completing the 24 simulation cases, the participants responded to the survey.

Outcomes. The primary outcome was the change in head CT order binary decision when the initial binary 
decision was different from the DEEPTICH recommendation. The secondary outcome was the change in the 

Case presentation (example)
A four-year-old boy arrived at the emergency room presenting with 

persistent headache after falling from a height of 1 m. The initial GCS 

score at ED was 15; however, he had a loss of consciousness for 1–2 

minutes. A scalp hematoma was palpated on the Rt. temporal head.

At the end of 24 simulation cases

Respond to survey questionnaire

1) Do you order a head CT?  Yes/No

2) How much do you think a head CT is necessary? (5-scale)

     1: strongly not needed  2: not needed  3: neutral  4: needed   5:strongly 

Presenting DEEPTICH recommendation (example)
The probability of ICH in this patient is 1.9%

 Belongs to the top 30.58 percentile risk of the same age group

 DEEPTICH recommends ordering a head CT

3) Do you order a head CT?  Yes/No

4) How much do you think a head CT is necessary? (5-scale)

     1: strongly not needed  2: not needed  3: neutral  4: needed   5: strongly 

needed

Textbox 1.  Process of simulation scenario.
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five-point willingness scale score, and factors that affect the decision changes. We determined that DEEPTICH 
was effective when the physicians changed their binary decisions based on the DEEPTICH recommendation.

Statistical method. We used the McNemar test for the changes in the proportion for the paired data, and 
the paired t-test for the continuous values to conduct comparisons before and after the DEEPTICH recommen-
dation. We conducted univariable and multivariable logistic regression analyses to evaluate the factors associ-
ated with the DEEPTICH effectiveness. p < 0.05 was considered as statistically significant for all statistical tests. 
The R software (Version 4.0.2) was used for the statistical analysis.

Data availability
Due to Korea Centers for Disease Control and Prevention regulations, the raw data for deep learning are not 
publicly available. Upon reasonable request, the corresponding author can provide simulation examples and 
data that support the findings of this study.
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