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Approximately half of all patientswith cancer receive radiation ther- The development of a radiation-induced sarcoma (RIS) is a rare but

apy (RT) during the course of their treatment, oftenwith curative intent
[1]. Radiation therapy is a highly effective modality for treating cancers,
but despite advances in treatment planning and delivery, some patients
will experience acute toxicity or long-term side effects after RT. Radia-
tion treatments are designed to deliver the prescribed dose of radiation
to the tumor while minimizing the risk of a clinically significant toxicity
to surrounding normal tissue. The radiation oncologist identifies the op-
timal RT plan for each patient by comparing dose volume histograms
(DVH) for different plans to determine how much radiation dose will
be delivered to different volumes of the tumor target and each adjacent
normal organ. Utilizing the DVH, the risk of radiation toxicity to a given
tissue type can be estimated based on population-level data [2], and for
many clinical scenarios a 5% risk for toxicity is applied as a threshold.
However, individual patient responses are heterogeneous. Therefore,
biomarkers are needed to determine radiosensitivity before treatment
and individualize risk assessment. Biomarkers to predict which patients
will develop complications after radiation therapy could be used to cus-
tomize treatment planning by allowing clinicians to prescribe higher
doses of radiation - which could lead to better tumor control - for pa-
tients at low risk for developing complications. Moreover, a biomarker
that identifies radiosensitivity of a specific patient prior to therapy
could guide the selection of a lower radiation dose or even an alternate
therapeutic approach omitting RT tominimize radiation dose to normal
tissue in high-risk patients.

Potential biomarkers of radiation-associated toxicities include geno-
mic sequencing of germline DNA [3], measurement of serum factors [4],
and cellular and functional assays following radiation exposure. Previ-
ously, levels of radiation-induced CD8 T-lymphocyte apoptosis (RILA)
in peripheral blood exposed to radiation ex vivo were shown to predict
the risk of fibrosis, a late complication of radiation therapy [5]. In irradi-
ated peripheral blood samples from patients with breast cancer, lower
levels of RILA were associated with increased risk for developing breast
fibrosis after radiation treatment.
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severe complication of radiation therapy, occurring in less than 1% of
all cancer patients receiving radiation therapy, but comprising up to
3% of all soft tissue sarcomas [6]. Some studies suggest poorer outcomes
for RIS compared to sporadic soft tissue sarcomas [7], and RIS are partic-
ularly challenging to treat in part because of previous radiation treat-
ment to the tumor site [8]. Although patients with a familial genetic
predisposition to cancer such as Neurofibromatosis Type I may carry a
higher risk of RIS [9], no functional biomarkers are currently available
to identify patients at high risk for developing RIS. In EBioMedicine,
Mirjolet et al. present data showing that RILA is associated with the de-
velopment of radiation-induced sarcomas [10]. Specifically, the authors
compared RILA in peripheral blood CD8 lymphocytes exposed to radia-
tion ex vivo from 120 patientswith radiation-induced sarcomas and 240
patients with cancers other than sarcoma, matched by age, sex, and
primary tumor location. The authors found that median RILA values
were significantly lower in patients with RIS (18.5%, 5.5–55.7) than in
patients with other cancers (22.3%, 3.8–52.2). These data suggest that
RILA could be used to predict risk for developing radiation-induced
sarcomas, but there is significant overlap of RILA between patients
that develop RIS and those with other cancers at the individual patient
level. Nevertheless, this information about individual radiosensitivity
has the potential to be incorporated with other biomarkers to stratify
patients for RT and for long-term follow up for RIS.

Furthermore, these findings have implications for understanding
mechanisms of radiation sarcomagenesis and raise concerns about
the use of treatments that protect normal tissue from radiation-
induced apoptosis. The findings by Mirjolet et al. [10] are consistent
with a model where, in patients with cells that are more resistant to
radiation-induced apoptosis, sarcoma-initiating cells may be damaged
by radiation and survive to cause a sarcoma years later. Recent studies
in genetically engineered mice in which p53 levels can be reversibly
downregulated by in vivo shRNA have shown that blocking radiation-
induced apoptosis in hematopoietic cells during fractionated total
body irradiation decreases the subsequent development of radiation-
induced lymphomas [11]. However, whether this finding extends to
radiation-induced sarcomas following high-dose focal irradiation is
not clear. The results byMirjolet et al. [10] instead suggest that blocking
radiation-induced apoptosis of sarcoma-initiating cells could increase
the risk of sarcoma development. In this scenario, therapies designed
to prevent radiation-induced cell death to ameliorate normal tissue
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toxicity from RT might have the unintended consequence of increasing
radiation-induced sarcomagenesis. Therefore, these findings have im-
plications beyond individual patient risk for radiation complications
and may extend to the use of radiation protectors during RT.
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