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Purpose: The aim of this study was to investigate the changes of different metabolites in the body fluids of non-dialysis patients with 
chronic kidney disease (CKD) using a metabolomics approach. The goal was to identify early biomarkers of CKD progression through 
metabolic pathway analysis.
Patients and Methods: Plasma samples from 47 patients with stages 1–4 CKD not requiring dialysis and 30 healthy controls were 
analyzed by liquid chromatography-mass spectrometry (LC-MS). Using multivariate data analysis, specifically a partially orthogonal 
least squares discriminant analysis model (OPLS-DA), we investigated metabolic differences between different stages of CKD. The 
sensitivity and specificity of the analysis were evaluated using the Area Under Curve (AUC) method. Furthermore, the metabolic 
pathways were analyzed using the Met PA database.
Results: Plasma samples from CKD patients and controls were successfully differentiated using an OPLS-DA model. Initially, twenty-five 
compounds were identified as potential plasma metabolic markers for distinguishing CKD patients from healthy controls. Among these, six 
compounds (ADMA, D-Ornithine, Kynurenine, Kynurenic acid, 5-Hydroxyindoleacetic acid, and Gluconic acid) were found to be 
associated with CKD progression It has been found to be associated with the progression of CKD. Changes in metabolic pathways 
associated with CKD progression include arginine and ornithine metabolism, tryptophan metabolism, and the pentose phosphate pathway.
Conclusion: By analyzing the metabolic pathways of different metabolites, we have identified the significant impact of CKD 
progression. The main metabolic pathways involved are Arginine and Ornithine metabolism, Tryptophan metabolism, and Pentose 
phosphate pathway. ADMA, D-Ornithine, L-Kynurenine, Kynurenic acid, 5-Hydroxyindoleacetic acid, and Gluconic acid could serve 
as potential early biomarkers for CKD progression. These findings have important implications for the early intervention and treatment 
of CKD, as well as for further research into the underlying mechanisms of its pathogenesis.
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Introduction
Chronic kidney disease (CKD) is a prevalent condition in the general population and a significant global public health concern. 
According to Hill et al, the estimated global prevalence of CKD ranges from 10.6% to 13.4%.1 In the early stages of CKD, 
symptoms may not be obvious and can be easily overlooked. However, the progression of CKD towards end-stage renal 
disease (ESRD) is associated with high costs, mortality, and a significant decline in a patient’s quality of life, particularly when 
dialysis treatment is introduced. The widely used plasma biochemical marker of glomerular filtration rate (GFR), plasma 
creatinine concentration (sCr), is often considered insensitive for detecting early stages of CKD. Hence, early recognition of 
CKD is crucial in order to slow down disease progression, reduce morbidity, and improve survival.

Metabolomics is a systematic analysis of metabolites in a biological specimen, focusing on the dynamic changes, 
interactions, and responses of metabolites in various metabolic pathways. It has become a commonly used approach in 
systems biology research, particularly for identifying new diagnostic and prognostic biomarkers for human diseases.2,3
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Liquid chromatography-tandem mass spectrometry (LC-MS) is a powerful tool that enables accurate identification 
and quantification of compounds due to its greater sensitivity and specificity. Currently, LC-MS is primarily utilized to 
uncover the complexity of plasma metabolome and provide various biomedical applications based on the obtained 
results. The primary objective of this study was to assess plasma metabolic status in non-dialysis patients with early CKD 
compared with controls using LC-MS.

Material and Methods
Study Design
This study included 47 patients with non-Dialysis CKD stage 1–4 (13, 11, 11, 12, respectively) and 30 healthy 
volunteers. CKD was diagnosed from patient medical records and CKD severity was assessed by estimated glomerular 
filtration rate (eGFR) calculated using the CKD-EPI formula.4 Inclusion criteria: 1, Patients diagnosed with non-dialysis 
CKD for the first time and who have not undergone any drug treatment; 2, All patients were adult. The studied groups 
were matched based on certain exclusion criteria, such as secondary glomerulonephritis, severe heart failure, cardiac 
arrhythmias, liver cirrhosis, hematopathy, infectious diseases, vegetarianism, solitary kidney, professional sports involve
ment, pregnancy, lactation, menstruation, and mental illness. This study was approved by the Ethics Research Society of 
the First Affiliated Hospital of Soochow University (no. 079). All participants signed an informed consent form. Our 
study was complied with the Declaration of Helsinki.

Sampling and Sample Preparation
Plasma samples were collected according to the ethical protocol of the Ethics Research Society of the First Affiliated Hospital 
of Soochow University. Informed consent was obtained from all participants. The study was carried out according to the 
principles set forth by the World Medical Association in Helsinki. Blood samples were collected under fasting conditions and 
then centrifuged at 3000 rpm for 10 minutes. The supernatant was separated and stored at −80°C until assayed. Prior to 
analysis, all samples were thawed at 4°C and vortexed for 60 seconds after adding 800 µL of methanol (OKA, China). The 
supernatant was then centrifuged for 10 minutes at 12,000 rpm at 4°C. The prepared sample was dissolved in 300L methanol 
aqueous solution (4:1, 4°C), filtered through a 0.22m filter membrane, and then used for LC-MS analysis. Quality control (QC) 
samples were prepared to evaluate the bias in the results of the analysis of the cell mixture caused by the analyzer itself.

LC-MS Conditions
Chromatographic separations were performed on a Thermo Ultimate 3000 system with an ACQUITY UPLC®HSS T3 
column (150 x 2.1 mm, 1.8 µm, Waters) maintained at 40 °C. The autosampler temperature was 8 °C. Gradient elution 
was performed at a flow rate of 0.25 mL/min using 0.1% formic acid in water (Merck, Germany) (A) and 0.1% formic 
acid in acetonitrile (Thermo, USA) (B) or 5 mM ammonium formate in water (Sigma, Germany) (C) and acetonitrile (D). 
After equilibration, inject 2 µL of each sample. Solvent B (v/v) linear gradient 0–1min, 2% B/D; 1–9 minutes, 2–50% B/ 
T; 9–14 minutes, 50–98% B/D; 14–15 minutes, 98% B/D; 15–15.5 minutes, 98–2% B/D; 15.5–17 minutes, 2% B/D.

ESI-MSn experiments were performed using a fine-focus Thermo Q mass spectrometer. The spray voltages for positive and 
negative modes were set to 3.8 kV and −2.5 kV, respectively. The sheath gas and auxiliary gas were set to 45 and 15 arbitrary 
units, respectively. The capillary temperature was maintained at 325 °C. The Orbitrap analyzer scans the mass range from m/z 81 
to 1000 with a resolution of 70,000. Correlative Acquisition (DDA) mass spectrometry experiments were performed by HCD 
scanning. The normalized collision energy is 30 eV. Redundant spectral information is removed by dynamic subtraction.

Data Preprocessing and Statistical Comparison
Data sets for LC-MS analysis were converted using Proteowizard (v3.0.8789). R (v3.3.2) xcms was used for peak 
identification, filtering and alignment. Batch normalization was employed to compare orders of magnitude. Subsequently, 
multivariate statistical analysis was conducted using R (ropls). Principal component analysis (PCA) was used to assess 
data quality, while orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to observe 
differences between groups studied. Both one-way ANOVA p-value (P < 0.01) were applied.
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Identification of Metabolites and Signaling Pathways
Identification of statistically significant metabolites in positive and negative ionization modes was performed through 
LC-MS analyses using databases such as HMDB, Metlin, Massbank, LipidMaps, and Mzcloud. MetPA was then applied 
to identify possible disturbed metabolic pathways.

Statistical Analysis of Clinical Data
For nonnormal variables, the median and interquartile range were given, while for normal variables, the mean and 
standard deviation were given. Subnormal variables were log-transformed and tested for normality. Normally 
distributed continuous variables were analyzed using one-way ANOVA with Fisher’s least significant test, and 
skewed continuous variables were analyzed using the Kruskal–Wallis test. Categorical variables were analyzed 
using the chi-squared test. Data analysis was performed using SPSS software, version 22.0. P < 0.05 was 
considered significant.

Results
Clinical and Biochemical Parameters
Clinical and biochemical parameters of recruited subjects were summarized in Table 1. BMI, Creatinine, blood urea 
nitrogen (BUN) and total cholesterol (TC) were transformed as logarithmic data to normalize the data allowing the use of 
parametric tests.

Plasma Metabolomics and Analytical Reproducibility Testing
The chromatogram of the plasma peak measured by LC-MS is shown in Figure 1. The OPLS-DA model was created using 
filtered and normalized data sets obtained from LC-MS analytical measurements (Figure 2). Check the stability of the 
analytical system, the reproducibility of the procedure and the test method using a QC sample of the PCA plot (Figure 2).

Statistical Comparison and Metabolic Changes Associated with CKD Patients and 
Controls
Among the variables measured by LC-MS positive and negative ionization modes, 147 metabolites were signifi
cantly distributed in CKD patients with stage 1 to stage 4 and controls according to one-way ANOVA (P < 0.05), 

Table 1 Clinical Characteristics of Control Group and 47 Non-Dialysis Patients with Stage 1 to Stage 4

Control Group Stage 1 Stage 2 Stage 3 Stage 4 P
(n=30) (n=13) (n=11) (n=11) (n=12)

Age (years) 48.1±12.1 47.4±16.4 51.0±21.3 55.8±16.7 58.4±13.9 0.232

Sex 10M,20F 5M,8F 7M,4F 7M,4F 7M,5F 0.223

BMI (kg/m2) * 1.37±0.07 1.38±0.06 1.36±0.58 1.40±0.04 1.38±0.05 0.755
Creatinine (umol/L)* 1.80±0.08 1.74±0.10 1.97±0.10 2.14±0.09 2.37±0.07 0.000

Albumin (g/L) 48(46,49) 36(29,41) 40(37,43) 43(39,44) 41(38,43) 0.000
BUN (mmol/L) * 0.67±0.10 0.66±0.14 0.79±0.12 0.95±0.12 1.09±0.16 0.000

TC (mmol/L) 4.5(3.9,5.2) 5.2(4.1,5.6) 4.7(4.5,5.5) 4.5(4.2,5.1) 4.5(3.8,5.2) 0.419

TG (mmol/) * 0.12±0.23 0.20±0.29 0.16±0.17 0.20±0.11 0.24±0.19 0.493
Glucose (mmol/L) 4.9(4.6,5.2) 4.6(4.5,4.8) 4.6(4.1,4.9) 4.7(4.1,4.8) 4.6(4.3,5.0) 0.086

HB (g/L) 140.0±11.4 128.5±17.7 126.6±11.4 121.9±12.8 111.3±17.9 0.000

UA (umol/L) 344.5±91.0 379.8±122.7 430.3±59.8 431.2±129.7 420.4±138.4 0.060
Blood phosphorus (mmol/L) 1.15±0.23 1.58±0.25 1.83±0.18 2.03±0.15 2.32±0.43 0.000

NLR 1.75±0.61 2.13±0.63 2.04±0.55 2.59±1.07 2.74±1.64 0.023

Notes: *Logarithmic data transformation, Values were given as mean standard deviation, median (interquartile range). 
Abbreviations: BUN, blood urea nitrogen; TC, total cholesterol; TG, triglyceride; HB, hemoglobin; UA, Uric acid; NLR, Neutrophil-to- 
Lymphocyte Ratio; M, male; F, female.
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78 metabolites according to VIP value > 1 and 67 metabolites were selected according to AUC value > 0.7 
(Figure 3).

25 metabolites were selected after sifting chemicals and unmatched metabolites in KEGG pathways.6 metabolites 
showed a continuous upward trend period (Figure 4). The identified statistically significant metabolites and the 
differences between groups were shown in Table 2. The AUC values of 6 metabolites between control group and 
CKD patients were > 0.7 (P <0.01) (Figure 5).

Figure 1 Base peak chromatogram of CKD patients and control group obtained with LC-MS positive (A), negative (B)ionization mode. 
Notes: E control group; A-D: CKD stage 1 to stage 4.

Figure 2 PCA models built on QC data obtained with LC-MS analysis in (A) positive ionization mode, (B) negative ionization mode; OPLS-DA models built on plasma data 
obtained with LC-MS analysis in (C) positive ionization mode, (D) negative ionization mode, respectively.
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Figure 3 Heatmap of discriminating metabolites between CKD patients with stage 1 to stage 4 and controls with positive (A), negative (B) ionization mode. 
Notes: E control group; A-D: CKD stage.

Figure 4 Differences in normalized intensity of selected metabolites between 6 compared groups. 
Notes: Based on One-way ANOVA and the Fisher least significant difference test. (A) ADMA, (B) D-Ornithine, (C) L-Kynurenine, (D) Kynurenic acid, (E) 
5-Hydroxyindoleacetic acid, (F) Gluconic acid. 1–4, CKD stage 1 to stage 4; *: P <0.05, **: P <0.01.
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Metabolic Pathway
The main metabolic pathways were illustrated in Figure 6. Notably, the arginine and proline metabolism, tryptophan 
metabolism, and pentose phosphate pathway were identified as the most significant pathways, which were enhanced in 
the early stages and the progression of CKD.

Correlation Between 6 Discriminating Metabolites and Various Clinical Parameters
The correlation analysis between the six metabolites and CKD-related clinical parameters revealed significant associa
tions (P <0.05) (Figure 7). These metabolites were mainly related to inflammation and oxidative stress in CKD.

Discussion
In this study, we employed an untargeted metabolomic approach to identify biomarkers for patients with non-dialysis 
CKD. We observed distinct differences in plasma metabolic profiles between patients with non-dialysis CKD and healthy 
controls. Notably, ADMA, D-Ornithine, L-Kynurenine, Kynurenic acid, 5-Hydroxyindoleacetic acid, and Gluconic acid 
exhibited significant changes.

One advantage of our study was the prospective inclusion of patients with non-dialysis CKD. This approach reduced 
the metabolic deviation caused by dialysis and allowed for the exploration of the original metabolic changes in CKD 
patients at an early stage. This provides valuable insights for the early diagnosis, prevention, and progression of CKD. 

Table 2 Statistical Analysis of 6 Main Discriminating Metabolites

Metabolites Exact Mass Mass Error [ppm] RT [min] Formula Biochemical Pathway

ADMA 202.25428 2 100.86100 C8H18N4O2 Arginine metabolism
D-Ornithine 132.16106 8 94.37390 C5H12N2O2 Arginine and Ornithine metabolism

L-Kynurenine 208.21390 7 348.71000 C10H12N2O3 Tryptophan metabolism

Kynurenic acid 189.16750 2 368.44100 C10H7NO3 Tryptophan metabolism
5-Hydroxyindoleacetic acid 190.1834 4 331.46300 C10H9NO3 Tryptophan metabolism

Gluconic acid 196.15528 3 86.67005 C6H12O7 Pentose phosphate pathway

Figure 5 ROC curve of 6 metabolites between 6 between control group and CKD patients.
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Our OPLS-DA analysis revealed a significant difference between patients with non-dialysis CKD and healthy controls, 
highlighting the presence of a distinct metabolic pattern in non-dialysis CKD patients.

ADMA is an endogenous endothelial nitric oxide synthase inhibitor derived from arginine residues and catalyzed by 
protein arginine methyltransferase. Approximately 80% of ADMA is degraded via dimethylarginine dimethylaminohy
drolase (DDAH), while the remaining ADMA is excreted by the kidney.5 Fliser et al reported an association between 
plasma ADMA and early-stage CKD patients, while Ravani et al identified plasma ADMA as an independent risk factor 
for patients with end-stage renal disease.6,7 Our results support these findings and suggest that this could be attributed to 
decreased renal excretion or reduced DDAH activity in CKD. ADMA reduces the level of nitric oxide (NO) by 
decreasing the activity of endothelial nitric oxide synthase (NOS), leading to impaired vascular tone and endothelial 
dysfunction. This could result in decreased renal perfusion and increased cardiovascular disease (CVD) events, which 
may further complicate CKD.8 Some studies have indicated that drugs such as EPO, vitamin E, statins, and ACE 
inhibitors can potentially interfere with the level of ADMA. However, these studies have not been able to explain 
whether the benefit observed in CKD patients is due to the reduction in ADMA or other aspects of these drugs.9–11 

Further research is needed to elucidate the underlying mechanism. Age plays an important role in vascular aging. An 
imbalance between oxidative and antioxidant systems leads to increased reactive oxygen species production, NO 
inactivation, increased nitrosative stress, and ultimately age-related endothelial dysfunction.12 Our findings demonstrate 
a positive correlation between ADMA and age (r=0.471, P <0.01). Accumulation of ADMA with age leads to endothelial 
damage in CKD patients. The Neutrophil-to-Lymphocyte Ratio (NLR) is currently recognized as a biomarker for 
inflammation and atherosclerosis progression.13,14 The simultaneous increase of ADMA and NLR may be associated 
with inflammatory activity.15 In this study, ADMA showed a positive correlation with NLR (r=0.274, P <0.05). Similar 
findings were reported by Ibrahim et al, who found that NLR was significantly different between ESRD hemodialysis 
patients and controls, and NLR was positively correlated with ADMA.16 These results suggest that ADMA could 
potentially serve as a predictive marker for the early occurrence, progression, and end-stage of CKD. Further investiga
tion into the role of ADMA in inflammation and endothelial injury is crucial for the diagnosis and treatment of CKD. In 
addition, it may be an interesting clinical intervention to explore the potential impact of relatively safe drugs, such as 
vitamin C consumption at different ages, on ADMA levels to potentially improve outcomes for patients with CKD.

Figure 6 Pathway identification between CKD patients and controls.
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D-Ornithine, an intermediate in the urea cycle, has been identified as a significant factor in hyperphosphatemia. This 
condition leads to increased expression of arginase 2, resulting in elevated levels of D-Ornithine.17 Several studies have 
reported the negative effects of elevated D-Ornithine levels in hyperphosphatemia on endothelial cells, including reduced 
production of nitric oxide and disruption of mitochondrial function.18,19 The concentration of blood phosphorus gradually 
increases with the progression of chronic kidney disease (CKD) (P <0.01) and shows a positive correlation with 
D-Ornithine (r=0.62, P <0.01). We speculate that the increase in blood phosphorus concentration in CKD patients 
may enhance the activity of arginase 2, leading to an elevation in ornithine concentration. However, we have not yet 
measured the activity of arginase 2 or other potential factors that may interfere with the enzyme. The relationship 
between phosphorus-arginase 2 and D-ornithine still requires further elaboration. This is of great significance in under
standing the mechanism of ornithine as a potential therapeutic target for treating hyperphosphatemic-related cardiovas
cular events andCKD. The mechanism of cardiorenal syndrome in CKD patients is not yet fully understood. Given the 
role of D-Ornithine in both the kidneys and heart, investigating the impact of interfering with D-Ornithine on the 
development of cardiorenal syndrome in CKD patients could be an interesting research topic.

Statistically significant differences were observed in tryptophan metabolism between CKD patients and the control 
group. Tryptophan, an essential amino acid in humans, is primarily metabolized through two pathways: the kynurenine 

Figure 7 Heatmap of correlation analysis between 6 discriminating metabolites and various clinical parameters.
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pathway, which produces L-Kynurenine and Kynurenic acid, and the serotonin pathway, which produces 
5-Hydroxyindoleacetic acid. The kidney plays a crucial role in the metabolism and excretion of tryptophan. 
L-Kynurenine and Kynurenic acid act as endogenous agonists of the aromatic compound receptor (AHR), which is 
considered to be a significant factor in inducing immune response tolerance and promoting the reprogramming of Th17 
cells into regulatory T cells.20,21 L-Kynurenine has the ability to interact with AHR in dendritic cells, leading to an 
upregulation in the expression of Indoleamine 2.3-dioxygenase. This, in turn, results in the further decomposition of 
tryptophan and the production of L-Kynurenine.22 In an inflammatory environment, the L-Kynurenine and AHR pathway 
exhibit protective effects.23 Increased levels of L-Kynurenine and Kynurenic acid have been observed in various 
complications of CKD, such as thrombosis, oxidative stress, mesangial cell proliferation, CKD-MBD, and 
dyslipidemia.24–29 These findings suggest a potential association between inflammation, immune disorders, and CKD. 
In this study, we found that the levels of L-Kynurenine, Kynurenic acid, and 5-Hydroxyindoleacetic acid increased with 
the progression of CKD (P <0.05). Additionally, L-Kynurenine and 5-Hydroxyindoleacetic acid showed a positive 
correlation with triglycerides (r=0.259, P <0.05, r=0.301, P <0.05). Furthermore, the key rate-limiting enzyme of the 
kynurenine pathway, Indoleamine 2.3-dioxygenase, was found to be overexpressed in CKD.30 Previous studies by Sekula 
P et al have demonstrated that Indoleamine 2.3-dioxygenase serves as a reliable indicator of impaired renal function.31 

Our previous study has identified the alterations in Indoleamine 2.3-dioxygenase levels among CKD patients.32,33 

However, further investigation is required to explore the impact of these changes on the tryptophan metabolic pathway 
and its role in the inflammatory and immune regulation mechanisms of CKD. Moreover, Clinicians have recognized the 
significance of depressive symptoms in certain CKD patients. Exploring the potential impact of modulating the serotonin 
metabolism pathway of tryptophan on the depressive state of CKD patients could be an intriguing topic.

Gluconic acid is enzymatically formed from glucose by the activity of glucose oxidase, which releases hydrogen 
peroxide. Previous research has shown an association between gluconate and decreased kidney function in patients with 
end-stage chronic kidney disease.34 In a rat nephrotoxicity model, gluconic acid levels changed in a dose- and time- 
dependent manner, suggesting that they may be related to the severity of renal injury.35 Additionally, gluconic acid has 
been found to be correlated with early Diabetic retinopathy and type 2 diabetes.36,37 Uric acid, on the other hand, is the 
end product of purine metabolism in the body. It has extracellular antioxidant effects and has been implicated in oxidative 
stress.38,39 Our study revealed a significant increase in gluconic acid levels in stage 2 of CKD (P <0.05), indicating its 
association with disease progression. Furthermore, we observed a positive correlation between gluconic acid and uric 
acid (r=0.251, P <0.05). Interestingly, our findings also showed an enhancement of the pentose phosphate pathway, 
which is primarily involved in gluconic acid metabolism. This pathway is considered to have potential protective effects, 
as its metabolite NADPH can effectively reduce reactive oxygen species levels, thereby counteracting oxidative stress in 
the kidneys.40 Weng et al demonstrated that increased NADPH production through the pentose phosphate pathway can 
alleviate oxidative stress in renal ischemia-reperfusion injury.41 These findings suggest that oxidative stress occurs in 
early CKD stages, triggering a protective mechanism. Metabolic pathways were analyzed using LC-MS, revealing 
changes in arginine and ornithine metabolism, tryptophan metabolism, and the pentose phosphate pathway. Metabolites 
identified in these pathways included ADMA, D-ornithine, L-kynurenine, kynurenic acid, 5-hydroxyindoleacetic acid, 
and Gluconic acid. These findings have potential implications for the early detection of CKD in patients. Furthermore, 
exploring interventions involving common clinical drugs targeting these metabolic pathways and metabolites may hold 
promise for the treatment of CKD.
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