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Abstract: Staphylococcus aureus (S. aureus) is a Gram positive bacterium that is carried 

by about one third of the general population and is responsible for common and serious 

diseases. These diseases include food poisoning and toxic shock syndrome, which are 

caused by exotoxins produced by S. aureus. Of the more than 20 Staphylococcal 

enterotoxins, SEA and SEB are the best characterized and are also regarded as 

superantigens because of their ability to bind to class II MHC molecules on antigen 

presenting cells and stimulate large populations of T cells that share variable regions on the 

 chain of the T cell receptor. The result of this massive T cell activation is a cytokine 

bolus leading to an acute toxic shock. These proteins are highly resistant to denaturation, 

which allows them to remain intact in contaminated food and trigger disease outbreaks. A 

recognized problem is the emergence of multi-drug resistant strains of S. aureus and these 

are a concern in the clinical setting as they are a common cause of antibiotic-associated 

diarrhea in hospitalized patients. In this review, we provide an overview of the current 

understanding of these proteins.  
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1. Introduction 

1.1. Source 

Staphylococcal enterotoxins are members of a family of more than 20 different staphylococcal and 

streptococcal exotoxins that are functionally related and share sequence homology. These bacterial 

proteins are known to be pyrogenic and are connected to significant human diseases that include food 

poisoning and toxic shock syndrome. These toxins are for the most part produced by 

Staphylococcus aureus (S. aureus) although other species have also been shown to be enterotoxigenic.  

S. aureus is an ubiquitous Gram-positive coccus of approximately 1 m in diameter and forms 

clusters. It colonizes humans as well as domestic animals, and is a common opportunistic pathogen. It 

is estimated that S. aureus is persistent in 20% of the general population, while another 60% are 

intermittent carriers [1]. Most frequently, the anterior nares is the site of colonization in humans, and 

this colonization increases the risk of infections when host defenses are compromised. This is 

supported by multiple observations. For instance, the frequency of infections is higher in carriers than 

in non-carriers [2]. Non-carriers commonly acquire infections through contaminated food or when 

food handlers who are carriers contaminate food during preparation. 

S. aureus is a facultative anaerobe forming yellow colonies on rich medium and causing an ,  

and double ( + hemolysis on blood agar plates [3]. It expresses a wide array of cell-associated and 

secreted virulence factors. These properties make it a versatile pathogen capable of a wide range of 

infections. The secreted factors include various enzymes, cytotoxins, exotoxins, and exfoliative toxins. 

The chief function of these enzymes is to turn host components into nutrients that the bacteria may use 

for growth. Among the other secreted factors are exotoxins that include staphylococcal enterotoxins 

(SE), and toxic shock syndrome toxin (TSST)-1 and are the focus of this review. These factors subvert 

the host immune system and illicit major responses as described below.  

Most genes coding for SEs are located on mobile elements such as plasmids, bacteriophages or 

pathogenicity islands [4,5]. Thus, horizontal transfer between strains is not rare. In fact, a recent study 

showed that most S. aureus isolates obtained from three separate hospitals had more than one 

enterotoxin gene [6]. The median number of enterotoxin genes in the S. aureus isolates in that study 

was five and some contained up to 12 enterotoxin genes [6]. Although there are more than 20 distinct 

staphylococcal enterotoxins, only a few of them have been studied in depth. The most common 

staphylococcal enterotoxins are SEA and SEB. As shown in Table 1, SEA is the most common toxin in 

staphylococcus-related food poisoning. SEB, while it is associated with food poisoning, has been 

studied for potential use as an inhaled bioweapon [7]. SED is suggested to be the the second most 

common staphylococcal toxin associated with food poisoning worldwide, and one study showed that 

only very small amounts of this toxin were needed to induce food poisoning [8]. SEE has also been 

documented in some cases of food poisoning, while SEF has been implicated in toxic shock syndrome 

[8,9]. SEG, SEH, and SEI are not as well studied as the others, but were associated with one of the 

food poisoning outbreaks in Taiwan [10]. SEH has been also identified as one of the causes of massive 

food poisoning associated with the reconstituted milk consumption in Osaka, Japan in 2000 [11].  
  



Toxins 2010, 2  

 

 

2179

Table 1. Unique features of some common SEs.  

Staphylococcal 
Enterotoxin 

Feature Binding to Class II MHC 

SEA 
Most common toxin associated with 
staphylococcal food poisoning 

Alpha and beta chains [12] 

SEB Studied as a biological weapon Alpha chain [13] 

SEC Commonly isolated from animals [14] 
Outside the binding groove on the 
flanking helix from the α chain [15] 

SED Food poisoning [16] Alpha and Beta chains [17] 

SEE Food poisoning [9] Beta chain [18] 

SEF Associated with toxic shock syndrome [8] Binds to alpha and beta chains [19] 

SEG Minor role in food poisoning [10] SEB-like interaction with a chain [20] 

SEH Food poisoning [10,11] Alpha chain [21] 

SEI Minor role in food poisoning [10] Beta chain [22] 

1.2. Structure 

Staphylococcal enterotoxins (SEs) are broadly classified as superantigens, which, as described in 

detail below, have the ability to stimulate large populations of T cells (~20–30%) leading to the 

production of a cytokine bolus [23,24]. At least 20 serologically distinct staphylococcal superantigens 

have been described that include SEs A through V and toxic shock syndrome toxin-1 (TSST-1). SEA, 

SED, and SEE share 70–90% sequence homology, while only 40–60% with SEB, SEC, and TSST-1 

[17,24].Their mature length is approximately 220–240 amino acids, depending on the toxin, and their 

molecular size is on average ~25 kD and have significant sequence variability, but when folded have 

similar three-dimensional structures [25–27].  

The three dimensional structure for multiple SEs has been determined by crystallography [28–35]. 

They are by and large elliptical in shape and have two major unequal domains composed mostly of  

strands and a few -helices. The two domains are separated by a shallow cavity. The larger of the two 

domains contains both the amino and carboxyl termini. Mutational analysis of both SEA and SEB 

implicated this cavity in the binding to T cell receptors (TcR) [36,37]. Another region on SEA 

identified by mutational analysis to interact with the TcR V 7 and 8.1 is tyrosine 66, while a stretch of 

amino acids from 45 to 58 on SEB was found to be involved in the binding to class II major 

histocompatibility complex (MHC) molecules that are expressed by antigen presenting cells (APC) 

[38]. Several of these enterotoxins have a Zn-binding site that contributes to their interaction with 

class II MHC molecules [32,33]. Studies showed that stretch of amino acids (a.a. 118–175) located two 

thirds of the length of the protein sequence is similar to the COOH-terminal end of the human and 

mouse CD74 protein (aka invariant chain) [39], which binds class II MHC molecules early during their 

synthesis in the endoplasmic reticulum and serves as a scaffold for their assembly. The most effective 

and well studied class II MHC molecule for Staphylococcal enterotoxin binding is the HLA-DR1 allele 
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[40]. HLA-DR has two chains, α and β, that Staphylococcal enterotoxins may bind, some bind to both 

chains, like SEA and SED, while the others bind one chain or the other as shown in Table 1. SEA has 

also been examined in binding to other class II MHC isoforms and was shown to successfully bind to 

HLA-DP and HLA-DQ. SEB and SEC failed to bind to HLA-DP, but did show some interaction with 

HLA-DQ [41]. 

1.3. Properties 

These SE proteins have a remarkable ability to resist heat and acid. Therefore, they may not be 

completely denatured by mild cooking of contaminated food. They are pyrogenic and share some other 

important properties that include the ability to induce emesis and gastroenteritis as well as their noted 

superantigenicity. They are resistant to inactivation by gastrointestinal proteases including pepsin, 

trypsin, rennin and papain [42]. Thus, they can easily outlast the bacteria that produce them.  

2. SEs in Food-Borne Poisoning Associated Diarrhea 

A frequently cited, but somewhat dated, estimate by the Centers for Disease Control (CDC) on 

food-borne diseases is that SEs affect approximately 80 million individuals in the US, alone, resulting 

in 325,000 hospitalizations and more than 5,000 deaths [43]. According to the World Health 

Organization, death of about two million individuals in the world is due to food borne diarrheal 

diseases. The economic impact of food-borne diseases is also substantial. In the US, the estimated 

costs for these diseases may reach $35 billion annually [44].  

Staphylococcal food-borne diseases acquired from eating enterotoxin-contaminated food are the 

second most commonly reported types of food-borne diseases. The high incidence of staphylococcal 

food poisoning is due to the insufficient pasteurization/decontamination of originally contaminated 

product source [45] or its contamination during preparation and handling by individuals who are 

carriers of the organism. Also, since S. aureus grows over a wide range of temperatures and pH, the 

bacteria may grow in a wide assortment of foods. Therefore, food that is contaminated with  

SE-producing strains, if left at temperatures that allow rapid growth of the bacteria (i.e., inadequate 

refrigeration) is a common source of SE-outbreaks.  

The amount of toxin needed to cause disease is less than 1 g. In an outbreak due to enterotoxin 

(SEA)-contaminated chocolate milk, the amount of toxin was reported to be only 0.5 ng/mL [46]. The 

disease has a short incubation period that ranges from just a few minutes to hours since the toxin is 

preformed. Symptoms include nausea, vomiting, abdominal pain, cramps and diarrhea. SEA is 

responsible for approximately 80% of the cases of food poisoning outbreaks in the USA, while SEB is 

responsible for 10% of the cases [47,48]. The disease is usually self-resolving, is rarely lethal and the 

elderly are more susceptible.  

3. Staphylococcal Enterotoxins in Nosocomial and Antibiotic-Associated Diarrhea 

S. aureus is a major cause of nosocomial infections and community-acquired diseases. Diarrhea is a 

frequent side effect of antibiotic treatment and is prevalent among hospitalized patients, especially 

those in geriatric wards or intensive care units. The severity of antibiotic associated diarrhea ranges 
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from mild to fatal, such as cases of pseudomembranous colitis. While the causative agent of  

antibiotic-associated diarrhea is not always easy to determine, S. aureus is highly suspected as it can be 

a member of the gut microflora and stools of antibiotic-associated diarrhea patients have been found to 

contain enterotoxin-producing strains of S. aureus [49]. In one study, investigators examined 

nosocomial antibiotic-associated diarrhea and found stool specimens that were positive for SEs with a 

high density of bacteria (108 CFU/g of stool)[50]. It is important to note that most of the  

antibiotic-associated diarrhea isolates of S. aureus are methicillin-resistant (MRSA)[50]. Methicillin is 

a semisynthetic -lactamase-insensitive -lactam. Resistance to this antibiotic is linked to the mecA 

gene that encodes a penicillin-binding protein called PBP2a, which allows the synthesis of the cell wall 

even at lethal concentrations of -lactams, because PBP2a has low affinity for -lactams [51]. MRSA 

strains are resistant to all -lactam antibiotics. Thus, MRSA represent the model multi-drug resistant 

bacterial pathogens. MRSA is a worldwide problem that has increased steadily during the last three 

decades. In 2003, 60% of S. aureus in the ICU were found to be MRSA [52]. Importantly, the majority 

of the MRSA are toxin producing strains (TSST-1, SEA, SEB, SED [53]). This multi-drug resistant 

pathogen is among the major concerns in hospitals. How the production of the toxin affect the 

immunopathogenesis of MRSA associated diarrhea remains unclear. Therefore, the better 

understanding of the role of S. aureus-associated toxins in the immunopathogenesis of MRSA 

associated nosocomial and antibiotic-associated diarrhea are required to better prevention and 

treatment of the infection caused by this ancient nemesis. 

4. Gastro-Intestinal Inflammatory Injury Associated with Enterotoxigenic Diarrheal Diseases 

The earlier studies of Gastro-Intestinal (GI) inflammatory injury associated with the SE food 

poisoning were performed in 1960–1970 using monkey and dog animal models [54–58]. It has been 

demonstrated that ingestion of SEs within food cause food poisoning, which is characterized by severe 

vomiting and diarrhea [59], as mentioned earlier. Those symptoms occur within hours after eating of  

SE-contaminated food [54]. SE food poisoning leads to inflammatory changes throughout the 

gastrointestinal tract with severe lesions in the jejunum and ileum. The direct inhibitory effect of 

purified SEs on intestinal tone, contractility and colonic transit has been noted in the dog model [56]. 

Oral and intraduodenal administration of SEA to weanling pigs was associated with increased numbers 

of lymphocytes and polymorphonuclear cells in the jejunum and duodenum, quick emetic and 

neurobehavioral responses [60], suggesting that intestine is a site of SEA action. Intragastric 

administration of a single dose of SEB to rhesus monkeys produced a lesion confined to the 

mitochondria in epithelial cells of villi and crypts and was associated with rapid infiltration of 

leukocytes to lamina propria of jejunum [55]. These changes were concomitant with the evidence of an 

acute jejunitis. Some early studies deonstrated that the administration of the enterotoxigenic 

staphyloccoccal extract into the upper ileum through isoperistaltic enterocutaneous feeding fistula 

resulted in acute ileitis in the dog model [58]. This effect was dose dependent and high doses of SEs 

resulted in the dilatation, edematous and hyperemic changes in distal ileum. Chronic administration of 

SE extract resulted in the hypertrophy of mesenteric lymph node and an increase in lymphoid 

aggregates within the ileal submucosa. Chronic administration of large dose of SE extract was 

associated with lymphoid hyperplasia in the mucosal lamina propria, submucosal fibrosis and 
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thickening of the bowel wall [56,58]. Mild lymphoid lesions were identified as early as 24 hrs, with 

severe lymphadenopathy, splenomegaly, and prominent Peyer's patches found at 72 hrs after 

intravenous SEB administration in the piglet model [61]. Beery et al. observed similar inflammatory 

changes in the rat stomach and duodenum even after administration of single oral dose of SEA and 

noted predominant intraepithelial lymphocytes responses in jejunum [62]. Moreover, this elegant study 

showed that the intact rat GI epithelial barrier allowed the prompt passage of orally presented SEA 

across the epithelium to the lamina propria and, subsequently, to the kidney. 

Figure 1. Model of the role of mucosal lamina professional and non professional APCs in 

SE associated Gastro-Intestinal (GI) inflammatory injury. GI inflammatory injury during 

staphylococcal enterotoxigenic disease is mediated mostly through the SE superantigenic 

effect on MHC class II expressing mucosal professional (macrophages and dendritic cells, 

DC) and non professional (such as myofibroblasts) APCs and TCR expressing CD4+ 

T cells. SE can cross the intestinal epithelial barrier in intact form and bind to class II MHC 

molecules that expressed on subepithelial myofibroblast. These processes will lead to a 

strong production of the proinflammatory cytokines and chemokines, including IL-6, IL-8 

and MCP-1. The last one may leads to the increased chemotaxis of professional immune 

cells (CD4+ T cells, Macrophages, DC) from gut associated lymphoid tissue (GALT) to the 

site of SE associated inflammation in GI mucosa. Those MHC class II:SEs:TCR 

interactions may in turn result in hyperactivation of the APCs and the T cells leading to the 

excessive proliferation of T cells and the uncontrolled burst of various proinflammatory 

cytokines and chemokines causing the superantigen-mediated acute inflammation and shock. 

 

Despite the significant progress in the understanding of SE associated inflammation of GI tract, it is 

still unclear how this inflammation is initiated in vivo and what is the exact role of each of the immune 

and non immune cells that contribute to the progression of the disease. Many recent ex vivo and 



Toxins 2010, 2  

 

 

2183

in vitro studies suggest that GI inflammatory injury associated with staphylococcal enterotoxigenic 

disease is mediated mostly through the SE superantigenic effect on MHC class II expressing APCs and 

CD4+ T cells, cells expressing major receptors for SEs [63–67]. Those interactions may result in 

hyperactivation of professional as well as non-professional APCs and T cells leading to the excessive 

proliferation of CD4+ T cells and the release of proinflammatory cytokines and chemokines that 

contribute to the SE inflammatory effect on GI tract (Figure 1)[64–68].  

5. Mechanisms of Action 

5.1. Emetic effect of SEs  

Although the superantigenic activity of SEs has been well characterized, as discussed below, the 

mechanisms behind the emetic activity are poorly understood. In large part, this is due to the dearth of 

adequate animal models, some of which were mentioned above. Non-human primates represent an 

ideal candidate, but the high costs and ethical issues prevent their use to study emetic effects of SEs. 

One animal model that seems well-suited to study the emetic response of SEs is the house musk shrew. 

This small mammal that resembles a mouse responds with vomiting two hours after peroral or 

intraperitoneal administration of SEs [69]. Studies by Hu et al., who used the house musk shrew, 

showed that the small intestine is a site of emetic action by SEA and appears to involve the  

5-hydroxytryptamine (5-HT) or serotonin pathway [70]. Serotonin is an important signaling mediator 

in the gastrointestinal tract and can activate enteric neurons, stimulate muscle responses, and enhance 

secretion. Their studies showed that SEA-induced emesis was inhibited by cannabinoid (CB) receptor 

agonists and the action was reversed by a CB1 antagonist [70]. A recent study showed that aspartic acid 

at position 227 of SEA was important in the emetic activity, since substitution of that amino acid with 

alanine resulted in a molecule devoid of emetic activity [71]. Histamine and Ca++ channel blockers 

have also been found to prevent the emetic response to SEs suggesting an involvement of mast cells in 

enterotoxin-induced emesis.  

5.2. SE superantigenic property in immunopathogenesis associated with staphylococcal diarrheal disease 

Staphylococcal enterotoxins bind to class II MHC molecules on APCs outside of the antigenic 

peptide binding groove (Figure 2). The current literature suggests that the binding of these toxins to 

class II MHC is directed by very few residues, as shown by directed mutagenesis studies with class II 

MHC [72]. As for TSST-1, mutating a single residue may abolish its binding [73]. SEA has two 

distinct binding sites on both sides of the peptide binding groove of class II MHC. SEA molecules 

must be bound to both sites for optimal activity, which allows for class II MHC crosslinking, and 

stable interactions with T cells [70]. SED was shown to have multiple sites of interaction with class II 

MHC [17]. SEB and TSST-1 bind to the same region of HLA-DR1, but TSST-1 is the only 

staphylococcal toxin that extends part way over the peptide binding groove when bound to class II 

MHC [13]. SEE is similar structurally to SEA and binds to the same region as SEA on the beta-chain 

[18]. The SEH binding site on class II MHC overlaps with one of the SEA binding sites, and SEI binds 

to the HLA-DR1 beta-chain [21,22]. Once bound to class II MHC, SEs may then bind to T cells via the 

T cell receptor (TCR). T cells normally require presentation of a specific antigenic peptide to the TCR 
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by APCs in order to become activated. However, SEs interact with T cells in a “nonspecific” manner, 

only requiring a common variable region on the TCR (Figure 2). This MHC class II:SEs:TCR  

tri-molecular interaction leads to an uncontrolled release of various proinflammatory cytokines 

including IFN-gamma, TNF-α, IL-1β, IL-6 and IL-8, the key cytokines/chemokines causing 

superantigen-mediated acute inflammation and shock [74–77]. Whereas T cells are normally only 

activated in an antigenic specific way, their interaction with SEs leads to a massive proliferation and 

differentiation of T cells predominantly toward Th1 and Th17 phenotypes [78,79], both of which are 

associated with acute inflammatory responses.  

Figure 2. Model of SE interaction with T cell Receptors and class II MHC Molecules. The 

simultaneous binding of SEs outside of the antigen binding pocket of class II MHC on 

antigen presenting cells (APC) and to T cell receptors expressing certain V elements 

allows SEs to act as superantigens. The tripartite interaction of class II MHC:SEs:TcR 

results in the stimulation of both APC and T cells leading to the production of cytokines by 

both cell types.  

 

5.3. Effects on professional and non-professional APCs  

The intestinal epithelium is a layer of cells separating the lumen from immune cells, providing a 

barrier for the vast amount of food antigens, bacteria, and viruses to which the gut is exposed. The 

extensive inflammation induced by the immune response to SEs leads to an increase in intestinal 

epithelial permeability and a decrease in expression of tight junction proteins. Disruption of barrier 

function leads to an influx of antigens through the mucosal layer, further activating immune responses 

to these antigens as they interact with immune cells. SEs are able to cross the epithelial barrier intact 

and, by traversing this barrier, gain access to T cells. One study demonstrated that SEB was more 
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efficient at traversing the epithelial barrier than SEA, and thus, is more likely to reach the blood [80]. 

In addition to inducing T cell responses, SEs also induce proinflammatory responses from professional 

and non professional APCs when binding to MHC class II on these cells. In a mouse model, SEA, 

SEB, and TSST-1 were able to induce dendritic cell migration and maturation dependant on T cell 

activation [81]. Macrophages are also activated by SEs and upon binding release neutrophil 

chemotactic factors that induce neutrophil migration [82], and increased release of proinflammatory 

cytokines [83]. 

Similarly, we have shown that MHC class II-expressing intestinal subepithelial myofibroblasts, non 

professional APCs in GI mucosa, bind SEs, and are activated to produce proinflammatory cytokines 

such as IL-6, IL-8, and, to a less extent, TNF-α. Our further studies suggested that SEA was able to 

cross a monolayer of intestinal epithelial cells and bind to MHC class II expressed on isolated 

subepithelial myofibroblasts in co-culture, thus, inducing the production of MCP-1 along with the 

above mentioned proinflammatory cytokines [67]. In these studies, MCP-1 was shown to play an 

important role in the response to SEA since its neutralization decreased expression of IL-6 and IL-8 

during exposure to SEA. Moreover, the results from the same study suggest that SEA induced MCP-1 

production by the myofibroblasts might be involved in chemotaxis of lymphocytes to the site of SEA 

induced inflammation as illustrated on Figure 1. Another cell population that could bind SEs shortly 

after exposure are intestinal epithelial cells, but their class II MHC expression is prominent mostly 

during inflammation, and upon homeostasis has been distinctly observed in the duodenum [84,85]. 

When T cells were added to culture with the epithelial cell exposed to SEs, proliferation was induced 

suggesting a potential involvement of these cells in SE associated immunopathogenesis. Other studies 

have shown that interaction of the MHC class II+ vascular endothelial cells with SEB, initiates T cell 

activation [86]. SEA interaction with these endothelial cells described to induce production of IL-8 and 

TNF-α leading to the endothelial injury [87]. Another study showed that SEA could bind to B cells via 

MHC class II molecules [88]. Collectively, these studies suggest that SEs may bind to a variety of cell 

types via MHC class II molecules and these interactions leads to their activation resulting in 

proinflammatory cytokines and chemokines production and uncontrolled activation of T cells. 

6. In Vivo Modeling of SE Associated Diarrheal Diseases 

Despite the knowledge acquired regarding the SE interactions with the host, their effect on immune 

responses, and a valid animal model of SE associated airway disease, there are only few models of  

SE-associated diarrheal disease [89–91]. Reviews of enterotoxigenic diarrheal disease models include 

very limited information about the in vivo modeling of the SE associated diarrhea [92]. The more 

susceptible animal species to develop human-like enterotoxigenic disease are non-human primate 

models, mostly using Macaca mulatta [57,93]. When introduced intragastrically, SEA and SEB have 

been shown to induce emetic responses, diarrhea and GI inflammatory changes in different Macaca spp. 

[55,68,94,95]. Kohrman et al. demonstrated that administration of TSS-associated S. aureus to 

baboons resulted in mild symptoms and was associated with decreased food intake and loose stools 

[96]. Unfortunately, the use of the primate models to study SE diarrheal disease is limited by high 

costs, short supply, and complexity of animal care. 
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The dog [56,58,97], pig [60] and piglet [61] models have been successfully used to reproduce some 

of the features associated with staphylococcal enterotoxigenic disease. These models have clearly 

demonstrated diarrhea and the appearance of the immunopathological changes in the gut-associated 

lymphoid tissue (GALT). However, the main disadvantage for use of those models remain similar to 

the monkey models: high cost and short supply in the available tools for the study of SE 

associated immunopathology.  

Wild strains of rodents are less susceptible to the SE or TSST-1, as the affinity of those toxins to 

murine MHC class molecules are much lower [92]. However, one of the first attempts to model SEB 

associated diarrheal disease was done in rats [98]. This model has been successfully used to study the 

effects of SEA on the GI tract [62,98]. However, an acceptable murine model to study the 

immunopathogenesis of SE-associated diarrheal disease has not yet been developed. Recent progress 

made in the development of “humanized” transgenic animals expressing the human MHC class II 

alleles, such as HLA-DR and -DQ [99] might be useful to finally get insights in the GI 

immunopathobiology of SE associated diarrheal disease.  

7. Their Potential as Agents of Biological Warfare 

SEB is the only known Staphylococcus enterotoxin that has been examined as a biological warfare 

weapon. There was particular interest in weaponizing SEB in the Cold War Era because of its stability 

and potential simplicity in production and dispersal. SEB was studied in an aerosolized form for use as 

a weapon. It may be purified from culture supernatants in the laboratory, and therefore would be easy 

to produce. As mentioned earlier, SEB is quite stable to heat, proteolytic digestion, and a wide pH 

range [7] also making it easy to produce and distribute. A very small amount (0.004 µg/kg) is effective 

at inducing symptoms, and a dose of 0.02 µg/kg could be lethal [100]. The fact that a low dose of SEB 

is sufficient to incapacitate people is another factor that makes it a potential weapon. Inhalation of SEB 

leads to shortness of breath and chest pain for several hours after exposure. With heavy exposure, more 

serious symptoms could occur such as high fever, pulmonary edema, possible acute respiratory distress 

syndrome, or septic shock [101]. Symptoms were examined in both animal studies and in several 

accidental laboratory accidents. In studies where monkeys were immunized with SEB-containing 

microspheres, all the monkeys studied developed toxic shock syndrome within 48 hours [102]. There 

have been several laboratory cases of inhalation that may represent the potential of SEB as a weapon. 

In the 1960s, three different occurrences of laboratory exposure to SEB were reported under the US 

Offensive Biological Warfare Program (http://www.cdc.gov/ncidod/EID/vol10no9/04-0250.htm 

[103]). In 1963, a total of nine people were exposed to aerosolized SEB. Two were exposed due to a 

ruptured hose in the laboratory containing SEB. Both people suffered fever, headache, gastrointestinal 

symptoms, but recovered 72 hours later. In a separate incident in 1963, five people of seven exposed 

became ill while performing experiments with monkeys. The monkeys were being exposed to 

aerosolized SEB, and it is thought the SEB was carried in the monkey’s fur, exposing laboratory 

workers while they were handling the monkeys. Within 24 hours of exposure five people experienced 

fever, cough, chest pain, diarrhea and vomiting. Four of the five people with symptoms were 

hospitalized, but all survived. The third incident of exposure during this program was in 1964 when a 

tube of aerosolized SEB meant for monkeys ruptured, resulting in the exposure of fifteen people to 
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SEB. Ten people developed the same symptoms as the previous two laboratory exposures and nine of 

them were hospitalized. Symptoms were cleared in three-five days. 

In addition to inhalation, SEB could be purified and introduced into water or food systems in order 

to affect large numbers of people. However, the probability of a terrorist having the technical skills to 

weaponize SEB is low. The more likely scenario is that purified SEB could be stolen from a laboratory 

so it would more likely be an isolated threat unless large amounts could be stolen. The risk of 

widespread mortality with the use of SEB as a weapon is low; however, it could effectively 

incapacitate the general population or soldiers on the front line. 

Despite its low mortality threat risk, vaccines against SEB have been examined in the 1960s and 

after the increased terrorist risks perceived after September 11th, 2001. In the 1960s, the United States 

Army Medical Research Institute of Infectious Disease (USAMARIID) focused on vaccines containing 

formalin-inactivated SEB toxin. The objective of the research was to induce protective antibodies in 

monkeys without major side effects by inactivating the toxin. In the 1960s subcutaneous injection was 

examined, and thirty years later, intramuscular injection was examined [104,105] with both leading to 

some protective responses without side effects. However, when the vaccine was administered 

intranasally it only induced weak responses. Thus, in 2003 research turned to the development of 

recombinant type of SEB vaccines. The goal for those type of vaccines is to produce a mutated SEB 

protein, which lacked its toxic property, but remains sufficiently immunogenic to induce protective 

anti-SEB immune responses [106,107].  

8. Agents that Target the Superantigen Effect of SE 

Despite all the advances in the understanding of the SE mechanism of action, the SE-associated 

diarrheal disease due to food poisoning or nosocomial S. aureus infection is of major concern in health 

programs worldwide. WHO pointed out in 2003 that the best approach to reduce the number of food 

poisoning-related disease outbreaks are preventative measures and treatments against SEs [108]. The 

preventive measures include stricter food control, hand and environmental hygiene, identification and 

isolation of carriers, and proper S. aureus antibiotic therapy [109–112].  

SE-associated diarrheal disease symptoms are abrupt, and may be severe enough to warrant 

hospitalization. Although due to the self-limitation of this disease specific anti-staphylococcal therapy 

is not always required, but it is generally agreed that antimicrobial agents with activity against 

S. aureus should be given to all patients with suspected toxic shock syndrome and MRSA infections 

[113,114]. However, the increase in MRSA strains poses a challenge to efficient therapy [111,115]. 

Therefore, novel ways targeting the prevention of SE production by S. aureus or blocking/neutralization 

of SE interaction with the host are required to ameliorate the disease outcome. SE immunopathological 

effects are strongly associated with their capacity to act as superantigens. Thus, the SE superantigenic 

properties represent a very attractive therapeutic target. Potential targets to prevent the toxic effects of 

bacterial superantigens have been well reviewed by Krakauer in 2005 [92], more recently by  

Fraeser et al. in 2008 [116], and Larkin et al. in 2009 [117]. Since the discovery of SE structures and 

immune receptors, multiple immunotherapeutic strategies have been proposed. Those strategies 

include neutralization of SEs by intravenous Ig therapy that consists of anti-SE polyclonal Abs from 

multiple donors [118–120], blocking the interaction of SEs with MHC class II or TCR [121–125], and 
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inhibition of signal transduction pathways activated by these superantigens, particularly NF-B  

[126–128]. The inhibition of SE-induced proinflammatory cytokine/chemokine cascade by using 

neutralizing Abs, anti-inflammatory cytokine (e.g., IL-10), or potent immunosuppressants have been 

proposed [66,67,129,130]. One study showed that doxycycline treatment inhibited human T cell 

activation and cytokine release in response to SEs and may have potential as a therapeutic strategy 

[97]. Mouse studies showed that pirfenidone, rapamycin, and dexamethasone were effective at 

blocking SEB-induced T cell proliferation and cytokine production [127]. Another recently proposed 

original approach was to use of the innate immunity modulators [128,131,132]. For instance, 

Hayworth et al. demonstrated that bovine lactoferrin was able to attenuate SEB-induced proliferation, 

IL-2 production, and CD25 expression in HLA-DR4 transgenic mouse T cells [126]. This inhibition 

was due to the lactoferrin iron-binding capacity. Dietary plasma protein supplements have been shown 

to prevent release of SEB-induced mucosal proinflammatory mediators (IFN-, TNF-, IL-6 and 

LTB4) in rats [132].  

All the available data has demonstrated that the early blockade of the mechanisms involved in the 

SE induced hyperactivation of immune responses may represent attractive strategy for the 

development of new specific anti-SE therapeutic approaches. However, more fundamental in vivo 

studies using adequate animal models are needed to understand, which of those approaches may be the 

most effective.  

9. Concluding Remarks 

SEs are members of a large family of bacterial exotoxins produced by staphylococci and 

streptococci that are functionally and structurally related. They have significant morbidity associated 

with them and are frequent as S. aureus is persistent in 20% of the general population. This population 

is considered “healthy”. Moreover, S. aureus may be transiently carried by as much as 60% of the 

population. A recognized problem is the increase in MRSA strains, which are dangerous due to their 

resistance of most antibiotics used in clinical practice. Additional work is needed to develop improved 

preventive and therapeutic strategies targeting neutralization or impairment of SE induced 

hyperactivation of the proinflammatory immune responses.  

Acknowledgements 

This work was supported by The National Institutes of Health Grant AI068712, the Crohn and 

Colitis Foundation, Texas Board of Higher Education, American Gastroenterology Association 

Foundation for Digestive Health and Nutrition, McLaughlin Foundation and the John Sealy Memorial 

Endowment Fund for Biomedical Research.  

References  

1. Kluytmans, J.; van Belkum, A.; Verbrugh, H. Nasal Carriage of Staphylococcus aureus: 

Epidemiology, Underlying Mechanisms, and Associated Risks. Clin. Microbiol. Rev. 1997, 10, 

505–520. 



Toxins 2010, 2  

 

 

2189

2. von Eiff, E.C.; Becker, K.; Machka, K.; Stammer, H.; Peters, G. Nasal Carriage As a Source of 

Staphylococcus aureus Bacteremia. Study Group. N. Engl. J. Med. 2001, 344, 11–16. 

3. Morandi, S.; Brasca, M.; Andrighetto, C.; Lombardi, A.; Lodi, R. Phenotypic and Genotypic 

Characterization of Staphylococcus Aureus Strains From Italian Dairy Products. Int. J. 

Microbiol. 2009, 2009, 501362:1–501362:7, doi:10.1155/2009/501362. 

4. Zhang, S.; Iandolo, J.J.; Stewart, G.C. The Enterotoxin D Plasmid of Staphylococcus aureus 

Encodes a Second Enterotoxin Determinant (Sej). FEMS Microbiol. Lett. 1998, 168, 227–233. 

5. Lindsay, J.A.; Ruzin, A.; Ross, H.F.; Kurepina, N.; Novick, R.P. The Gene for Toxic Shock 

Toxin Is Carried by a Family of Mobile Pathogenicity Islands in Staphylococcus aureus. Mol. 

Microbiol. 1998, 29, 527–543. 

6. Varshney, A.K.; Mediavilla, J.R.; Robiou, N.; Guh, A.; Wang, X.; Gialanella, P.; Levi, M.H.; 

Kreiswirth, B.N.; Fries, B.C. Diverse Enterotoxin Gene Profiles Among Clonal Complexes of 

Staphylococcus aureus Isolates From the Bronx, New York. Appl. Environ. Microbiol. 2009, 75, 

6839–6849. 

7. Ler, S.G.; Lee, F.K.; Gopalakrishnakone, P. Trends in Detection of Warfare Agents. Detection 

Methods for Ricin, Staphylococcal Enterotoxin B and T-2 Toxin. J. Chromatogr. A 2006, 1133, 

1–12. 

8. Bergdoll, M.S.; Crass, B.A.; Reiser, R.F.; Robbins, R.N.; Davis, J.P. A New Staphylococcal 

Enterotoxin, Enterotoxin F, Associated with Toxic-Shock-Syndrome Staphylococcus aureus 

Isolates. Lancet 1981, 1, 1017–1021. 

9. Morris, C.A.; Conway, H.D.; Everall, P.H. Food-Poisoning Due to Staphylococcal Enterotoxin E. 

Lancet 1972, 2, 1375–1376. 

10. Chen, T.R.; Chiou, C.S.; Tsen, H.Y. Use of Novel PCR Primers Specific to the Genes of 

Staphylococcal Enterotoxin G, H, I for the Survey of Staphylococcus aureus Strains Isolated 

From Food-Poisoning Cases and Food Samples in Taiwan. Int. J. Food Microbiol. 2004, 92, 

189–197. 

11. Ikeda, T.; Tamate, N.; Yamaguchi, K.; Makino, S. Mass Outbreak of Food Poisoning Disease 

Caused by Small Amounts of Staphylococcal Enterotoxins A and H. Appl. Environ. Microbiol. 

2005, 71, 2793–2795. 

12. Hudson, K.R.; Tiedemann, R.E.; Urban, R.G.; Lowe, S.C.; Strominger, J.L.; Fraser, J.D. 

Staphylococcal Enterotoxin A Has Two Cooperative Binding Sites on Major Histocompatibility 

Complex Class II. J. Exp. Med. 1995, 182, 711–720. 

13. Kim, J.; Urban, R.G.; Strominger, J.L.; Wiley, D.C. Toxic Shock Syndrome Toxin-1 Complexed 

with a Class II Major Histocompatibility Molecule HLA-DR1. Science 1994, 266, 1870–1874. 

14. Marr, J.C.; Lyon, J.D.; Roberson, J.R.; Lupher, M.; Davis, W.C.; Bohach, G.A. Characterization 

of Novel Type C Staphylococcal Enterotoxins: Biological and Evolutionary Implications. Infect. 

Immun. 1993, 61, 4254–4262. 

15. Redpath, S.; Alam, S.M.; Lin, C.M.; O'Rourke, A.M.; Gascoigne, N.R. Cutting Edge: 

Trimolecular Interaction of TCR with MHC Class II and Bacterial Superantigen Shows a Similar 

Affinity to MHC:Peptide Ligands. J. Immunol. 1999, 163, 6–10. 

16. Chang, H.C.; Bergdoll, M.S. Purification and Some Physicochemical Properties of 

Staphylococcal Enterotoxin D. Biochemistry 1979, 18, 1937–1942. 



Toxins 2010, 2  

 

 

2190

17. Al-Daccak, R.; Mehindate, K.; Damdoumi, F.; Etongue-Mayer, P.; Nilsson, H.; Antonsson, P.; 

Sundstrom, M.; Dohlsten, M.; Sekaly, R.P.; Mourad, W. Staphylococcal Enterotoxin D Is a 

Promiscuous Superantigen Offering Multiple Modes of Interactions with the MHC Class II 

Receptors. J. Immunol. 1998, 160, 225–232. 

18. Karp, D.R.; Long, E.O. Identification of HLA-DR1 Beta Chain Residues Critical for Binding 

Staphylococcal Enterotoxins A and E. J. Exp. Med. 1992, 175, 415–424. 

19. Braunstein, N.S.; Weber, D.A.; Wang, X.C.; Long, E.O.; Karp, D. Sequences in Both Class II 

Major Histocompatibility Complex Alpha and Beta Chains Contribute to the Binding of the 

Superantigen Toxic Shock Syndrome Toxin 1. J. Exp. Med. 1992, 175, 1301–1305. 

20. Fernandez, M.M.; Bhattacharya, S.; De Marzi, M.C.; Brown, P.H.; Kerzic, M.; Schuck, P.; 

Mariuzza, R.A.; Malchiodi, E.L. Superantigen Natural Affinity Maturation Revealed by the 

Crystal Structure of Staphylococcal Enterotoxin G and Its Binding to T-Cell Receptor Vbeta8.2. 

Proteins 2007, 68, 389–402. 

21. Nilsson, H.; Bjork, P.; Dohlsten, M.; Antonsson, P. Staphylococcal Enterotoxin H Displays 

Unique MHC Class II-Binding Properties. J. Immunol. 1999, 163, 6686–6693. 

22. Fernandez, M.M.; Guan, R.; Swaminathan, C.P.; Malchiodi, E.L.; Mariuzza, R.A. Crystal 

Structure of Staphylococcal Enterotoxin I (SEI) in Complex with a Human Major 

Histocompatibility Complex Class II Molecule. J. Biol. Chem. 2006, 281, 25356–25364. 

23. Choi, Y.W.; Kotzin, B.; Herron, L.; Callahan, J.; Marrack, P.; Kappler, J. Interaction of 

Staphylococcus aureus Toxin "Superantigens" with Human T Cells. Proc. Natl. Acad. Sci. USA 

1989, 86, 8941–8945. 

24. Balaban, N.; Rasooly, A. Staphylococcal Enterotoxins. Int. J. Food Microbiol. 2000, 61, 1–10. 

25. Schlievert, P.M.; Bohach, G.A.; Ohlendorf, D.H.; Stauffacher, C.V.; Leung, D.Y.; Murray, D.L.; 

Prasad, G.S.; Earhart, C.A.; Jablonski, L.M.; Hoffmann, M.L.; Chi, Y.I. Molecular Structure of 

Staphylococcus and Streptococcus Superantigens. J. Clin. Immunol. 1995, 15, 4S–10S. 

26. Jardetzky, T.S.; Brown, J.H.; Gorga, J.C.; Stern, L.J.; Urban, R.G.; Chi, Y.I.; Stauffacher, C.; 

Strominger, J.L.; Wiley, D.C. 3-Dimensional Structure of A Human Class-Ii Histocompatibility 

Molecule Complexed with Superantigen. Nature 1994, 368, 711–718. 

27. Watanabe, T.; Watanabe, M.; Ishii, Y.; Matsuba, H.; Kimura, S.; Fujita, T.; Kominami, E.; 

Katunuma, N.; Uchiyama, Y. An Immunocytochemical Study on Co-Localization of Cathepsin B 

and Atrial Natriuretic Peptides in Secretory Granules of Atrial Myoendocrine Cells of Rat Heart. 

J. Histochem. Cytochem. 1989, 37, 347–351. 

28. Singh, B.R.; Fu, F.N.; Ledoux, D.N. Crystal and Solution Structures of Superantigenic 

Staphylococcal Enterotoxins Compared. Nat. Struct. Biol. 1994, 1, 358–360. 

29. Hsu, P.N.; Huber, B.T. Superantigens. Gazing into the Crystal Ball. Curr. Biol. 1995, 5, 235–237. 

30. Schad, E.M.; Zaitseva, I.; Zaitsev, V.N.; Dohlsten, M.; Kalland, T.; Schlievert, P.M.; Ohlendorf, 

D.H.; Svensson, L.A. Crystal Structure of the Superantigen Staphylococcal Enterotoxin Type A. 

EMBO J. 1995, 14, 3292–3301. 

31. Papageorgiou, A.C.; Acharya, K.R.; Shapiro, R.; Passalacqua, E.F.; Brehm, R.D.; Tranter, H.S. 

Crystal Structure of the Superantigen Enterotoxin C2 From Staphylococcus aureus Reveals a 

Zinc-Binding Site. Structure 1995, 3, 769–779. 



Toxins 2010, 2  

 

 

2191

32. Sundstrom, M.; Hallen, D.; Svensson, A.; Schad, E.; Dohlsten, M.; Abrahmsen, L. The Co-

Crystal Structure of Staphylococcal Enterotoxin Type A with Zn2+ at 2.7 A Resolution. 

Implications for Major Histocompatibility Complex Class II Binding. J. Biol. Chem. 1996, 271, 

32212–32216. 

33. Sundstrom, M.; Abrahmsen, L.; Antonsson, P.; Mehindate, K.; Mourad, W.; Dohlsten, M. The 

Crystal Structure of Staphylococcal Enterotoxin Type D Reveals Zn2+-Mediated 

Homodimerization. EMBO J. 1996, 15, 6832–6840. 

34. Papageorgiou, A.C.; Tranter, H.S.; Acharya, K.R. Crystal Structure of Microbial Superantigen 

Staphylococcal Enterotoxin B at 1.5 A Resolution: Implications for Superantigen Recognition by 

MHC Class II Molecules and T-Cell Receptors. J. Mol. Biol. 1998, 277, 61–79. 

35. Li, H.; Llera, A.; Tsuchiya, D.; Leder, L.; Ysern, X.; Schlievert, P.M.; Karjalainen, K.; Mariuzza, 

R.A. Three-Dimensional Structure of the Complex Between a T Cell Receptor Beta Chain and 

the Superantigen Staphylococcal Enterotoxin B. Immunity 1998, 9, 807–816. 

36. Antonsson, P.; Wingren, A.G.; Hansson, J.; Kalland, T.; Varga, M.; Dohlsten, M. Functional 

Characterization of the Interaction Between the Superantigen Staphylococcal Enterotoxin A and 

the TCR. J. Immunol. 1997, 158, 4245–4251. 

37. Garcia, C.; Briggs, C.; Zhang, L.; Guan, L.; Gabriel, J.L.; Rogers, T.J. Molecular 

Characterization of the Putative T-Cell Receptor Cavity of the Superantigen Staphylococcal 

Enterotoxin B. Immunology 1998, 94, 160–166. 

38. Kappler, J.W.; Herman, A.; Clements, J.; Marrack, P. Mutations Defining Functional Regions of 

the Superantigen Staphylococcal Enterotoxin B. J. Exp. Med. 1992, 175, 387–396. 

39. Marrack, P.; Kappler, J. The Staphylococcal Enterotoxins and Their Relatives. Science 1990, 

248, 705–711. 

40. Bohach, G.A. Staphylococcal Enterotoxins B and C. Structural Requirements for Superantigenic 

and Entertoxigenic Activities. Prep. Biochem. Biotechnol. 1997, 27, 79–110. 

41. Rich, R.R.; Mollick, J.A.; Cook, R.G. Superantigens: Interaction of Staphylococcal Enterotoxins 

with MHC Class II Molecules. Trans. Am. Clin. Climatol. Assoc. 1990, 101, 195–204. 

42. Le Loir, Y.; Baron, F.; Gautier, M. Staphylococcus aureus and Food Poisoning. Genet. Mol. Res. 

2003, 2, 63–76. 

43. Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, 

R.V. Food-Related Illness and Death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625. 

44. Buzby, J.C.; Roberts, T. Economic Costs and Trade Impacts of Microbial Foodborne Illness. 

World Health Stat. Q. 1997, 50, 57–66. 

45. Scherrer, D.; Corti, S.; Muehlherr, J.E.; Zweifel, C.; Stephan, R. Phenotypic and Genotypic 

Characteristics of Staphylococcus Aureus Isolates From Raw Bulk-Tank Milk Samples of Goats 

and Sheep. Vet. Microbiol. 2004, 101, 101–107. 

46. Evenson, M.L.; Hinds, M.W.; Bernstein, R.S.; Bergdoll, M.S. Estimation of Human Dose of 

Staphylococcal Enterotoxin A From a Large Outbreak of Staphylococcal Food Poisoning 

Involving Chocolate Milk. Int. J. Food Microbiol. 1988, 7, 311–316. 

47. Atanassova, V.; Meindl, A.; Ring, C. Prevalence of Staphylococcus aureus and Staphylococcal 

Enterotoxins in Raw Pork and Uncooked Smoked Ham—a Comparison of Classical Culturing 

Detection and RFLP-PCR. Int. J. Food Microbiol. 2001, 68, 105–113. 



Toxins 2010, 2  

 

 

2192

48. Casman, E.P. Staphylococcal Enterotoxin. Ann. N. Y. Acad. Sci. 1965, 128, 124–131. 

49. Flemming, K.; Ackermann, G. Prevalence of Enterotoxin Producing Staphylococcus aureus in 

Stools of Patients with Nosocomial Diarrhea. Infection 2007, 35, 356–358. 

50. Boyce, J.M.; Havill, N.L. Nosocomial Antibiotic-Associated Diarrhea Associated with 

Enterotoxin-Producing Strains of Methicillin-Resistant Staphylococcus aureus. Am. J. 

Gastroenterol. 2005, 100, 1828–1834. 

51. Ehlert, K. Methicillin-Resistance in Staphylococcus aureus - Molecular Basis, Novel Targets and 

Antibiotic Therapy. Curr. Pharm. Des. 1999, 5, 45–55. 

52. CDC NNIS System. National Nosocomial Infections Surveillance (NNIS) System Report, Data 

Summary From January 1992 Through June 2004, Issued October 2004. Am. J. Infect. Control 

2004, 32, 470–485. 

53. Schmitz, F.J.; MacKenzie, C.R.; Geisel, R.; Wagner, S.; Idel, H.; Verhoef, J.; Hadding, U.; 

Heinz, H.P. Enterotoxin and Toxic Shock Syndrome Toxin-1 Production of Methicillin Resistant 

and Methicillin Sensitive Staphylococcus aureus Strains. Eur. J. Epidemiol. 1997, 13, 699–708. 

54. Banwell, J.G.; Sherr, H. Effect of Bacterial Enterotoxins on the Gastrointestinal Tract. 

Gastroenterology 1973, 65, 467–497. 

55. Merrill, T.G.; Sprinz, H. The Effect of Staphylococcal Enterotoxin on the Fine Structure of the 

Monkey Jejunum. Lab. Invest. 1968, 18, 114–123. 

56. Shemano, I.; Hitchens, J.T.; Beiler, J.M. Paradoxical Intestinal Inhibitory Effects of 

Staphylococcal Enterotoxin. Gastroenterology 1967, 53, 71–77. 

57. Stiles, J.W.; Denniston, J.C. Response of the Rhesus Monkey, Macaca Mulatta, to Continuously 

Infused Staphylococcal Enterotoxin B. Lab. Invest. 1971, 25, 617–625. 

58. Van Prohaska, J. Role of Staphylococcal Enterotoxin in the Induction of Experimental Ileitis. 

Ann. Surg. 1963, 158, 492–497. 

59. Tranter, H.S. Foodborne Staphylococcal Illness. Lancet 1990, 336, 1044–1046. 

60. Taylor, S.L.; Schlunz, L.R.; Beery, J.T.; Cliver, D.O.; Bergdoll, M.S. Emetic Action of 

Staphylococcal Enterotoxin A on Weanling Pigs. Infect. Immun. 1982, 36, 1263–1266. 

61. van Gessel, Y.A.; Mani, S.; Bi, S.; Hammamieh, R.; Shupp, J.W.; Das, R.; Coleman, G.D.; Jett, 

M. Functional Piglet Model for the Clinical Syndrome and Postmortem Findings Induced by 

Staphylococcal Enterotoxin B. Exp. Biol. Med. (Maywood) 2004, 229, 1061–1071. 

62. Beery, J.T.; Taylor, S.L.; Schlunz, L.R.; Freed, R.C.; Bergdoll, M.S. Effects of Staphylococcal 

Enterotoxin A on the Rat Gastrointestinal Tract. Infect. Immun. 1984, 44, 234–240. 

63. Lu, J.; Philpott, D.J.; Saunders, P.R.; Perdue, M.H.; Yang, P.C.; McKay, D.M. Epithelial Ion 

Transport and Barrier Abnormalities Evoked by Superantigen-Activated Immune Cells Are 

Inhibited by Interleukin-10 but Not Interleukin-4. J. Pharmacol. Exp. Ther. 1998, 287, 128–136. 

64. McKay, D.M.; Benjamin, M.A.; Lu, J. CD4+ T Cells Mediate Superantigen-Induced 

Abnormalities in Murine Jejunal Ion Transport. Am. J. Physiol. 1998, 275, G29–G38. 

65. McKay, D.M.; Botelho, F.; Ceponis, P.J.; Richards, C.D. Superantigen Immune Stimulation 

Activates Epithelial STAT-1 and PI 3-K: PI 3-K Regulation of Permeability. Am. J. Physiol. 

Gastrointest. Liver Physiol. 2000, 279, G1094–G1103. 



Toxins 2010, 2  

 

 

2193

66. Pender, S.L.; Breese, E.J.; Gunther, U.; Howie, D.; Wathen, N.C.; Schuppan, D.; MacDonald, 

T.T. Suppression of T Cell-Mediated Injury in Human Gut by Interleukin 10: Role of Matrix 

Metalloproteinases. Gastroenterology 1998, 115, 573–583. 

67. Pinchuk, I.V.; Beswick, E.J.; Saada, J.I.; Suarez, G.; Winston, J.; Mifflin, R.C.; Di Mari, J.F.; 

Powell, D.W.; Reyes, V.E. Monocyte Chemoattractant Protein-1 Production by Intestinal 

Myofibroblasts in Response to Staphylococcal Enterotoxin a: Relevance to Staphylococcal 

Enterotoxigenic Disease. J. Immunol. 2007, 178, 8097–8106. 

68. Benjamin, M.A.; Lu, J.; Donnelly, G.; Dureja, P.; McKay, D.M. Changes in Murine Jejunal 

Morphology Evoked by the Bacterial Superantigen Staphylococcus aureus Enterotoxin B Are 

Mediated by CD4+ T Cells. Infect. Immun. 1998, 66, 2193–2199. 

69. Hu, D.L.; Omoe, K.; Shimoda, Y.; Nakane, A.; Shinagawa, K. Induction of Emetic Response to 

Staphylococcal Enterotoxins in the House Musk Shrew (Suncus Murinus). Infect. Immun. 2003, 

71, 567–570. 

70. Hu, D.L.; Zhu, G.; Mori, F.; Omoe, K.; Okada, M.; Wakabayashi, K.; Kaneko, S.; Shinagawa, 

K.; Nakane, A. Staphylococcal Enterotoxin Induces Emesis Through Increasing Serotonin 

Release in Intestine and It Is Downregulated by Cannabinoid Receptor 1. Cell. Microbiol. 2007, 

9, 2267–2277. 

71. Hu, D.L.; Omoe, K.; Sashinami, H.; Shinagawa, K.; Nakane, A. Immunization with a Nontoxic 

Mutant of Staphylococcal Enterotoxin A, SEAD227A, Protects Against Enterotoxin-Induced 

Emesis in House Musk Shrews. J. Infect. Dis. 2009, 199, 302–310. 

72. Thibodeau, J.; Cloutier, I.; Lavoie, P.M.; Labrecque, N.; Mourad, W.; Jardetzky, T.; Sekaly, R.P. 

Subsets of HLA-DR1 Molecules Defined by SEB and TSST-1 Binding. Science 1994, 266, 

1874–1878. 

73. Panina-Bordignon, P.; Fu, X.T.; Lanzavecchia, A.; Karr, R.W. Identification of HLA-DR Alpha 

Chain Residues Critical for Binding of the Toxic Shock Syndrome Toxin Superantigen. J. Exp. 

Med. 1992, 176, 1779–1784. 

74. Al-Daccak, R.; Mehindate, K.; Poubelle, P.E.; Mourad, W. Signalling Via MHC Class II 

Molecules Selectively Induces IL-1 Beta Over IL-1 Receptor Antagonist Gene Expression. 

Biochem. Biophys. Res. Commun. 1994, 201, 855–860. 

75. Assenmacher, M.; Lohning, M.; Scheffold, A.; Manz, R.A.; Schmitz, J.; Radbruch, A. Sequential 

Production of IL-2, IFN-Gamma and IL-10 by Individual Staphylococcal Enterotoxin  

B-Activated T Helper Lymphocytes. Eur. J. Immunol. 1998, 28, 1534–1543. 

76. Carlsson, R.; Fischer, H.; Sjogren, H.O. Binding of Staphylococcal Enterotoxin A to Accessory 

Cells Is a Requirement for Its Ability to Activate Human T Cells. J. Immunol. 1988, 140,  

2484–2488. 

77. Carlsson, R.; Sjogren, H.O. Kinetics of IL-2 and Interferon-Gamma Production, Expression of 

IL-2 Receptors, and Cell Proliferation in Human Mononuclear Cells Exposed to Staphylococcal 

Enterotoxin A. Cell. Immunol. 1985, 96, 175–183. 

78. Cameron, S.B.; Nawijn, M.C.; Kum, W.W.; Savelkoul, H.F.; Chow, A.W. Regulation of Helper 

T Cell Responses to Staphylococcal Superantigens. Eur. Cytokine Netw. 2001, 12, 210–222. 



Toxins 2010, 2  

 

 

2194

79. Grumann, D.; Scharf, S.S.; Holtfreter, S.; Kohler, C.; Steil, L.; Engelmann, S.; Hecker, M.; 

Volker, U.; Broker, B.M. Immune Cell Activation by Enterotoxin Gene Cluster (Egc)-Encoded 

and Non-Egc Superantigens From Staphylococcus aureus. J. Immunol. 2008, 181, 5054–5061. 

80. Hamad, A.R.; Marrack, P.; Kappler, J.W. Transcytosis of Staphylococcal Superantigen Toxins.  

J. Exp. Med. 1997, 185, 1447–1454. 

81. Muraille, E.; De Trez, C.; Pajak, B.; Brait, M.; Urbain, J.; Leo, O. T Cell-Dependent Maturation 

of Dendritic Cells in Response to Bacterial Superantigens. J. Immunol. 2002, 168, 4352–4360. 

82. Desouza, I.A.; Hyslop, S.; Franco-Penteado, C.F.; Ribeiro-DaSilva, G. Mouse Macrophages 

Release a Neutrophil Chemotactic Mediator Following Stimulation by Staphylococcal 

Enterotoxin Type A. Inflamm. Res. 2001, 50, 206–212. 

83. Desouza, I.A.; Hyslop, S.; Franco-Penteado, C.F.; Ribeiro-DaSilva, G. Evidence for the 

Involvement of a Macrophage-Derived Chemotactic Mediator in the Neutrophil Recruitment 

Induced by Staphylococcal Enterotoxin B in Mice. Toxicon 2002, 40, 1709–1717. 

84. Byrne, B.; Madrigal-Estebas, L.; McEvoy, A.; Carton, J.; Doherty, D.G.; Whelan, A.; Feighery, 

C.; O'Donoghue, D.P.; O'Farrelly, C. Human Duodenal Epithelial Cells Constitutively Express 

Molecular Components of Antigen Presentation but Not Costimulatory Molecules. Hum. 

Immunol. 2002, 63, 977–986. 

85. Fromont, G.; Cerf-Bensussan, N.; Patey, N.; Canioni, D.; Rambaud, C.; Goulet, O.; Jan, D.; 

Revillon, Y.; Ricour, C.; Brousse, N. Small Bowel Transplantation in Children: an 

Immunohistochemical Study of Intestinal Grafts. Gut 1995, 37, 783–790. 

86. Krakauer, T. Costimulatory Receptors for the Superantigen Staphylococcal Enterotoxin B on 

Human Vascular Endothelial Cells and T Cells. J. Leukoc. Biol. 1994, 56, 458–463. 

87. Fujisawa, N.; Hayashi, S.; Kurdowska, A.; Noble, J.M.; Naitoh, K.; Miller, E.J. Staphylococcal 

Enterotoxin A-Induced Injury of Human Lung Endothelial Cells and IL-8 Accumulation Are 

Mediated by TNF-Alpha. J. Immunol. 1998, 161, 5627–5632. 

88. Fischer, H.; Dohlsten, M.; Lindvall, M.; Sjogren, H.O.; Carlsson, R. Binding of Staphylococcal 

Enterotoxin A to HLA-DR on B Cell Lines. J. Immunol. 1989, 142, 3151–3157. 

89. Huvenne, W.; Callebaut, I.; Plantinga, M.; Vanoirbeek, J.A.; Krysko, O.; Bullens, D.M.; Gevaert, 

P.; Van Cauwenberge, P.; Lambrecht, B.N.; Ceuppens, J.L.; Bachert, C.; Hellings, P.W. 

Staphylococcus aureus Enterotoxin B Facilitates Allergic Sensitization in Experimental Asthma. 

Clin. Exp. Allergy 2010, 40, 1079–1090. 

90. Bachert, C.; Zhang, N.; Patou, J.; Van Zele, T.; Gevaert, P. Role of Staphylococcal Superantigens 

in Upper Airway Disease. Curr. Opin. Allergy Clin. Immunol. 2008, 8, 34–38. 

91. Bachert, C.; Gevaert, P.; Zhang, N.; Van Zele, T.; Perez-Novo, C. Role of Staphylococcal 

Superantigens in Airway Disease. Chem. Immunol. Allergy 2007, 93, 214–236. 

92. Krakauer, T. Chemotherapeutics Targeting Immune Activation by Staphylococcal Superantigens. 

Med. Sci. Monit. 2005, 11, RA290–RA295. 

93. Normann, S.J.; Jaeger, R.F.; Johnsey, R.T. Pathology of Experimental Enterotoxemia. The in 

vivo Localization of Staphylococcal Enterotoxin B. Lab. Invest. 1969, 20, 17–25. 

94. Reck, B.; Scheuber, P.H.; Londong, W.; Sailer-Kramer, B.; Bartsch, K.; Hammer, D.K. 

Protection Against the Staphylococcal Enterotoxin-Induced Intestinal Disorder in the Monkey by 

Anti-Idiotypic Antibodies. Proc. Natl. Acad. Sci. USA 1988, 85, 3170–3174. 



Toxins 2010, 2  

 

 

2195

95. Sheahan, D.G.; Jervis, H.R.; Takeuchi, A.; Sprinz, H. The Effect of Staphylococcal Enterotoxin 

on the Epithelial Mucosubstances of the Small Intestine of Rhesus Monkeys. Am. J. Pathol. 

1970, 60, 1–18. 

96. Kohrman, K.A.; Kirkland, J.J.; Danneman, P.J. Response of Various Animal Species to 

Experimental Infection with Different Strains of Staphylococcus aureus. Rev. Infect. Dis. 1989, 

11 (Suppl. 1), S231–S236. 

97. Kocandrle, V.; Houttuin, E.; Prohaska, J.V. Acute Hemodynamic and Gastrointestinal Changes 

Produced by Staphylococcal Exotoxin and Enterotoxin in Dogs. J. Surg. Res. 1966, 6, 50–57. 

98. Sullivan, R. Effects of Enterotoxin B on Intestinal Transport in Vivo. Proc. Soc. Exp. Biol. Med. 

1969, 131, 1159–1162. 

99. Cheng, S.; Smart, M.; Hanson, J.; David, C.S. Characterization of HLA DR2 and DQ8 

Transgenic Mouse with a New Engineered Mouse Class II Deletion, Which Lacks All 

Endogenous Class II Genes. J. Autoimmun. 2003, 21, 195–199. 

100. Gill, D.M. Bacterial Toxins: a Table of Lethal Amounts. Microbiol. Rev. 1982, 46, 86–94. 

101. Rajagopalan, G.; Sen, M.M.; Singh, M.; Murali, N.S.; Nath, K.A.; Iijima, K.; Kita, H.; 

Leontovich, A.A.; Gopinathan, U.; Patel, R.; David, C.S. Intranasal Exposure to Staphylococcal 

Enterotoxin B Elicits an Acute Systemic Inflammatory Response. Shock 2006, 25, 647–656. 

102. Weng, C.F.; Komisar, J.L.; Hunt, R.E.; Johnson, A.J.; Pitt, M.L.; Ruble, D.L.; Tseng, J. 

Immediate Responses of Leukocytes, Cytokines and Glucocorticoid Hormones in the Blood 

Circulation of Monkeys Following Challenge with Aerosolized Staphylococcal Enterotoxin B. 

Int. Immunol. 1997, 9, 1825–1836. 

103. Rusnak, J.M.; Kortepeter, M.; Ulrich, R.; Poli, M.; Boudreau, E. Laboratory Exposures to 

Staphylococcal Enterotoxin B. Emerg. Infect. Dis. 2004, 10, 1544–1549. 

104. Silverman, S.J.; Espeseth, D.A.; Schantz, E.J. Effect of Formaldehyde on the Immunochemical 

and Biological Activity of Staphylococcal Enterotoxin B. J. Bacteriol. 1969, 98, 437–442. 

105. Tseng, J.; Komisar, J.L.; Trout, R.N.; Hunt, R.E.; Chen, J.Y.; Johnson, A.J.; Pitt, L.; Ruble, D.L. 

Humoral Immunity to Aerosolized Staphylococcal Enterotoxin B (SEB), a Superantigen, in 

Monkeys Vaccinated with SEB Toxoid-Containing Microspheres. Infect. Immun. 1995, 63, 

2880–2885. 

106. Stiles, B.G.; Garza, A.R.; Ulrich, R.G.; Boles, J.W. Mucosal Vaccination with Recombinantly 

Attenuated Staphylococcal Enterotoxin B and Protection in a Murine Model. Infect. Immun. 

2001, 69, 2031–2036. 

107. Boles, J.W.; Pitt, M.L.; LeClaire, R.D.; Gibbs, P.H.; Torres, E.; Dyas, B.; Ulrich, R.G.; Bavari, S. 

Generation of Protective Immunity by Inactivated Recombinant Staphylococcal Enterotoxin B 

Vaccine in Nonhuman Primates and Identification of Correlates of Immunity. Clin. Immunol. 

2003, 108, 51–59. 

108. Kaferstein, F. Foodborne Diseases in Developing Countries: Aetiology, Epidemiology and 

Strategies for Prevention. Int. J. Environ. Health Res. 2003, 13 (Suppl. 1), S161–S168. 

109. Lin, Z.; Kotler, D.P.; Schlievert, P.M.; Sordillo, E.M. Staphylococcal Enterocolitis: Forgotten but 

Not Gone? Dig. Dis. Sci. 2010, 55, 1200–1207. 
  



Toxins 2010, 2  

 

 

2196

110. Maudsley, J.; Stone, S.P.; Kibbler, C.C.; Iliffe, S.R.; Conaty, S.J.; Cookson, B.D.; Duckworth, 

G.J.; Johnson, A.; Wallace, P.G. The Community Prevalence of Methicillin-Resistant 

Staphylococcus aureus (MRSA) in Older People Living in Their Own Homes: Implications for 

Treatment, Screening and Surveillance in the UK. J. Hosp. Infect. 2004, 57, 258–262. 

111. Cooper, B.S.; Medley, G.F.; Stone, S.P.; Kibbler, C.C.; Cookson, B.D.; Roberts, J.A.; 

Duckworth, G.; Lai, R.; Ebrahim, S. Methicillin-Resistant Staphylococcus aureus in Hospitals 

and the Community: Stealth Dynamics and Control Catastrophes. Proc. Natl. Acad. Sci. USA 

2004, 101, 10223–10228. 

112. Much, P.; Pichler, J.; Kasper, S.S.; Allerberger, F. Foodborne Outbreaks, Austria 2007. Wien. 

Klin. Wochenschr. 2009, 121, 77–85. 

113. Murray, R.J. Recognition and Management of Staphylococcus aureus Toxin-Mediated Disease. 

Intern. Med. J. 2005, 35 (Suppl. 2), S106–S119. 

114. Davis, J.P.; Chesney, P.J.; Wand, P.J.; LaVenture, M. Toxic-Shock Syndrome: Epidemiologic 

Features, Recurrence, Risk Factors, and Prevention. N. Engl. J. Med. 1980, 303, 1429–1435. 

115. Gbaguidi-Haore, H.; Thouverez, M.; Couetdic, G.; Cholley, P.; Talon, D.; Bertrand, X. 

Usefulness of Antimicrobial Resistance Pattern for Detecting PVL- or TSST-1-Producing 

Meticillin-Resistant Staphylococcus aureus in a French University Hospital. J. Med. Microbiol. 

2009, 58, 1337–1342. 

116. Fraser, J.D.; Proft, T. The Bacterial Superantigen and Superantigen-Like Proteins. Immunol. Rev. 

2008, 225, 226–243. 

117. Larkin, E.A.; Carman, R.J.; Krakauer, T.; Stiles, B.G. Staphylococcus aureus: the Toxic Presence 

of a Pathogen Extraordinaire. Curr. Med. Chem. 2009, 16, 4003–4019. 

118. Yanagisawa, C.; Hanaki, H.; Natae, T.; Sunakawa, K. Neutralization of Staphylococcal 

Exotoxins in Vitro by Human-Origin Intravenous Immunoglobulin. J. Infect. Chemother. 2007, 

13, 368–372. 

119. Basma, H.; Norrby-Teglund, A.; Guedez, Y.; McGeer, A.; Low, D.E.; El Ahmedy, O.; Schwartz, 

B.; Kotb, M. Risk Factors in the Pathogenesis of Invasive Group A Streptococcal Infections: 

Role of Protective Humoral Immunity. Infect. Immun. 1999, 67, 1871–1877. 

120. Darenberg, J.; Soderquist, B.; Normark, B.H.; Norrby-Teglund, A. Differences in Potency of 

Intravenous Polyspecific Immunoglobulin G Against Streptococcal and Staphylococcal 

Superantigens: Implications for Therapy of Toxic Shock Syndrome. Clin. Infect. Dis. 2004, 38, 

836–842. 

121. Hu, D.L.; Cui, J.C.; Omoe, K.; Sashinami, H.; Yokomizo, Y.; Shinagawa, K.; Nakane, A. A 

Mutant of Staphylococcal Enterotoxin C Devoid of Bacterial Superantigenic Activity Elicits a 

Th2 Immune Response for Protection Against Staphylococcus aureus Infection. Infect. Immun. 

2005, 73, 174–180. 

122. Arad, G.; Levy, R.; Hillman, D.; Kaempfer, R. Superantigen Antagonist Protects Against Lethal 

Shock and Defines a New Domain for T-Cell Activation. Nat. Med. 2000, 6, 414–421. 

123. Lehnert, N.M.; Allen, D.L.; Allen, B.L.; Catasti, P.; Shiflett, P.R.; Chen, M.; Lehnert, B.E.; 

Gupta, G. Structure-Based Design of a Bispecific Receptor Mimic That Inhibits T Cell 

Responses to a Superantigen. Biochemistry 2001, 40, 4222–4228. 
  



Toxins 2010, 2  

 

 

2197

124. Yang, X.; Buonpane, R.A.; Moza, B.; Rahman, A.K.; Wang, N.; Schlievert, P.M.; McCormick, 

J.K.; Sundberg, E.J.; Kranz, D.M. Neutralization of Multiple Staphylococcal Superantigens by a 

Single-Chain Protein Consisting of Affinity-Matured, Variable Domain Repeats. J. Infect. Dis. 

2008, 198, 344–348. 

125. Buonpane, R.A.; Churchill, H.R.; Moza, B.; Sundberg, E.J.; Peterson, M.L.; Schlievert, P.M.; 

Kranz, D.M. Neutralization of Staphylococcal Enterotoxin B by Soluble, High-Affinity Receptor 

Antagonists. Nat. Med. 2007, 13, 725–729. 

126. Liu, D.; Zienkiewicz, J.; DiGiandomenico, A.; Hawiger, J. Suppression of Acute Lung 

Inflammation by Intracellular Peptide Delivery of a Nuclear Import Inhibitor. Mol. Ther. 2009, 

17, 796–802. 

127. Krakauer, T.; Buckley, M.; Issaq, H.J.; Fox, S.D. Rapamycin Protects Mice From Staphylococcal 

Enterotoxin B-Induced Toxic Shock and Blocks Cytokine Release in vivo and in vivo. 

Antimicrob. Agents Chemother. 2010, 54, 1125–1131. 

128. Tilahun, A.Y.; Theuer, J.E.; Patel, R.; David, C.S.; Rajagopalan, G. Detrimental Effect of the 

Proteasome Inhibitor, Bortezomib in Bacterial Superantigen- and Lipopolysaccharide-Induced 

Systemic Inflammation. Mol. Ther. 2010, 18, 1143–1154. 

129. Miethke, T.; Wahl, C.; Heeg, K.; Echtenacher, B.; Krammer, P.H.; Wagner, H. T Cell-Mediated 

Lethal Shock Triggered in Mice by the Superantigen Staphylococcal Enterotoxin B: Critical Role 

of Tumor Necrosis Factor. J. Exp. Med. 1992, 175, 91–98. 

130. Stiles, B.G.; Campbell, Y.G.; Castle, R.M.; Grove, S.A. Correlation of Temperature and Toxicity 

in Murine Studies of Staphylococcal Enterotoxins and Toxic Shock Syndrome Toxin 1. Infect. 

Immun. 1999, 67, 1521–1525. 

131. Hayworth, J.L.; Kasper, K.J.; Leon-Ponte, M.; Herfst, C.A.; Yue, D.; Brintnell, W.C.; Mazzuca, 

D.M.; Heinrichs, D.E.; Cairns, E.; Madrenas, J.; Hoskin, D.W.; McCormick, J.K.; Haeryfar, S.M. 

Attenuation of Massive Cytokine Response to the Staphylococcal Enterotoxin B Superantigen by 

the Innate Immunomodulatory Protein Lactoferrin. Clin. Exp. Immunol. 2009, 157, 60–70. 

132. Perez-Bosque, A.; Miro, L.; Polo, J.; Russell, L.; Campbell, J.; Weaver, E.; Crenshaw, J.; 

Moreto, M. Dietary Plasma Protein Supplements Prevent the Release of Mucosal 

Proinflammatory Mediators in Intestinal Inflammation in Rats. J. Nutr. 2010, 140, 25–30. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


