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Abstract
Background: The aim of this study was to determine the demographic profile of
driver gene alterations, especially low-frequency gene alterations in Chinese
patients with non-small cell lung cancer (NSCLC).
Methods: A total of 7395 Chinese patients with NSCLC were enrolled in the
study. Next-generation sequencing (NGS) was performed on formalin-fixed
paraffin-embedded specimens collected via either surgical resection or biopsy.
Results: The frequent genomic alterations found in the study were EGFR muta-
tions (51.7%), KRAS mutations (13.1%), MET alterations (5.6%; 3.2% copy num-
ber gains and 0.5% exon 14 skipping mutation), HER2 alterations (7.0%; 2.0%
copy number gains and 5.4% mutations), ALK alterations (7.2%; 3.9%
rearrangements), RET rearrangements (1.4%), ROS1 rearrangements (0.9%), and
NTRK rearrangements (0.6%). The EGFR mutation rate was found to be signifi-
cantly higher in women than in men (69.1% vs. 38.5%, P < 0.001), while the
KRAS mutation (17.5% vs. 7.3%, P < 0.001) and MET alteration rates (6.5%
vs. 4.5%, P < 0.001) were significantly higher in men than in women. The EGFR
mutation rate tended to decrease with age in the group aged >40 years, while the
KRAS mutation rate tended to increase with age. The HER2 mutation (13.9% vs.
6.7%, P < 0.001) and ALK alteration rates (14.3% vs. 6.9%, P < 0.001) were sig-
nificantly higher in the group aged <40 years than in groups aged 40 years or
older.
Conclusions: The frequency of different driver genes was diverse in different
age-gender groups, and the results of this study may assist clinicians in clinical
decision-making and the development of public healthcare strategies in the
future.

Key points
Significant findings of the study:
• This study demonstrated that the frequency of different driver genes was

diverse in different age-gender groups.
What this study adds
• It may enable clinicians to make clinical decisions, and assist government,

pharmaceutical researchers and insurance companies develop public
healthcare strategies.
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Introduction

Lung cancer is the most commonly reported cancer and
leading cause of cancer death in China.1 Non-small cell
lung cancer (NSCLC) accounts for approximately 85% of
patients with lung cancer.2 Targeted therapies have dra-
matically changed the treatment modalities for NSCLC.
The National Comprehensive Cancer Network (NCCN)
guideline for NSCLC (Version 1.2020) recommends
targeted treatment for EGFR, ALK, ROS1, BRAF, NTRK,
RET, HER2, MET amplification and exon 14 skipping
mutation. It is well known that patients of East Asian eth-
nicity have a different prevalence of oncogenic mutations.3

It is therefore essential that the demographic profile of
driver genes in East Asian patients with NSCLC is deter-
mined. EGFR mutation has been widely and well
researched, while alterations of BRAF, HER2, MET, ROS1,
RET, and NTRK have not been previously well described
due to their low frequency. Here, we studied the demo-
graphic characteristics of driver gene alterations in Chinese
patients with NSCLC identified by next-generation
sequencing (NGS). The large sample size of the study made
it possible to describe the low-frequency gene alterations.

Methods

Patients and samples

A total of 7395 Chinese patients were enrolled in the study.
Formalin-fixed paraffin-embedded (FFPE) specimens were
analyzed from patients with NSCLC who underwent either
surgical resection or biopsy from 1 January 2018 to
1 October 2019. In order to ensure the quality of DNA
extraction, FFPE specimens retrieved within one year were
selected, and the specimens were reviewed by experienced
pathologists. All the patients involved provided their writ-
ten informed consent. The study was approved by the
Institutional Review Board of Peking Union Medical Col-
lege Hospital (S-K1264).

DNA extraction and sequencing library
preparation

NGS was performed in the CAP-accredited laboratory. The
tumor content of all samples was confirmed to be at least
10% by pathologists. FFPE sections were deparaffinized
with xylene, from which genomic DNA was extracted
using the BLACK PREP FFPE DNA kit according to the
manufacturer’s protocol. The quantity and quality of the
extracted DNA were evaluated using a Qubit 3.0 fluorome-
ter and Bioanalyzer 2100 (Agilent Technologies), respec-
tively (Thermo Fisher Scientific). The DNA was
fragmented using a Covaris M220 sonication system to

obtain 200 bp fragments and purified using Agencourt
AMPure XP beads (Beckman Coulter). Library prepara-
tions of the fragmented DNA were performed using the
KAPA Hyper Prep Kit (KAPA Biosystems), following the
manufacturer’s protocol. Libraries with different indices
were pooled for Hypercap Target Enrichment Kit, and a
customized enrichment panel (Roche) covering the exonic
regions of 290 genes and the introns of 26 fusion genes.
The captured library was further amplified using Illumina
p5 (50 AAT GAT ACG GCG ACC ACC GA 30) and p7 (5’
CAA GCA GAA GAC GGC ATA CGA GAT 30) primers
in the KAPA Hifi HotStart ReadyMix (KAPA Biosystems),
and purified with Agencourt AMPure XP beads. Sequenc-
ing libraries were quantified by Bioanalyzer 2100 (Agilent
Technologies). The final libraries were sequenced on an
Illumina Novaseq 6000 platform to a mean coverage depth
of at least 250×, following the manufacturer’s instructions.

Bioinformatic analysis

Genomic alterations, including single nucleotide variants
(SNVs), short and long insertions/deletions (indels), copy
number variations (CNVs), and gene fusions, were sub-
jected to advanced analysis. First, reads were aligned to
human genome reference sequence (hg19) by BWA
(0.7.17), and duplication reads were removed using
Novosort (3.08.00). Second, SNVs and short indels were
identified by VarScan (2.4.2) after quality recalibration and
realignment using a genome analysis toolkit (GATK) and
in-house pipeline. Short indels were then calibrated using
the results from Pindel. A customized algorithm ctCNV
was developed to identify and filter CNV. The thresholds
of copy number ≥ 2.5 and ≤ 1.5 were used to categorize
altered regions as CNV gains (amplification) and copy
number losses (deletions). FusionMap (8.0.2.32) was used
to detect gene fusion. Gene fusions were required to have
at least two support reads with a background P-value
under 0.05. More importantly, reliable somatic alterations
were detected in the raw data by comparison with matched
blood control samples. At a minimum, five reads and mini-
mum variant allele frequency of 1% were required to sup-
port alternative calling.

Statistical analysis

Patients were grouped by age as <40 years, 40–49 years,
50–59 years, 60–69 years, and 70 years or older. Statistical
analysis was performed by R language. The χ2-test was
used to analyze the associations of mutational status with
gender and age groups. A two-tailed P-value of <0.05 was
considered statistically significant.
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Results

Demographic characteristics

The demographic characteristics are shown in Table 1.
With regard to the histological subtype, 5378 cases (72.7%)

were lung adenocarcinoma, 855 (11.6%) squamous cell car-
cinoma, and 1162 (15.7%) NSCLC-not otherwise specified.
The median age of patients was 60 years (range: 8–94), and
56.6% of patients were male.

Driver gene alterations

The genomic alteration spectra are shown in Table 1. Fre-
quent genomic alterations found were EGFR mutations
(51.7%), KRAS mutations (13.1%), MET alterations (5.6%;
3.2% copy number gains and 0.5% exon 14 skipping), HER2
alterations (7.0%; 2.0% copy number gains and 5.4% muta-
tions), ALK alterations (7.2%; 3.9% rearrangements), RET

Table 1 Genomic profiling of patients in the study

NSCLC† (n = 7395) LAD‡ (n = 5378) LSCC§ (n = 855)

Median age (range) 60 (8–94) 59 (8–94) 63 (28–93)
Gender (M/F) 4189/3206 2678/2700 770/85
<40 (M/F: 127/167) 294/4.0% 242/5.0% 10/1.2%
40–49 (M/F:462/567) 1029/13.9% 801/14.9% 65/7.6%
50–59 (M/F: 1200/1082) 2282/30.9% 1716/31.9% 235/27.5%
60–69 (M/F: 1629/990) 2619/35.4% 1849/34.4% 360/42.1%
≥70 (M/F: 771/400) 1171/15.8% 770/14.3% 185/21.6%
Smoking history
Smoking 2670 1725 469
Non-smoking 3837 3006 291
Unknown 888 647 95

EGFR mutations (%) 3821/51.7% 3177/59.1% 156/18.2%
KRAS mutations (%) 966/13.1% 757/14.1% 63/7.4%
HER2 alterations (%) 517/7.0% 400/7.4% 45/5.3%
HER2 CNGs ¶ (%) 149/2.0% 98/1.8% 23/2.7%
ALK alterations (%) 531/7.2% 389/7.2% 59/6.9%
MET alterations (%) 414/5.6% 304/5.6% 46/5.4%
MET CNGs ¶ (%) 240/3.2% 184/3.4% 23/2.7%
BRAF alterations (%) 298/4.0% 225/4.2% 24/2.8%
ALK rearrangements (%) 286/3.9% 233/4.3% 11/1.2%
RET rearrangements (%) 103/1.4% 95/1.8% 0/0.0%
ROS1 rearrangements (%) 67/0.90% 55/1.02% 2/0.2%
NTRK rearrangements (%) 44/0.59% 33/0.61% 4/0.5%

†Non-small cell lung cancer. ‡Lung adenocarcinoma. §Lung squamous cell carcinoma. ¶Copy number gains.

Table 2 Genomic alteration spectra of non-small cell lung cancer
(NSCLC)

Genomic alteration (N) Alteration distribution (N)

EGFR mutations (3821) Exon 18(217), exon 19 (1572), exon
20 (439), exon 21(1757)

KRAS mutations (600) Exon 2(443), exon 3 (63), exon 4 (32)
MET alterations (414) copy number gain (240), exon 14

skipping (36)
HER2 mutations (397) Exon 18 (3), exon 19 (7), exon 20

(227), exon 21(7)
BRAF alterations (298) V600E (75), K601E (32), G469A (19),

D22N (13), G469V (8), D594G (8),
G466V (6), N588I (6), D594N (6);
copy number gain (17);
CDC27-BRAF (2), SND1-BRAF (2)

ALK rearrangements (286) EML4-ALK (272), HIP1-ALK (5),
KLC1-ALK (2), STRN-ALK (2)

RET rearrangements (103) KIF5B-RET (81), CCDC6-RET (16)
ROS1 rearrangements (67) CD74-ROS1(28), SDC4-ROS1 (12),

SLC34A2-ROS1 (11), EZR-ROS1
(10), TPM3-ROS1 (4),
ERC1-ROS1 (2)

NTRK rearrangements (44) AGBL4-NTRK (19), ETV6-NTRK (13),
VCL-NTRK (6), TRIM24-NTRK (3)

Table 3 Complex EGFR mutations identified in non-small lung cancer
(NSCLC)

Complex mutation type Number
Percentage of

EGFR mutations (n = 3821)

Exon 19 deletion + T790M 91 2.4%
L858R + T790M 75 2.0%
G719X + E709X 30 0.8%
Exon 19 deletion + L858R 28 0.7%
G719X + S768I 27 0.7%
L858R + E709X 18 0.5%
L858R + V834L 17 0.4%
G719X + L861X 13 0.3%
L858R + S768I 11 0.3%
Exon 19 deletion + K754X 10 0.3%
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rearrangements (1.4%), ROS1 rearrangements (0.9%), and
NTRK rearrangements (0.6%). A total of 5069 (68.5%)
patients harbored driver genes. The National Comprehensive

Cancer Network (NCCN) guidelines for NSCLC recommend
that biomarker testing should include EGFR mutation, ALK
rearrangement, ROS1 rearrangement, NTRK gene fusion,
MET amplification, MET exon 14 skipping mutation, RET
rearrangement, and HER2mutation (Table 2).
EGFR was the most frequently determined mutated gene

in Chinese patients with NSCLC. Exon 21 L858R
(n = 1645) and exon 19 deletions (n = 1526) accounted for
82.9% of all detected EGFR mutations. Other EGFR muta-
tions included T790M (n = 178, 4.6%), exon 20 insertion
(n = 148, 3.8%), G719X (n = 143, 3.7%), L861Q (n = 78,
2.0%), S768I (n = 71, 1.8%), E709X (n = 38, 1.0%), and
V834L (n = 22, 0.6%). A total of 678 patients (17.7% of
patients with EGFR mutations) were identified as having
complex EGFR mutations. The most common complex
mutation was T790M with another mutation (n = 172,
4.5% of EGFR mutations). Table 3 identifies the 10 complex
EGFR mutation types found with the highest frequency.
HER2 alterations were identified in 517 patients, includ-

ing HER2 copy number gains (CNGs) in 150 patients,
HER2 mutations in 397 patients, and both HER2 CNGs
and mutations in 29 patients. HER2 mutations were dis-
tributed in ligand binding domain 1 (n = 6), cysteine-rich
domain (n = 28), ligand binding domain 2 (n = 7), growth
factor receptor domain (n = 52), transmembrane domain
(n = 17), and tyrosine kinase domain (n = 243). The most
frequent type of HER2 alteration were exon 20 mutations
in the kinase domain (n = 228). Y772_G775dupYVMA

EGFR
KRAS

HER2
ALK

MET
BRAF

RET
ROS1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
69
1

0.
07
3

0.
07
3

0.
07
4

0.
04
5

0.
03
8

0.
04
3

0.
06
1

0.
38
5

0.
17
5

0.
06
8

0.
07
1

0.
06
5

0.
04
2

0.
05
0

0.
05
9

gene alteration

fr
eq

ue
nc

y

Figure 1 Comparison of frequency of selected gene mutations in Chi-
nese patients with non-small cell lung cancer (NSCLC) between men
and women. EGFR, EGFR mutations; KRAS, KRAS mutations; HER2,
HER2 alterations; ALK, ALK alterations; MET, MET alterations; BRAF,
BRAF alterations; RET, RET rearrangements; ROS1, ROS1
rearrangements; *, significant difference. ( ) Male, ( ) Female.

Figure 2 The frequency of selected gene mutations in Chinese patients with non-small cell lung cancer (NSCLC) among different age groups. EGFR,
EGFR mutations; KRAS, KRAS mutations; HER2, HER2 alterations; ALK, ALK alterations; MET, MET alterations; BRAF, BRAF alterations; RET, RET
rearrangements; ROS1, ROS1 rearrangements. ( ) <40, ( ) 40–50, ( ) 50–60, ( ) 60–70, ( ) >70.
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was the most common exon 20 variant (n = 144), followed
by E770delinsEAYVM (n = 32), G776delinsVC (n = 20),
G778_P780dupGSP (n = 9), and G776delinsVV (n = 8).
S310F mutations in the HER2 extracellular region were
identified in 13 patients.
The most common subtypes of ALK, RET, ROS1 and

NTRK rearrangement were EML4-ALK, KIF5B-RET,
CD74-ROS1, and AGBL4-NTRK, respectively.

Correlations between genomic alterations
and gender

Correlations of genotype with gender are shown in Fig 1.
The EGFR mutation rate was found to be significantly
higher in women than in men (69.1% vs. 38.5%,
P < 0.001), while the KRAS mutation (17.5% vs. 7.3%,
P < 0.001) and MET alteration rates (6.5% vs. 4.5%,
P < 0.001) were significantly higher in men than in
women. There was no significant difference in the fre-
quency of BRAF mutation, RET rearrangement, ROS1
rearrangement, HER2 alteration, and ALK alteration
observed between women and men.

Correlations between genomic alterations
and age

The mutation rates in different age groups are shown in
Fig 2. We found that the EGFR mutation rate tended to
decrease with age in the group aged >40 years, while the
KRAS mutation rate tended to increase with age. The
BRAF mutation rate was 1.0% in the group aged <40 years
and approximately 4% in the groups aged >40 years. The
HER2 mutation (13.9% vs. 6.7%, P < 0.001) and ALK alter-
ation rates (14.3% vs. 6.9%, P < 0.001) were significantly
higher in the group aged <40 years than in groups aged
40 years or older. The rates of MET alteration, ROS1 and
RET rearrangement were not significantly different
between the group aged <40 years and the group aged
40 years or older.

Discussion

NGS technology is now widely used to identify the driver
genes of NSCLC with resulting data providing a driver
gene profile in Chinese patients with NSCLC. Using this
technology enables clinicians to make precise clinical deci-
sions. As 68.5% of patients harboring driver genes can
receive matched target agents, it is important to carry out
NGS, as in addition to typical EGFR mutations, other
genomic alterations can also be focused upon.
The frequency of EGFR mutations, KRAS mutations,

HER2 alterations, ROS1 rearrangements, RET
rearrangements, BRAF mutations and MET alterations in

this study was consistent with that reported previously in a
study in Asian patients.4,5 Compared with the Western
population, the Chinese patients in this study were found
to have a higher frequency of EGFR mutation, but a lower
frequency of KRAS mutation.6 It has been previously
reported that NTRK rearrangements have been found to
occur in 0.2% of patients with NSCLC in the Western
population,7 and the frequency of NTRK rearrangements
was 0.59% in this study.
EGFR mutations include typical and atypical EGFR

mutations. With the widespread use of NGS, more and
more atypical EGFR mutations can be detected. In clinical
practice, women patients who do not smoke are more
likely to be recommended for NGS. In addition, NGS could
identify more atypical mutations, and might lead to a
higher prevalence of EGFR mutations in female patients.
Patients with atypical EGFR mutations have been reported
to have variable efficacy to EGFR TKIs. As atypical EGFR
mutations account for about 20% of all detected EGFR
mutations, and 17.7% of patients harbor complex EGFR
mutations, efficacy of EGFR TKIs in patients with different
atypical and complex EGFR mutations need to be further
researched. The EGFR mutation rate in our study tended
to decrease with age, apart from in the group aged
<40 years, which is consistent with previously reported
data,4 which implies that patients in the group aged 40–50
had the highest EGFR mutation rate.
HER2 mutations in NSCLC are dominated by in-frame

insertions in exon 20 of the HER2 kinase domain.8 HER2
mutation is found in 2%–4% of lung cancer patients.4,9

The frequency of HER2 mutation in this study was 7.0%.
The domain structure consists of two ligand binding
domains, two cysteine-rich domains, a short transmem-
brane domain, a tyrosine kinase domain, and a carboxy
terminal tail.10 The HER2 extracellular domain mutants
were activated by two distinct mechanisms, characterized
by elevated C-terminal tail phosphorylation, or by covalent
dimerization mediated by intermolecular disulfide bond
formation.11 Different HER2 variants exhibit divergent sen-
sitivities to anti-HER2 treatments. Afatinib, pyrotinib and
poziotinib are regarded as HER2-TKIs. Certain variants,
G778_P780dup and G776delinsVC, derive sustained clini-
cal benefits from afatinib, whereas the predominant vari-
ant, A772_G775dupYVMA, is resistant to most anti-HER2
treatments.12 In one study, chemotherapy was found to
achieve better outcomes than afatinib for YVMA inser-
tions.13 Further clinical trials involving variable HER2
mutations are required.
Although fluorescence in situ hybridization (FISH) has

been established as a gold standard method in the detec-
tion of ALK and ROS1 rearrangement, NGS is also a reli-
able technique.14,15 In addition, NGS has been reported to
identify different types of ALK fusions and ALK mutations

Thoracic Cancer 12 (2021) 357–363 © 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd. 361

X. Si et al. Driver genes in NSCLC



that mediate resistance to ALK inhibitors.16,17 The ALK
rearrangement rate in this study was consistent with that
observed in prior studies.5

Dysregulation of the MET pathway in lung cancer
occurs via a variety of mechanisms including gene muta-
tion, amplification, rearrangement, and protein over-
expression.18 MET exon 14 encodes part of the
juxtamembrane domain. Juxtamenbrane domain mutations
that disrupt splice sites flanking MET exon 14 result in
MET exon 14 skipping. The prevalence of MET exon
14 skipping mutations was 0.4% in this study, consistent
with a previous report in Chinese patients.4 MET copy-
number gains arise from two distinct processes: polysomy
and amplification.19 MET amplification is thought to be an
oncogenic driver. Copy number gains detected via NGS are
reported as continuous variables. Determination of the cut-
off related to the efficacy of MET inhibitors requires fur-
ther clinical data.
It has been previously reported that BRAF mutations

have been observed in 2%–4% of patients with NSCLC.20

However, the association between BRAF mutation status
and patient age or sex appears to be less clear.21 The fre-
quency of BRAF mutation in this study was similar to the
frequency reported in other research. Our study showed no
significant association between sex and BRAF mutation fre-
quency, but there was a lower frequency in the group aged
<40 years than in the group aged 40 years or older. BRAF
mutations can be divided into V600E and non-V600E. A
total of 202 of all patients with BRAF-mutant NSCLC in
this study presented with non-V600E mutations.
Vemurafenib monotherapy has been reported to be effec-
tive for treating patients with BRAF V600-mutated
NSCLC, but not those with BRAF non-V600 mutations.22

Therefore, more effort into the treatment of patients with
non-V600E mutation should be made in the future.
This study has a few limitations. First, it was retrospec-

tive, and there may have been a patient selection bias. It
has been previously reported that adenocarcinoma
accounts for approximately 40% of lung cancers, and squa-
mous cell carcinoma 25% to 30% of lung cancers.23 In this
study, there were 5382 cases (72.9%) of lung adenocarci-
noma, and 855 (11.6%) cases of lung squamous cell carci-
noma. The frequency of driver gene mutations was found
to be much higher in lung adenocarcinoma than in lung
squamous cell carcinoma patients. Therefore, it is rec-
ommended that NGS is conducted in more patients with
lung adenocarcinoma. Second, we did not collect clinical
outcome information and were unable to analyze the clini-
cal prognosis of patients with uncommon mutations.
Third, we did not analyze the effect of smoking history on
the prevalence of driver gene mutations. It has previously
been demonstrated that EGFR mutation is highly prevalent
in lung cancer patients who were never smokers.24

Therefore, the smoking history in different sex and age
groups may affect the prevalence of driver gene mutations.
This study demonstrated that the frequency of different

driver genes was diverse in different age-gender groups. It
is anticipated that the results of this study may assist clini-
cians in clinical decision-making, and assist government,
pharmaceutical researchers and insurance companies in
the development of public healthcare strategies.
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