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Abstract

Formation of functionally adequate vascular networks by angiogenesis presents a problem in biological patterning.
Generated without predetermined spatial patterns, networks must develop hierarchical tree-like structures for efficient
convective transport over large distances, combined with dense space-filling meshes for short diffusion distances to every
point in the tissue. Moreover, networks must be capable of restructuring in response to changing functional demands
without interruption of blood flow. Here, theoretical simulations based on experimental data are used to demonstrate that
this patterning problem can be solved through over-abundant stochastic generation of vessels in response to a growth
factor generated in hypoxic tissue regions, in parallel with refinement by structural adaptation and pruning. Essential
biological mechanisms for generation of adequate and efficient vascular patterns are identified and impairments in vascular
properties resulting from defects in these mechanisms are predicted. The results provide a framework for understanding
vascular network formation in normal or pathological conditions and for predicting effects of therapies targeting
angiogenesis.
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Introduction

Vascular systems develop, adapt and remodel in response to

local and systemic needs [1]. Over hours to days, blood vessels

form and grow (vasculogenesis and angiogenesis), undergo

structural adaptation (remodeling), or regress (pruning) [2]. These

processes of vascular network patterning or angioadaptation [3]

are essential for many functions of the circulatory system,

including growth, responses to sustained exercise, estrus cycle,

pregnancy, wound healing and ageing. Furthermore, they are

centrally involved in diseases including hypertension, tissue

ischemia (coronary heart disease, stroke) and tumor growth, and

in natural and therapeutic responses to these diseases.

To function efficiently, vascular networks must satisfy two

apparently conflicting requirements. The demand for oxygen and

its low solubility in tissue necessitate a dense network, such that its

distance from tissue cells does not exceed the maximum oxygen

diffusion distance (about 30 mm in the heart). A dense mesh-like

structure can satisfy this requirement, but at the expense of high

resistance to flow (Figure 1A). Conversely, a hierarchical tree-like

structure can deliver flow to terminal branches efficiently but does

not provide a spatially uniform vascular supply. Actual microvas-

cular networks combine both types of structures: a hierarchical

system is embedded in the supplied region so that exchange vessels

are distributed with approximately uniform density. A further

requirement is the ability to adapt to varying demands, while

maintaining flow. Thus, the development of vascular networks

presents a complex problem of biological pattern formation.

How is this patterning problem solved? Much research has

focused on molecular and cellular aspects of angiogenesis and anti-

angiogenesis and on translating the results to the clinic for the

treatment of hypoxic conditions (e.g. vascular occlusion) or

unwanted vascularization (e.g. tumor growth). However, the

formation of functional vascular networks remains poorly under-

stood. In early development, before circulation starts, vascular

patterning is genetically determined [4], but genetic information

cannot specify the individual positions and behavior of more than

109 vessels in the human body. We hypothesize that the problem

of vascular patterning is ‘solved’ by stochastic sprouting angio-

genesis in response to a growth factor generated in hypoxic regions

(e.g. vascular endothelial growth factor, VEGF), coupled to

structural reactions (growth, regression, elimination) of each vessel

to mechanical and biochemical stimuli. According to this

hypothesis, angiogenesis results in networks with disordered

structures, which organize themselves into functional networks

through structural adaptation and pruning [2] (Figure 1B).

To test this hypothesis and analyze the relations between

biological mechanisms and system properties, we developed a

theoretical model that integrates simulations of network blood

flow, convective and diffusive oxygen transport, generation and

diffusion of VEGF [5], stochastic sprouting angiogenesis [6],

structural adaptation and vessel elimination by pruning [3].
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Several theoretical models for angiogenesis have been developed

[7–18]. Our approach combines elements of those studies with a

model for structural adaptation of vessel diameters [19,20]

including information transfer by conducted responses along

vessel walls, which is needed for proper flow distribution and

avoidance of functional shunts [21].

The model is based on experimental observations of network

structure and hemodynamics in rat mesentery, a thin sheet-like

tissue [22]. In brief, VEGF is generated in hypoxic regions [23].

Diffusive transport of oxygen and VEGF is simulated [24]. Vessel

sprouts are generated with a VEGF-dependent probability. Non-

flowing sprouts maintain a fixed diameter [25] until they connect

to other segments and commence flow. Diameters of flowing

segments vary with time according to generic rules, including

responses to mechanical stimuli (intravascular pressure and wall

shear stress) and to metabolic status (represented by intravascular

oxygen partial pressure, PO2). Vessels are pruned if their diameter

falls below a critical threshold. Under these assumptions, the

model predicts the time-dependent development of the network

structure, including the positions, lengths and diameters of each

segment, and the resulting distributions of blood flow, oxygen and

VEGF.

Methods

Observations of mesenteric network
In procedures approved by the University and State authorities

for animal welfare, the small bowel of a male wistar rat was

exteriorized and a fat-free portion of the mesenteric vascular

network was observed by intravital microscopy [22]. Papaverine

(1024 M) was continuously applied to suppress vessel tone. The

spatial arrangement and diameters and lengths of segments were

measured (Figure 2A), together with hematocrit and blood flow

velocity for vessels entering and leaving the network [26,27].

Overview of model
The theoretical model combines a network-oriented analysis of

blood flow, angiogenesis and structural adaptation with a

continuum analysis of oxygen and VEGF delivery, production,

diffusion and uptake. The network is represented as a set of

straight segments with defined positions, diameters and blood flow

rates. The simulation is implemented using the C language on

personal computers. Typical run time is about 1 minute per time

step. Parameter values are given in Table 1. The precise values are

stated for reproducibility, but the number of decimals shown does

not imply a corresponding precision in their estimation.

Initial network structure
To create an initial condition, the network was reduced to a

minimal ‘skeleton,’ retaining five boundary nodes at which blood

flows enters or exits the network (Figure 2C). The network lies in a

thin (20 mm) sheet of tissue with area 4.23 mm2. Flow or pressure

conditions in these segments were specified based on simulations of

a larger network containing the region [28], and are typical for

vessels of these sizes and types in this tissue. Two arterioles feed the

region with a PO2 of 75 mmHg. One arteriole (upper in Figure 2C)

is held at a fixed pressure of 59.09 mmHg with an inflow

hematocrit of 0.3742. The flow rate in the other feeding arteriole is

15 nl/min. Two venules flow into the network and form

boundaries for the tissue domain. Each venule has a flow rate of

28.1 nl/min, an inflow hematocrit of 0.4 and a PO2 of 38 mmHg.

The diameters of these venules are fixed to provide stable

conditions on the boundary of the tissue domain. The venules

Author Summary

The blood vessels provide an efficient system for transport
of substances to all parts of the body. They are capable of
growing or regressing during development, in response to
changing functional needs, and in disease states. This is
achieved by structural adaptation, i.e. changes in the
diameters and other characteristics of existing vessels, and
by angiogenesis, i.e. growth of new blood vessels. Here, we
address the question: How do the processes of structural
adaptation and angiogenesis lead to the formation of
organized vessel networks that can supply the changing
needs of the tissue? We carried out theoretical simulations
of network growth and adaptation, including vessel blood
flows, oxygen transport to tissue, and the generation of a
growth factor in low-oxygen regions, which stimulates
angiogenesis by sprouting from existing vessels. We
showed that the processes of over-abundant random
angiogenesis together with structural adaptation including
pruning of redundant vessels can generate adequate and
efficient vessel networks that are capable of continuously
adapting to changing tissue needs. Our work provides
insight into the biological mechanisms that are essential for
formation and maintenance of functional vessel networks,
and may lead to new strategies for controlling blood vessel
formation in diseases.

Figure 1. Concepts of microvascular pattern formation. (A)
Microvascular networks are often conceptualized as mesh or hierarchi-
cal structures. A mesh minimizes diffusion distances between capillaries
and tissue but has high flow resistance and results in non-uniform
oxygen levels from the arterial to the venous side. In a hierarchical
structure, larger supply vessels decrease flow resistance, but regions
surrounding those vessels are inadequately supplied due to large
diffusion distances. Colors (red - green - blue) indicate flow from arterial
to venous vessels, with decline in oxygen levels. (B) Hypothesized steps
in generation of functional vascular networks. A dense network of
vessels is generated by over-abundant angiogenesis and refined by
structural adaptation and pruning. Resulting networks combine
features of mesh and hierarchical structures.
doi:10.1371/journal.pcbi.1002983.g001
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converge at a single outflow, which is assigned a pressure of

15 mmHg.

Flow rates
The method for simulating blood flow in microvascular

networks follows established approaches [28,29]. The network is

represented as a set of resistive elements meeting at nodes. The

flow resistance of a segment is

R~DP=Q~128Lgapp

�
pD4
� �

ð1Þ

where L and D are length and diameter, DP is pressure drop and

gapp is apparent viscosity of blood, dependent on diameter and

hematocrit [28,30]. Non-uniform partition of hematocrit at

diverging bifurcations is included [30,31]. The flows into each

node are expressed in terms of nodal pressures and flow

resistances. Setting the sum of flows to zero gives a system of

linear equations for nodal pressures [32], which is solved

iteratively. The wall shear stress is

tw~DDP= 4Lð Þ: ð2Þ

Because flow resistance depends on hematocrit, a further

iterative process is required, in which hematocrits are recalculated,

resistances are updated and flows are recomputed. This is repeated

until changes in flows and hematocrits do not exceed a small

tolerance.

Figure 2. Steps in simulation approach. (A) Network of microvessels in rat mesentery, imaged using intravital microscopy. Shaded overlay
highlights vessel positions, with arterioles (red), capillaries (green) and venules (blue). This region was selected for analysis because the outer loop of
venules provides stable boundary conditions for the tissue domain. (B) Computer generated image of network structure, trimmed to reduce the
number of network boundary nodes to five (arrows). (C) Network skeleton, used as initial condition for simulations. In (D–I), a small region within a
typical simulation is shown at a sequence of times indicating aspects of the method. White triangles denote features mentioned in this caption. (D)
The oxygen field surrounding the vessels is computed using the Green’s function method. Blue shades denote low oxygen levels. VEGF is assumed to
be generated in hypoxic regions and to diffuse according to local gradients, and the resulting VEGF field is computed. Diagonal hatching indicates
VEGF concentration above a given threshold. (E) On vessels lying in regions with VEGF above threshold, sprouts are generated with probability
dependent on local VEGF concentration. (F) A fixed rate of sprout elongation is assumed. Direction of growth is randomly varied at each time step.
(G) If other vessels lie within a sector of radius 100 mm ahead of the sprout tip, the growth is biased towards them. (H) A sprout reaching another
vessel forms a connection, allowing flow. (I) Diameters of flowing vessels adapt to metabolic and hemodynamic stimuli.
doi:10.1371/journal.pcbi.1002983.g002

Angiogenesis: A Biological Patterning Problem
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Oxygen field
The physical principles governing convective and diffusive

transport in tissue are well established [33]. The steady-state

distribution of oxygen in vessels and tissue is computed using a

two-dimensional implementation of the computationally efficient

Green’s function method [24,34]. The partial pressure of oxygen

PO2(x,y) satisfies

DO2a+2PO2~M PO2ð Þ ð3Þ

where DO2 and a are diffusivity and solubility in tissue. The oxygen

consumption rate M(PO2) is governed by Michaelis-Menten kinetics

M PO2ð Þ~M0PO2= P0zPO2ð Þ ð4Þ

where M0 represents demand, assumed uniform, and P0 represents

PO2 at half-maximal consumption. Convective oxygen flux in blood

is

f Pbð Þ~Q HDC0S Pbð Þzaeff Pb

� �
ð5Þ

Table 1. Model parameters.

Blood parameters

Maximal RBC oxygen concentration C0 = 0.5 cm3O2 cm23 [24]

Effective unbound oxygen solubility aeff = 3.161025 cm3O2 cm23 mmHg21 [24]

Hill equation parameter P50 = 38 mmHg [24]

Hill equation parameter n = 3 [24]

Tissue oxygen parameters

Krogh diffusion constant DO a= 6610210 cm3O2 cm21 s21 mmHg21 [24]

Consumption rate M0 = 0.5–2.5 cm3O2 (100 cm3)21 min21 See text

PO2 at half-maximal consumption Pc = 1 mmHg [24]

VEGF parameters

Diffusivity DG = 1.1361026 cm2 s21 [51]

Basal release rate MG0 = 1.9761023 pM s21 [51]

Tissue degradation rate constant KG = 2.8261023 s21 See text

Structural adaptation parameters

Reference wall shear stress tref = 0.103 dyn/cm2 [20]

Reference oxygen level for metabolic signal PO2ref = 93.2 mmHg [20]

Conducted response length constant Lc = 17300 mm [20]

Reference flow rate for metabolic signal Qref = 0.198 nl/min [20]

Conducted response saturation J01 = 1000 mm See text

Pressure sensitivity kp = 0.68 [20]

Metabolic sensitivity kp = 0.70 [20]

Conducted response sensitivity kc = 2.45 [20]

Shrinking tendency ks = 2.549 See text

Randomization of shrinking tendency Ran-ks = 0.1 [47]

Structural adaptation time scale T = 4.5 day [46]

Angiogenesis parameters

Time step Dt = 1 day

Diameter of new sprouts Ds = 10 mm [25]

Threshold VEGF concentration Cth = 0.8 nM See text

Constant in sprouting probability function Cth50 = 0.5 nM See text

Maximum sprout formation probability kp = 0.002 mm21 day21 [12]

Sprout growth rate Vg = 50 mm day21 [39]

Attraction constant to nearby vessels kV = 10 mm21 See text

Maximum vessel sensing distance Rmax = 100 mm [41]

Maximum vessel sensing angle hmax = p/3 See text

Variance of growth direction randomization ss = 0.1 See text

Vessel migration parameters

Threshold for migration lt = 0.05 See text

Maximum migration velocity vmax = 1 mm day21 See text

doi:10.1371/journal.pcbi.1002983.t001

Angiogenesis: A Biological Patterning Problem
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where Q is flow rate, HD is discharge hematocrit,

S~Pb
n= Pb

nzP50
nð Þ ð6Þ

is oxyhemoglobin saturation, Pb is blood PO2, C0 is oxygen-binding

capacity of red blood cells, P50 is PO2 at 50% saturation, n is a

constant and aeff is effective solubility of oxygen in blood. The

boundary conditions are continuity of PO2 and oxygen flux at the

blood-tissue interface. The oxygen field is expressed as a superpo-

sition of fields resulting from an array of sources (representing

vessels) and sinks (representing tissue regions), whose strengths are

computed so as to match intravascular and extravascular oxygen

levels. The sinks are located on a square array of tissue points spaced

50 mm apart throughout the region spanned by the network. Effects

of intravascular resistance to radial oxygen diffusion [35] are

included. Very short segments compromise the numerical stability

of this method for solving convection-diffusion problems. Simula-

tions were designed such that segments have a minimum length

10 mm.

Growth factor field
Among the multiple chemical factors that influence the

formation and growth of blood vessels, VEGF plays a key role

[36]. Released in hypoxic regions, it stimulates the growth of new

vessels, which may increase oxygen supply to those regions. In the

present model, this process is simulated based on previously

developed models for spatial distribution of VEGF in skeletal

muscle tissue [5,23]. VEGF is released by parenchymal cells at a

rate that depends on PO2, diffuses through tissue with diffusivity

DG, and is degraded or taken up uniformly with linear kinetics and

rate constant KG. Its concentration CG(x,y) satisfies

DG+2CG~{MG PO2ð ÞzKGCG: ð7Þ

The dependence of release rate on PO2 (in mmHg) is:

MG(PO2)~

6MG0 if PO2ƒ1

MG0(1z5½(20{PO2)=19�3) if 1ƒPO2ƒ20

MG0 if PO2§20

8><
>: ð8Þ

where MG0 is the basal rate. These equations were developed by Ji

et al. [23]. The value of KG was estimated as follows. A typical

length scale for concentration gradients is Ldiff = (DG/KG)1/2. The

results of Ji et al. [23] imply that Ldiff<200 mm, so

KG = 2.8261023 s21. Resulting values of CG are in the range

MG0/KG to 6MG0/KG, i.e. 0.7 to 4.2 pM, consistent with the results

of Ji et al. CG(x,y) is computed using the Green’s function method,

neglecting exchange of VEGF between tissue and vessels.

Sprout formation
Angiogenesis is assumed to occur by sprouting from existing

vessels [37]. Splitting angiogenesis (intussusception) is not includ-

ed. Numerous models for sprouting angiogenesis have been

proposed. The present approach follows that of [12]. At each time

step, a point is selected with uniform probability on each segment,

local CG is computed and a sprout is formed with probability

Psprout~
kplsegDt

CG{Cth

Cth50zCG{Cth

if CGwCth

0 if CGƒCth

8<
: ð9Þ

where kp is the maximal probability of sprout formation per length

per time. This functional dependence is chosen to give threshold

concentration Cth for sprout formation and approach to the

maximal probability at large concentrations [12]. If a sprout forms

within 10 mm of a node on the parent segment, it is moved to that

node. If the sprout is at a network boundary node or an existing

branch point, it is suppressed. These rules were introduced for

technical reasons as already mentioned, and do not substantially

affect the patterning process.

In this two-dimensional implementation, the sprout direction is

randomly 690u to the parent segment. Sprouts maintain a

diameter of Ds = 10 mm [25] until they become part of a flow

pathway, and are subject to structural adaptation. The threshold

VEGF concentration Cth is a critical parameter. A low value gives

uncontrolled angiogenesis and network instability. A high value

gives inadequate vascular density. The chosen value Cth = 0.8 pM

gives adequate, stable network structures over a range of oxygen

demand, lies between the values observed experimentally at rest

and in exercise [38], and is within the range predicted by

theoretical models [5,23]. The chosen value of Cth50, 0.5 pM, gives

rapid approach to the maximal rate of sprout formation as CG

increases.

Elongation of sprouts
The simulation of sprout growth follows previous work [12].

Sprouts are assumed to elongate at constant rate Vg until they

connect with another vessel. Reported growth rates vary;

Vg = 50 mm/day is assumed [39]. The direction of endothelial cell

migration shows persistence with time [40]. To represent effects of

heterogeneity in extracellular matrix structure, the current

direction d is rotated by a random angle from a Gaussian

distribution with zero mean and variance ss, giving a direction d9

for the next time step. This variance gives vessel tortuosity

consistent with that seen in mesenteric networks.

The tip cells leading the growth of endothelial sprouts possess

filopodia, elongated processes that explore the tissue for distances

of up to 100 mm [41], and may allow the sprout to sense other

vessels. Such a homing mechanism, which was not included in

previous models [12], is needed since otherwise sprouts in three-

dimensional tissues would rarely intersect other vessels. In the

model, sprouts are attracted by other vessels lying within a sector

extending a distance Rmax from the tip and an angle hmax from the

previous growth direction. The attraction decreases with distance r

from the tip, and with angle h from the previous growth direction.

The vector sum

dV ~
Xð

erf rð Þg hð Þds ð10Þ

is constructed, where the sum is over the segments within the

sector, the integral is along each segment, and

f (r)~
1{r=Rmax if rvRmax

0 if r§Rmax

�
ð11Þ
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g(h)~
1{

1{cosh

1{coshmax

if hvhmax

0 if h§hmax

8<
: ð12Þ

The new sprout direction is

d’’~d’zkV dV ð13Þ
where kV represents sensitivity of growth direction to existing

vessels. The functions introduced in equations (11) and (12) are

chosen so that the effect of other vessels on sprout growth falls to

zero at the edge of the sector explored by filopodia. The specific

forms of these functions are not important. The results are,

however, sensitive to the assumed values of the sensing radius Rv

and the sensitivity kv. The sensing radius is set equal to the

maximum observed length of filopodia, 100 mm [41]. A large

value of kV is chosen, so that vessels are strongly directed toward

vessels within the sensing radius.

At each time step, all sprouts are elongated by VgDt in

increments of 5 mm. If the distance of a tip to any other segment

is less than 5 mm, a new segment is created linking the tip to the

nearest point on that segment. If necessary, the resulting intercept

point is moved to eliminate short segments (,10 mm). If the

intercept point is at a network boundary node or if the segment

intersects the boundary of the tissue domain, the sprout is

suppressed. These rules were introduced for technical reasons, and

do not substantially affect the patterning process.

In previous models, sprout growth was biased up the gradient of

VEGF concentration [12]. Here, it was found that this interferes

with formation of new flow pathways. VEGF concentration is

highest near the middle of hypoxic regions, and growing sprouts

then remain and meander in such regions, rather than connecting

with other vessels. Therefore, this effect was excluded.

Branching angles and tension-induced migration
In the model, new branch points are formed by sprouting from

existing segments, and by coalescence of sprouts with existing

segments. Of the three branching angles formed by such events, one

is necessarily 180u and the other two must average to 90u
(Figure 3A). This would still be the case even if the model was

modified to include the effect of chemical cues on sprouting

direction [42], such that sprouts formed at variable angles to the

parent vessel. If no mechanism for change of branch angles is

included, the resulting distribution of branching angles has peaks at

90u and 180u. In the observed network (see Results), the angles are

smoothly distributed about the mean (120u). This discrepancy in

angle distribution implies that branching angles must change and

vessels must migrate through tissue after formation of bifurcations

(Figure 3B), by a mechanism that has not previously been described.

Blood vessels in vivo are normally subject to longitudinal tension

[43,44]. Structural components of the interstitial space, including

collagen, are subject to continuous turnover in normal tissues [45].

These observations suggest a potential mechanism for remodeling

of branch angles, in which the net forces on each segment resulting

from axial tension tend to pull it through the interstitium, and

movement is made possible by the continuous dissolution and

synthesis of collagen fibers.

This mechanism is implemented in the model as follows. Each

node (including non-branching nodes) migrates through the

surrounding tissue at a rate dependent on the resultant force

due to vessel tensions, which are assumed proportional to

diameter. The normalized force is

ft~

P
DieiP
Di

ð14Þ

where the sum is over the segments at the node, Di is diameter and

ei is a unit vector parallel to the segment. If |ft| exceeds a

threshold lt, the node migrates in the direction of ft with velocity

proportional to |ft|2lt, i.e.

v~vmax(ft{lt f̂ft) ð15Þ

where vmax is the maximum speed and f̂ft is a unit vector in the

direction of ft. Inclusion of the threshold stabilizes curved vessels

which otherwise would eventually straighten. Chosen values of vmax

and lt yield curvatures comparable to those observed. In this

model for tension-induced migration, total vessel length decreases

slowly in the absence of sprouting, until the normalized force at

each node approaches the threshold value.

Structural adaptation and pruning
The model for structural adaptation of flowing segments was

developed previously [19,20], and is used here with slight

modifications. The diameter D of each segment varies in response

to several stimuli:

DD~StotDDt=T ð16Þ

Figure 3. Bifurcation angles resulting from vessel sprouting
and connection. (A) A sprout at 90u to the parent vessel creates initial
bifurcation angles of 90u, 90u and 180u. A sprout forming a connection
to an existing vessel creates initial bifurcation angles of h, 180u2h and
180u, where h depends on the direction from which the sprout
approaches. (B) Migration through the tissue (short blue arrows) driven
by tension in each segment and the resulting imbalance of forces
acting within the network results in a reduction of the 180u bifurcation
angle and increases in the other two angles.
doi:10.1371/journal.pcbi.1002983.g003

Angiogenesis: A Biological Patterning Problem
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Figure 4. Simulated angiogenesis, showing oxygen and VEGF distributions. Oxygen levels in vessels and tissue are color coded according
to scale at right. Dark blue indicates hypoxic tissue. Diagonal shading indicates VEGF above threshold concentration. Time (t) in days and total vessel
length (L) in mm are indicated. Maximal rate of sprout formation is 2 mm21day21. Tissue oxygen demand is 2 cm3/100 cm3/min. (A) Initial
configuration. (B) Sprouts (white arrows) and a short flow pathway between arterioles and venules (a-v shunt, purple arrow) are generated. (C) More
complex flow pathways form, leading to improved oxygenation (lower right region). (D) Improved oxygenation leads to decreased VEGF levels.
Structural adaptation causes pruning of the a-v shunt (purple arrow), but some redundant flow pathways remain (black arrows). Total vessel length
reaches its maximum. (E) Structural adaptation leads to pruning of redundant flow pathways (black arrows). (F) Final refined network. Virtually no
hypoxia remains and VEGF levels are generally below threshold. See online supplement, Video S1, for movie clip.
doi:10.1371/journal.pcbi.1002983.g004

Angiogenesis: A Biological Patterning Problem
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where Dt is the time step and T is the timescale [46]. The total

signal is

Stot~log(twztref ){kp log te Pð Þzkm SmzkcSc½ �{ks: ð17Þ

The first two terms represent responses to wall shear stress tw (in

dyn/cm2) and intravascular pressure P (in mmHg). The function

te Pð Þ~100{86 exp {5000 log log Pð Þð Þ5:4
h i

ð18Þ

describes the correlation of tw (in dyn/cm2) with P [20]. A metabolic

signal is generated in each vessel dependent on vessel PO2,

Jm~ 1� PO2

�
PO2ref

� �N ð19Þ

Table 2. Comparison of simulated networks with experimentally observed network.

Observed network Simulated networks: mean ± s.d. (n = 6)

Total vessel length (mm) 30.2 26.160.92

Mean distance of tissue points to nearest vessel (mm) 39.3 44.761.45

Flow rate (nl/min) 36.9 34.962.75

Mean tissue PO2 (mmHg) 34.4 35.261.14

Hypoxic fraction (%) 3.24 0.35560.308

doi:10.1371/journal.pcbi.1002983.t002

Figure 5. Comparison of simulated and observed network characteristics. Simulated oxygen and VEGF distributions in experimentally
observed network (A), and in simulated angiogenesis at t = 200 days (B). The observed network structure is derived from the image shown in
Figure 2A. The network at t = 200 days was derived from the same initial network as shown in Figure 4A but with a different seed for random number
generation. Oxygen demand, rate of sprout formation, length scale, color coding of oxygen levels and diagonal shading indicating VEGF above
threshold are as in Figure 4. (C) Frequency distribution of distance of tissue points to nearest vessel. (D) Frequency distribution of oxygen levels at
tissue points. Results for simulated networks are mean 6 standard deviation for n = 6 simulations with different seeds for random number
generation.
doi:10.1371/journal.pcbi.1002983.g005

Angiogenesis: A Biological Patterning Problem
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where N sets the oxygen sensitivity. Previously [20] N = 1 was

assumed, but in the present simulations this leads to loss of many

vessels needed for adequate oxygen supply, because the signal lacks

sensitivity to PO2 at low levels. Here N = 2 is assumed. Downstream

transmission of the metabolic signal is modeled by a convective flux

generated in each segment in proportion to Jmlseg and accumulated

downstream, where lseg is segment length. The local metabolic signal is

Sm~log 1zJm

�
QzQref

� �� �
: ð20Þ

Each segment contributes to the conducted response Jc in

proportion to Smlseg. (Previously [20], the factor lseg was omitted.)

Conducted responses travel upstream, decaying as exp(2s/Lc),

where s is distance. At converging bifurcations relative to direction

of conduction, incoming signals are summed. At diverging

bifurcations, the signal is divided equally among the upstream

vessels. The conducted metabolic signal is

Sc~Jc= JczJ01ð Þ, ð21Þ

where the magnitude of J01 is set to allow dropout of short shunt

pathways while retaining longer, functional pathways. The

shrinking tendency ks was adjusted to give a flow rate 36.9 nl/

min at oxygen demand 2 cm3O2/100 cm3/min, matching the

observed network. A random component, normally distributed

with zero mean and standard deviation Ran-ks is included in ks

[47]. If a diameter drops below 3 mm, the minimum for passage of

red blood cells, the segment is pruned, as are any other segments

whose flow ceases as a result.

Results

Results of a simulation are shown in Figure 4. Initially, sprouts

grow and connect to form dense mesh-like structures, which are

refined to produce more hierarchical structures with an orderly

progression of vessel diameters. In this process, redundant

segments are removed, including those forming very short shunt

pathways (Figure 4C–D). While the remaining flow pathways show

widely varying lengths, the diameters of the short flow pathways

are relatively small, such that they do not draw much flow away

from the longer flow pathways. Total vessel length peaks at about

20 days, and declines towards a stable steady state, in a temporal

sequence similar to that observed in wound healing [48].

Figure 6. Effect of tension-induced vessel migration on distribution of branching angles. (A) Example of network structure generated
when tension-induced migration is suppressed, at t = 200 days. Other conditions are as in Figure 4. (B) Distribution of branching angles for network
shown in A. (C) Distribution of branching angles for observed network structure. (D) Distribution of branching angles for network shown in Figure 4
at t = 200 days, including tension-induced migration.
doi:10.1371/journal.pcbi.1002983.g006

Figure 7. Dynamics of network generation. Variation of total
vessel length during an individual simulation of angiogenesis. Main
plot: vessel length. Inset: length of non-flowing sprouts. Initially, total
length increases rapidly due to sprouting. After sprouts form
connections, flowing length increases. When sprout formation rate is
2 mm21day21 (red curves), summed vessel length shows a strong peak
at 20 days and then decreases, stabilizing after 50 days. For reduced
sprout formation rate (1 mm21day21, black curves), peak vascular
length is reduced, stabilization takes longer and total vessel length
remains higher.
doi:10.1371/journal.pcbi.1002983.g007
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Characteristics of simulated networks are compared in Table 2

and Figure 5 with those of the experimentally observed network

from which the initial configuration (Figure 4A) was derived. The

simulated networks are qualitatively similar to the observed

network and values of key parameters are comparable. The

simulated networks have slightly lower total vessel length than the

observed network, and the distribution of distance from tissue

points to the nearest vessel is slightly right skewed in the simulated

networks relative to the observed network. Despite the lower

vascular density, the mean tissue PO2 in the simulated networks

Figure 8. Variation of network properties with oxygen demand. (A) Total blood flow and vessel length at t = 200 days, for fixed arteriole-
venule pressure drop (mean 6 s.d. for 6–12 runs). (B) Time-dependent response of total vessel length to step changes in demand. Lower curve:
oxygen demand. Upper curves: total vessel length (flowing, all, mean of 3 runs). (C, D) Network structures for demand 0.5 and 2.5 cm3/100 cm3/min.
Length and color scales as in Figure 4.
doi:10.1371/journal.pcbi.1002983.g008

Figure 9. Effects of inhibiting adaptation or conducted responses. (A) Angiogenesis without structural adaptation and pruning. Resulting
structure is mesh-like, without hierarchical structure. (B) Simulation of angiogenesis with reduced conducted response strength. Short flow pathways
from feeding to draining vessels carry most of the flow. Regions remote from feeding vessels receive inadequate perfusion. Length and color scales as
in Figure 4.
doi:10.1371/journal.pcbi.1002983.g009
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agrees closely with that in the observed network. Moreover, the

simulated networks have a narrower distribution of PO2 and less

hypoxic tissue (PO2,1 mmHg). These results imply that the

assumed mechanisms of angiogenesis and adaptation can generate

network structures that match and indeed slightly exceed the

performance of the observed network with regard to oxygen

transport.

The effect of tension-induced lateral migration of vessels on the

distribution of branching angles is illustrated in Figure 6. If no

mechanism for change of branch angles is included, the resulting

network structures have many vessels with abrupt changes in

direction (Figure 6A) and the distribution of branching angles has

peaks at 90u and 180u (Figure 6B). Inclusion of tension-induced

migration in the model results in a more uniform distribution

(Figure 6C) although the distribution is not as broad as that

obtained from the experimentally observed network (Figure 6D).

The variation of total vessel length during simulated angiogen-

esis is shown in Figure 7. When the maximal rate of sprout

formation is 2 mm21day21, as in Figures 4 and 5, an overshoot in

vascular density is predicted. With a lower rate of sprout

formation, 1 mm21day21, the overshoot is smaller and the

network takes longer to stabilize, remaining at a higher vascular

density. Over-abundant initial production of vessels is therefore

needed for efficient vascular network generation. If the mesh

structure generated during the initial phase of angiogenesis is not

sufficiently dense, it is inadequate to meet oxygen needs and

further sprout formation is stimulated, prolonging the network’s

instability.

The assumed mechanisms allow adaptation to changing

conditions. Effects of varying oxygen demand were explored,

assuming a fixed arteriole-venule pressure drop. With increasing

demand, total vessel length and flow rate increased (Figure 8A).

Resulting network structures are shown in Figures 8C and D.

Figure 8B illustrates the dynamic response of the network to

changes in oxygen demand over time. A step increase (in cm3/

100 cm3/min) from 0.5 to 1.5 stimulates an overshoot in total

vessel length followed by stabilization. After a step increase to 2.5,

the rate of sprout formation is not sufficient to produce an

overshoot and stability is not achieved. This result with a sprout

rate of 2 mm21day21 is similar to the behavior at an oxygen

demand of 2 and a sprout rate of 1 mm21day21 shown in Figure 7,

suggesting that the rate of sprout formation needed for efficient

network generation is sensitive to oxygen demand. With step

decreases in demand, the network regresses, but the vessel length

remains higher than before at the same demand. This suggests that

a period of high demand (e.g. exercise training) can lead to a long-

term increase in vascular density.

Further simulations were used to explore the effects of inhibiting

specific biological patterning mechanisms (Figure 9). Without

structural adaptation and pruning, all new vessels remain at their

initial diameter of 10 mm. A stable vessel network is formed, but

the total vessel length is higher (31.8 mm) than in the simulated

normal case (25.6 mm). Instead of a hierarchical branching

pattern, a mesh-like structure develops. If conducted responses are

inhibited by reducing the coefficient of the conducted response

from 2.45 to 0.5, the network does not achieve a stable, well-

oxygenated state. Functional shunts between arterioles and venules

are not suppressed [21], and only regions close to the feeding

arterioles receive adequate oxygenation.

Discussion

These results show that the combination of stochastic angio-

genesis stimulated by a growth factor, structural adaptation and

pruning in response to hemodynamic and metabolic stimuli is

capable of solving the ‘problem’ of vascular patterning and can

generate hierarchical networks with low diffusion distances. To

establish and maintain such networks, the following mechanisms

are essential:

N generation of a diffusible vessel growth factor in hypoxic tissue

regions;

N formation of vessel sprouts in response to above-threshold

levels of growth factor;

N maintenance of sprouts without pruning before they connect to

other vessels;

N ability of sprouts to connect with other vessels forming patent

flow pathways;

N diameter adaptation of flowing vessels to hemodynamic and

metabolic stimuli and upstream conducted responses;

N elimination of redundant vessels by pruning.

The initial network, derived by reducing an observed mesen-

teric network to a minimal ‘skeleton’, allowed testing of the model

by comparing predicted structures with the actual network. Initial

conditions for angiogenesis in development, wounds, exercise or

tumor growth may differ from those assumed here. In most tissues,

networks ramify in three dimensions. While simulations of other

tissues may reveal the need for additional mechanisms or

constraints for formation of realistic network structures, the

arguments leading to the above conclusions are not specific to

the assumed geometry.

The ability of a vessel to form a sprout or to connect with a

sprout is here assumed independent of vessel type (arterial or

venous). While arterioles and venules show different expression of

genes involved in angiogenesis [49], both types participate in

angiogenesis, and arterial-venous plasticity is observed during

neovascularization [50].

The mechanisms of angiogenesis are more numerous and

complex than those included here. Multiple growth factors

participate in the control of sprouting angiogenesis. VEGF exists

in several isoforms, and is not the only factor involved. Other

factors may play equally important roles. Nonetheless, it can be

concluded from our results that angiogenesis in response to a

growth factor released in hypoxia can result in vascular patterns

that are consistent with in vivo observations. Our approach

demonstrates a minimal set of mechanisms that is sufficient to

solve the vascular patterning problem, generating structures that

combine low diffusion distances to all tissue cells with hierarchical

branching, and adapt to changing conditions. The model allows

assessment of the roles of individual mechanisms in the patterning

process and changes resulting from their modification. It shows

that network formation involves closely coupled processes of

angiogenesis, structural adaptation and pruning. Resulting insights

may stimulate further experimental investigations of angiogenesis

and development of novel therapeutic approaches.

Supporting Information

Video S1 Simulated angiogenesis, showing oxygen and
VEGF distributions. Oxygen levels in vessels and tissue are

color-coded according to scale at right in mmHg. Dark blue

indicates hypoxic tissue. Diagonal shading indicates VEGF above

threshold concentration. Time (t) in days is indicated on each

frame. See Figure 3 caption for further description of this

simulation.

(AVI)
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