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The presence of islet autoantibodies and islet reactive T cells (T+) in adults with

established type 2 diabetes (T2D) have been shown to identify those patients with

more severe β-cell dysfunction. However, at what stage in the progression toward

clinical T2D does islet autoimmunity emerge as an important component influencing

β-cell dysfunction? In this ancillary study to the Restoring Insulin SEcretion (RISE)

Study, we investigated the prevalence of and association with β-cell dysfunction of

T+ and autoantibodies to the 65 kDa glutamic acid decarboxylase antigen (GADA) in

obese pre-diabetes adults with impaired glucose tolerance (IGT) and recently diagnosed

treatment naïve (Ndx) T2D. We further investigated the effect of 12 months of RISE

interventions (metformin or liraglutide plus metformin, or with 3 months of insulin glargine

followed by 9 months of metformin or placebo) on islet autoimmune reactivity. We

observed GADA(+) in 1.6% of NdxT2D and 4.6% of IGT at baseline, and in 1.6% of

NdxT2D and 5.3% of IGT at 12months, but no significant associations betweenGADA(+)

and β-cell function. T(+) was observed in 50% of NdxT2D and 60.4% of IGT at baseline,

and in 68.4% of NdxT2D and 83.9% of IGT at 12 months. T(+) NdxT2D were observed

to have significantly higher fasting glucose (p= 0.004), and 2 h glucose (p= 0.0032), but

significantly lower steady state C-peptide (sscpep, p= 0.007) compared to T(−) NdxT2D.

T(+) IGT participants demonstrated lower but not significant (p = 0.025) acute (first

phase) C-peptide response to glucose (ACPRg) compared to T(−) IGT. With metformin

treatment, T(+) participants were observed to have a significantly lower Hemoglobin A1c
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(HbA1c, p = 0.002) and fasting C-peptide (p = 0.002) compared to T(−), whereas T(+)

treated with liraglutide+metformin had significantly lower sscpep (p= 0.010) compared

to T(−) participants. In the placebo group, T(+) participants demonstrated significantly

lower ACPRg (p= 0.001) compared to T(−) participants. In summary, T(+) were found in

a large percentage of obese pre-diabetes adults with IGT and in recently diagnosed T2D.

Moreover, T(+) were significantly correlated with treatment effects and β-cell dysfunction.

Our results demonstrate that T(+) are an important component in T2D.

Keywords: islet reactive T-cells, islet autoantibodies, type 2 diabetes, islet autoimmunity, pre-diabetes, impaired

glucose tolerance, beta cell function, GADA

INTRODUCTION

Diabetes Mellitus encompasses a spectrum of disease entities
with varying autoimmune involvement (1). Along one end of the
spectrum is type 1 diabetes (T1D) where insulin producing beta
(β)-cells are destroyed by cellular autoimmune mechanisms (2).
Whereas, type 2 diabetes (T2D) has historically been considered
to be on the other end of the spectrum resulting from insufficient
insulin output and insulin resistance unrelated to autoimmune
destruction of pancreatic β-cells. However, in recent years,
evidence suggesting that islet autoimmunity is an important
component of T2D has accumulated (3–6). Research has shown
that innate immune cells and pro-inflammatory CD4+T helper 1
(Th1), Th17, CD8+T cells, and cytokines populate adipose tissue
from humans with obesity, correlating with the development
of systemic inflammation and the progression of metabolic
disturbances, cardiovascular changes, non-alcoholic fatty liver
disease, insulin resistance, and T2D (3–15). The alteration in
systemic immune composition from an anti-inflammatory state
in lean individuals toward a systemic pro-inflammatory state in
obesity sets the stage for development of autoimmunity (3).

In established T2D, islet autoreactivity in the form of
islet autoantibodies, autoantibodies to proteins associated with
insulin secretion, and T cells reactive to islet proteins have
been shown to be present and to correlate with more severe
β-cell dysfunction (7, 16–19). In fact, attenuation of the T cell
responses to islet proteins in adults with established T2D has
been associated with improved C-peptide responses (20). HLA
haplotypes associated with insulin resistance and the restriction
of T cell receptor regions in T2D patients further suggest
development of islet-targeted autoimmunity (2, 21–24). In fact,
Th17 cells, effectors of autoimmune diseases, have been shown
to be present in islet inflammation in both T1D and T2D, to be
increased in the peripheral blood of T1D and T2D patients, and
to be involved in pancreatic β-cell destruction in T1D (3, 4, 12,
15, 25, 26).

A key component of regulating autoimmunity is the balance
between T cell effectors and regulatory T cells (27). In T1D
and T2D, both the numbers and functions of regulatory T cells
have been demonstrated to be decreased (25–28). Therefore,
the involvement of the immune system, both innate and
adaptive, in the development of metabolic syndromes and β-
cell dysfunction/destruction in T2D is becoming more widely
accepted as studies reveal the underlying metabolic and immune

system interactions during disease development (4–7, 14, 17–
19, 25). However, it is currently unknown at what stage during
the progressive development of T2D the autoreactive immune
cells are present in the peripheral blood and become associated
with β-cell dysfunction.

In this ancillary study to the Restoring Insulin SEcretion
(RISE) Study, a multi-site national clinical trial, we investigated
the prevalence of and association with β-cell dysfunction of
islet reactive T cells and autoantibodies to the 65 kDa glutamic
acid decarboxylase antigen (GADA) in adults with impaired
glucose tolerance (IGT), and in treatment naïve adults with
recently diagnosed T2D. We further investigated the effect of 12
months of RISE treatments (metformin, liraglutide+metformin,
insulin glargine followed by metformin, or placebo) on islet
autoimmunity (29).

METHODS

Study Design
Participants were recruited from the parent RISE Adult
Medication Study and the metformin arm of the RISE Adult
Surgery Study (BetaFat), (ClinicalTrials.gov registration numbers
NCT01779362 and NCT01763346, ClinicalTrials.gov). In the
RISE Adult Medication Study, participants were treated for 12
months with metformin alone, liraglutide plus metformin, 3
months of insulin glargine followed by 9months ofmetformin, or
placebo (29). Blood samples for the ancillary study were collected
at scheduled study visits (baseline and 12 months) and shipped
overnight to the University of Washington, Seattle for immune
studies blinded to diabetes status and treatment group (30, 31).
GADA, T cell responses to islet proteins, oral glucose tolerance
tests (OGTT), and hyperglycemic clamps were performed to
assess islet autoreactivity, insulin sensitivity, and β-cell function
at both baseline and 12 months on treatment.

Participants
Participants were recruited between 2013 and 2017 at four RISE
Study centers participating in the adult studies (three medication
sites and one surgical site). Individuals at high risk for IGT
and T2D who met other study inclusion/exclusion criteria were
screened with a 2-h 75-gram OGTT and HbA1c. Participants
with a fasting plasma glucose 5.3–6.9 mmol/l plus an elevated
2-h glucose (>7.8 mmol/L) and Hemoglobulin A1c (HbA1c) ≤
7.0% (53 mmol/mol) were eligible. Individuals with self-reported
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diabetes for <1 year and diabetes drug-naïve were also eligible.
Additional details on participant recruitment and eligibility
criteria have been described (29) and detailed information is
available on the RISE website (https://rise.bsc.gwu.edu/web/rise/
collaborators).

β-Cell Function Protocols
Measures of glycemia and β-cell function were performed as
part of the RISE parent study. The RISE study employed the
oral glucose tolerance tests (OGTT) and hyperglycemic clamp.
A 3-h 75-gram OGTT was performed with blood samples
collected through an indwelling intravenous catheter 10 and
5min prior to and 10, 20, 30, 60, 90, 120, 150, and 180min
after glucose ingestion (32). A two-step hyperglycemic clamp
was performed on a different day following a 10-h overnight fast
with goal clamped glucose levels of 11.1 and >25 mmol/L, the
latter including administration of the non-glucose secretagogue
arginine. These target glucose levels were achieved using boluses
and a variable rate intravenous infusion of 20% dextrose, with
the rate guided by a computerized algorithm developed by the
RISE Consortium (33), utilizing bedside glucose monitoring.
Blood samples from these tests were collected on ice, immediately
separated and frozen at −80◦C, and then shipped to the central
biochemistry laboratory at the University of Washington, Seattle
for measurement of glucose, C-peptide, and insulin.

Hyperglycemic Clamp-Derived and OGTT
Measurements
Insulin Sensitivity
For the hyperglycemic clamp, insulin sensitivity (M/I) was
quantified as the mean of the glucose infusion rate (M) at 100,
110, and 120min expressed per kilogram of body weight and
corrected for urinary glucose loss, divided by the mean steady-
state plasma insulin concentration at the same time points (34).

C-Peptide Responses
The acute (first phase) C-peptide response to glucose (ACPRg)
was calculated as the mean incremental response above baseline
(average of −10 and −5min) from samples drawn at 2, 4,
6, 8, and 10min after intravenous dextrose administration.
Steady-state (second-phase) C-peptide concentration (SSCP)
was calculated as the mean of the respective measurements
at 100, 110, and 120min of the hyperglycemic clamp. The
acute C-Peptide response to arginine at maximal glycemic
potentiation (ACPRmax; >25 mmol/L) was calculated as the
mean concentrations in samples drawn 2, 3, 4, and 5min
after arginine injection minus the average of concentration
of the samples obtained 1 and 5min prior to arginine
administration (33).

For the OGTT β-cell function analysis the inverse of fasting
insulin was used as a surrogate estimate of insulin sensitivity (32).
The C-peptide index (CPI) (1 of C-peptide0–30/ 1 glucose 0–
30) and insulinogenic index (IGI) (1 insulin 0–30/ 1 glucose
0–30) were calculated using the 0- and 30-min samples from the
OGTT (32–36).

Metabolic Assays
Glucose was measured by the glucose hexokinase method using
Roche reagent on a c501 autoanalyzer (Roche). C-peptide and
insulin were measured by a two site immunoenzymometric assay
performed on the Tosoh 2000 autoanalyzer (Tosoh Bioscience,
Inc., South San Francisco, CA). The interassay coefficients of
variation on quality control samples with low, medium, medium-
high, and high concentrations were 2.0% for glucose, 4.3% for
C-peptide, and 3.5% for insulin (33).

Autoantibodies to the 65 kDa Glutamic
Acid Decarboxylase Antigen (GADA) Assay
The GADA assay is well-established, with a sensitivity and
specificity of 86 and 93% (37). For the GADA assays, samples
from 213 participants were available at baseline and after 12
months of follow-up. This GADA assay participates in the
Diabetes Antibody Standardization Program. GADA(+) and
GADA(−) samples were included in every assay to correct for
inter-assay variation, and were used to calculate an antibody
index for GADA (37).

Cellular Immunoblotting (CI, T Cell Assay)
The CI assay is well-established, with a sensitivity of 94%
and a specificity of 83% (30). Cellular immunoblotting (CI)
was performed on blinded blood samples shipped overnight
from clinical sites. Upon receipt of the samples, the blood was
subjected to Ficoll density gradient to recover the peripheral
blood mononuclear cells (PBMCs). If severe hemolysis was
visible and the PBMCs were observed to be of poor or
insufficient quality to proceed with CI, the blood sample
was discarded. PBMCs were counted and plated into 96-well
plates. Nitrocellulose particles containing human islet proteins
were added to the cultures, and the cultures incubated for
5 days. Tritiated-thymidine (1 mCi/well) was added, the cells
were harvested 18 h later, and radioactivity measured in a β

scintillation counter (LKB Pharmacia).
To prepare the nitrocellulose particles human islets were

obtained from the NIH-supported Integrated Islet Distribution
Program (http://iidp.coh.org). The islets were subjected to
preparative one-dimensional SDS-PAGE, the gels electroblotted
onto nitrocellulose, cut according to molecular weight regions,
solubilized, and re-precipitated with DMSO and sodium
carbonate/bicarbonate buffers. Individual molecular weight
regions were assayed in triplicate for T cell stimulatory
capabilities. A stimulation index (SI = cpm experimental
wells/cpm control wells) >20 for the mitogen stimulation was
used to define a viable sample and a positive response to tetanus
toxoid was used as a positive antigen control.

In the CI assay, positive proliferative responses to islet protein
blots were defined as SI ≥ 2.1 (32). PBMCs from non-diabetic
controls respond to≤ 3 blots whereas patients with autoimmune
diabetes patients respond to 4–18 blots (17, 18, 30, 31). Moreover,
T cell reactivity in this assay is specific for islet tissue (and not
other tissues) and stable using islets obtained from different
donors (30, 31).
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Islet Autoimmunity in Participants Defined
Samples at baseline and 12 months were determined to be
positive or negative for GADA, GADA(+) or GADA(−), and
positive or negative for T cell responses to islet proteins,
T(+) or T(−), respectively. Since autoimmune markers in the
peripheral blood of people have been shown to be persistent in
some people and transient in others (38–41), the autoimmune
status for both T2D and IGT participants was defined as
follows: (a) GADA(−) or T(−) having negative responses at
both time points (baseline and 12 months), and (b) GADA(+)
or T(+) if they had positive results at baseline, and/or 12
months. Participants with only 1 negative time point (no second
sample available) were found to be different from participants
with 2 negative time points for hyperglycemic clamp measures
of Steady-State C-peptide (SSCP, p = 0.016) and acute C-
peptide response to glucose (ACPRg, p = 0.009). These values
were lower than participants defined as negative but higher
than participants classified as positive. Therefore, these samples
(68/271 T cell samples and 77/290 GADA samples) were excluded
from further analysis. After excluding the participants with
only 1 negative time point, 213 participants were included in
the final analysis for GADA. For analysis of T cell responses
to islet proteins, 190 study participants had samples available
at baseline and 203 participants had samples available at 12
months. Reasons for missing and/or discarded samples included
inadequate blood sample volume, severe hemolysis, samples not
delivered overnight, unavailable participants, and a non-viable T
cell response.

Statistical Analysis
Descriptive statistics for comparisons between baseline and 12
months for GADA(+)/GADA(−), T(+)/T(−), participants with
T2D, and participants with IGT are presented as percentages
or means ± SD. Comparisons between groups were computed
using ANOVA for continuous variables and chi-square tests
for categorical variables. Linear regression models were used
to explore the relationship between GADA(+)/GADA(−) and
T(+)/T(−) status on measures of glycemia (HbA1c, fasting
glucose, 2 h glucose), insulin sensitivity (1/fasting insulin, M/I)
and β-cell responses from the hyperglycemic clamp (ACPRg,
SSCP, ACPRmax) and OGTT (IGI, CPI) at 12 months. To
measure the effect of GADA(−)/GADA(+) and T(−)/T(+)
status on month-12 β-cell functional measures, models were
stratified by baseline diabetes status and adjusted for age, sex,
race/ethnicity, treatment group, and baseline values. Models
exploring interactions between T cell positivity and treatment
group were adjusted for age, sex, race/ethnicity, and baseline
BMI. β-cell response measures were also adjusted for baseline
and concurrent M/I (clamp-derived insulin sensitivity). Models
used natural logarithmically transformedM/I and β-cell response
variables due to the skewed distribution of these data. Prior to
taking logs, we added a constant of 1.06 to the ACPRg because of
negative values in this β-cell response variable. All analyses were
performed using SAS (SAS Institute, Cary NC). Except where
noted, tests with p≤ 0.01 were considered statistically significant
due to the multiple analyses performed.

RESULTS

Prevalence of GADA and T Cell Responses
to Islet Proteins at Baseline and 12 Month
Study Visits
Of the 213 participants with GADA samples at baseline, 1.6% of
participants with recently diagnosed T2D and 4.6% participants
with IGT were GADA(+) (Table 1). At 12 months, 1.6% of
participants with T2D and 5.3% of participants with IGT were
GADA(+) (Table 1).

For the 190 participants with baseline T cell samples available,
50% of participants with recently diagnosed T2D and 60.4%
of participants with IGT were T(+) at baseline (Table 1).
For the 203 T cell samples available at 12 months, 68.4%
of participants with T2D and 83.9% with IGT were T(+)
(Table 1). There were no significant differences in demographics
or anthropometric measurements between the participants who
were GADA(+)/GADA(−) or T(+)/T(−) at baseline or 12-
months (Supplementary Tables 1, 2).

Relationship of GADA and T Cell Positivity
With Month-12 β-Cell Function for
Participants With Recently Diagnosed T2D
and Participants With IGT
β-cell function at month-12 visits adjusted for baseline function
was compared for participants who were GADA(−)/GADA(+)
and T(−)/T(+). No significant differences were observed
between GADA(−) or GADA(+) among participants with

TABLE 1 | Percent positive and negative GADA and T cell responses to islet

proteins in participants with T2D and participants with IGT at baseline and

month-12.

ALL T2D IGT p-

values*

N % N % N %

Baseline

GADA 213 62 151 0.292

% Negative 205 96.2% 61 98.4% 144 95.4%

% Positive 8 3.8% 1 1.6% 7 4.6%

T cells 190 56 134 0.184

% Negative 81 42.6% 28 50.0% 53 39.6%

% Positive 109 57.4% 28 50.0% 81 60.4%

Month-12+

GADA 213 62 151 0.225

% Negative 204 95.8% 61 98.4% 143 94.7%

% Positive 9 4.2% 1 1.6% 8 5.3%

T cells 203 57 146 0.024

% Negative 43 21.2% 18 31.6% 25 16.1%

% Positive 160 78.8% 39 68.4% 121 83.9%

*P-values represent comparisons of participants with T2D vs. participants with IGT at

baseline or 12 months using Chi Square.

+Negative results are negative at baseline and 12 months samples. Positive responses

are positive at either baseline, month-12, or baseline and month-12.
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T2D or IGT (Supplementary Table 3). For T cell reactivity
to islet proteins, T(+) participants with recently diagnosed
T2D had significantly higher fasting glucose (p = 0.004),
and 2-h glucose (p = 0.0032), but significantly lower
SSCP (p = 0.007) compared to T(−) participants with
recently diagnosed T2D (Figure 1). A complete set of data
investigating the relationship of T cell reactivity with month-12
β-cell measurements (adjusted for covariates along with the
baseline value), stratified by diabetes status, are summarized in
Table 2.

FIGURE 1 | Relationship of T cell positivity with month-12 β-cell function in

participants with new T2D and participants with IGT. Figures show adjusted

means for values at month 12 visits. All models are adjusted for age, sex,

race/ethnicity, treatment group, and baseline value of dependent variable. All

models except for BMI are also adjusted for baseline BMI. Models for SSCP,

and ACRPg are also adjusted for baseline and month-12 insulin sensitivity

(M/I). Orange symbols represent participants with new T2D and blue symbols

represent participants with IGT. P-value for comparison between autoimmune

negative and positive for diabetes or IGT.

Effect of RISE Treatments on GADA and T
Cell Positivity in Participants With Recently
Diagnosed T2D and Participants With IGT
To investigate whether treatments had any effect on changes
in GADA or T cell positivity, we compared the responses of
the participants at baseline and 12 months. In participants with
recently diagnosed T2D, 1 participant in the metformin only
group had a GADA response which changed from GADA(+) to
GADA(−) at month-12. In the participants with IGT, 1 placebo-
group participant changed from GADA(−) to GADA(+)
and 2 placebo-group participants changed from GADA(+)
to GADA (−) at month-12. These data are summarized in
Table 3.

For the T cell responses, 10 of the participants with
recently diagnosed T2D were T(−) at baseline and became
T(+) at month-12; 3 were in the glargine + metformin
group, 5 in the metformin only group, and 2 in the placebo
group. One participant in the metformin only group with
T2D changed from T(+) at baseline to T(−) at month-12
(Table 4). For the participants with IGT, 28 participants
changed from T(−) at baseline to T(+) at month-12;
seven were in the glargine + metformin group, seven in
metformin alone group, six in liraglutide + metformin
group, and eight in the placebo group. Seven participants
with IGT changed from T(+) at baseline to T(−) at month-
12; four were in the metformin alone group, two in the
liraglutide + metformin group, and one in the placebo group
(Table 4).

Interaction of Autoimmune Positivity and
Treatment Group on Month-12 β-Cell
Function for Participants With Recently
Diagnosed T2D and Participants With IGT
No significant interactions between treatment groups and
GADA reactivity were found (data not shown). A significant
interaction between T(+) and treatment group was identified
for HbA1c (p-interaction = 0.006). However, no significant
interactions were observed between T(+) and the other
treatment groups (Figure 2). Within the metformin alone group,
T(+) participants had a significantly lower HbA1c (p = 0.002)
and fasting C-peptide (p = 0.002) at month-12 compared to
the T(−) participants. No differences in HbA1c and fasting
C-peptide between T(+) and T(−) were observed in the
other treatment arms. Within the liraglutide + metformin
group, T(+) had a significantly lower SSCP (p = 0.010)
compared to T(−) participants. In the placebo group, the
T(+) participants had a significantly lower ACPRg (p = 0.001)
compared to the T(−) participants. Overall, the liraglutide +

metformin group had higher SSCP and ACPRg in both T(+)
and T(−) participants compared to placebo group T(+) and
T(−) participants. These data are summarized in Figure 2.
Adjusted means illustrating the interactions between T(+) and
treatment group for all outcomes assessed are summarized in
Table 5.
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TABLE 2 | Relationship of T cell positivity with month-12 outcomes in participants

with T2D and participants with IGT.

Positivity* Adjusted mean 95% confidence limits p-value†

Lower CI Upper CI

BMI (kg/m2)

IGT, Positive 34.31 33.91 34.72 0.2558

IGT, Negative 33.90 33.18 34.61

T2D, Positive 32.35 31.66 33.05 0.0408

T2D, Negative 31.31 30.27 32.36

HbA1c (%) 95% confidence limits p-value

IGT, Positive 5.61 5.55 5.67 0.7997

IGT, Negative 5.63 5.52 5.73

T2D, Positive 5.62 5.43 5.81 0.0548

T2D, Negative 5.36 5.08 5.64

Fasting glucose

(mg/dL)

95% confidence limits p-value

IGT, Positive 105.28 103.11 107.44 0.4526

IGT, Negative 103.76 99.82 107.70

T2D, Positive 107.95 102.78 113.13 0.0038

T2D, Negative 95.49 87.14 103.85

Fasting C-peptide

(ng/mL)

95% confidence limits p-value

IGT, Positive 3.18 2.91 3.45 0.2780

IGT, Negative 3.45 2.97 3.93

T2D, Positive 3.13 2.54 3.73 0.1386

T2D, Negative 2.48 1.58 3.37

Fasting insulin

(uU/mL)

95% confidence limits p-value

IGT, Positive 13.03 11.06 15.00 0.1937

IGT, Negative 15.41 11.85 18.97

T2D, Positive 11.09 5.91 16.27 0.6556

T2D, Negative 9.39 1.51 17.27

2-Hr glucose

(mg/dL)

95% confidence limits p-value

IGT, Positive 165.28 156.35 174.20 0.3584

IGT, Negative 157.67 141.48 173.87

T2D, Positive 204.85 188.44 221.25 0.0032

T2D, Negative 168.36 144.21 192.51

M/I (mg/kg/min/pg/

L)

95% confidence limits p-value

IGT, Positive 3.54 3.04 4.12 0.8507

IGT, Negative 3.45 2.65 4.49

T2D, Positive 3.31 2.39 4.59 0.1618

T2D, Negative 4.60 2.82 7.51

Steady state

C-peptide (ng/mL)

95% confidence limits p-value

IGT, Positive 4.48 4.24 4.74 0.1363

IGT, Negative 4.83 4.39 5.32

T2D, Positive 4.31 3.90 4.75 0.0066

T2D, Negative 5.28 4.54 6.13

ACPRg (ng/mL) 95% confidence limits p-value

IGT, Positive 2.10 1.99 2.22 0.0252

IGT, Negative 2.34 2.13 2.58

T2D, Positive 1.81 1.64 2.00 0.1212

T2D, Negative 2.03 1.74 2.38

ACPRmax (ng/mL) 95% confidence limits p-value

IGT, Positive 4.63 4.28 5.01 0.688

(Continued)

TABLE 2 | Continued

Positivity* Adjusted mean 95% confidence limits p-value†

Lower CI Upper CI

IGT, Negative 4.76 4.14 5.47

T2D, Positive 3.51 3.12 3.95 0.419

T2D, Negative 3.77 3.14 4.52

Insulinogenic index 95% confidence limits p-value

IGT, Positive 116.36 100.81 131.91 0.6699

IGT, Negative 122.49 94.05 150.94

T2D, Positive 86.20 55.24 117.16 0.7565

T2D, Negative 93.23 45.74 140.72

C-peptide index 95% confidence limits p-value

IGT, Positive 8.66 7.81 9.51 0.7407

IGT, Negative 8.92 7.39 10.46

T2D, Positive 7.31 5.03 9.60 0.8180

T2D, Negative 7.70 4.23 11.16

Adjusted means for values at month 12 visits. All models are adjusted for age, sex,

race/ethnicity, treatment group, and baseline value of dependent variable. All models

except for BMI are also adjusted for baseline BMI. Models for SSCP, ACRPg, and

ACPRmax are also adjusted for baseline and month-12 insulin sensitivity (M/I). Analyses

for M/I, SSCP, ACPRg, and ACPRmax performed using the log value.

*Positivity over 12 months: Negative results are negative at baseline and month-12

samples. Positive responses are positive at either baseline, 12 months, or baseline

and month-12.
†P values indicate differences between autoimmune negative and positive participants

within T2D or IGT.

TABLE 3 | Categories of GADA status change by diabetes status and treatment

group.

Baseline-M12 T2D (N = 62)

Treatment Group

Glarg-Met Metformin Lira+Met Placebo Total

Negative-Negative 15 18 14 14 61

Negative-Positive 0 0 0 0 0

Positive-Missing 0 0 0 0 0

Positive-Negative 0 1 0 0 1

Positive-Positive 0 0 0 0 0

Total 15 19 14 14 62

Baseline-M12 IGT (N = 151)

Treatment group

Glarg-Met Metformin Lira+Met Placebo Total

Negative-Negative 42 42 29 30 143

Negative-Positive 0 0 0 1 1

Positive-Missing 0 0 0 2 2

Positive-Negative 0 0 0 2 2

Positive-Positive 1 0 1 1 3

Total 43 42 30 36 151

CONCLUSIONS

A chronic pro-inflammatory state has been demonstrated by
multiple studies to be associated with obesity and is now
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considered to be a major driving force in T2D and associated
complications (3). The upregulation of auto-reactive cells has
been demonstrated to be an unfortunate result of the systemic
inflammatory state (3). Islet autoimmunity in established T2D

TABLE 4 | Categories of T cell status change by diabetes status and treatment

group.

Baseline-M12 T2D (N = 57)

Treatment group

Glarg-Met Metformin Lira+Met Placebo Total

Missing-Positive 0 0 1 0 1

Negative-Negative 4 4 5 5 18

Negative-Positive 3 5 0 2 10

Positive-Missing 0 3 3 5 11

Positive-Negative 0 1 0 0 1

Positive-Positive 6 6 3 1 16

Total 13 19 12 13 57

Baseline-M12 IGT (N = 146)

Treatment group

Glarg-Met Metformin Lira+Met Placebo Total

Missing-Positive 4 1 3 4 12

Negative-Negative 6 5 7 7 25

Negative-Positive 7 7 6 8 28

Positive-Missing 5 12 13 4 34

Positive-Negative 0 4 2 1 7

Positive-Positive 14 11 5 10 40

Total 36 40 36 34 146

patients and the association with diminished β-cell function
has been demonstrated by multiple studies (7, 8, 12, 15–23,
42). However, prior to this study, it was unknown if the islet
autoimmune cells found in established T2D patients were present
prior to clinical diagnosis (pre-diabetes). At what stage in the
progression toward clinical T2D does islet autoimmunity emerge
as an important component influencing β-cell dysfunction? In
this ancillary study to RISE, we investigated the prevalence of
GADA and islet reactive T cells and the associations between
GADA and T cell reactivity to islet proteins with β-cell
function in newly diagnosed T2D patients (prior to treatment)
and participants without clinical T2D but with impaired β-
cell function. We also investigated whether any of the RISE
treatments designed to improve or preserve β-cell function
affected GADA and/or islet reactive T cell responses, and whether
GADA and/or islet reactive T cell positivity affected RISE
treatment efficacy in participants with recently diagnosed T2D
and participants with IGT.

We observed 3.8% overall positivity for GADA at baseline
with the majority of the positivity observed in the IGT
participants (4.6%) increasing to 5.3% in IGT participants at 12
months. For our study, we chose to focus on GADA based on
previous studies in established T2D demonstrating correlations
between GADA positivity and worse β-cell function (16). The
GADA results in participants with recently diagnosed T2D
appeared to be at a lower prevalence compared to published
results in established T2D, but similar as reported in participants
with IGT (38, 42, 43). We also found no correlation between
GADA positivity and β-cell dysfunction in IGT or newly
diagnosed T2D participants. In an 11 years longitudinal study
conducted by Sørgjerd et al. (42), these researchers followed

FIGURE 2 | Adjusted means of HbA1c, fasting C-peptide, SSCP, and ACPRg illustrating interactions between T cell positivity and treatment group. Participants within

each treatment group are identified by colors. Participants receiving 3 months of insulin glargine followed by 9 months of metformin (blue), 12 months of liraglutide +

metformin (brown), 12 months of metformin (green), or placebo (yellow). Figure shows means for values at month-12 visits. All models are adjusted for age, sex,

race/ethnicity, baseline insulin sensitivity, and BMI. Positivity over 12 months: Negative results are negative at baseline and month-12 samples. Positive responses are

positive at either baseline, 12 months, or baseline and month-12. P-value for comparison between autoimmune negative and positive participants.
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TABLE 5 | Adjusted means of β-cell functional outcomes illustrating interactions

between T cell positivity and treatment group.

Treatment Positivity* Adjusted 95% confidence p-value†

mean limits

BMI (kg/m2) p-interaction=

0.5551

Glarg->Met Positive 34.27 33.63 34.91

Glarg->Met Negative 34.44 33.07 35.81

Lira+Met Positive 32.98 32.19 33.77

Lira+Met Negative 31.83 30.56 33.09

Metformin Positive 34.55 33.93 35.17

Metformin Negative 34.55 33.09 36.02

Placebo Positive 35.63 34.96 36.29

Placebo Negative 35.03 33.81 36.26

HbA1c (%) p-interaction=

0.006

Glarg->Met Positive 5.664 5.575 5.753

Glarg->Met Negative 5.701 5.499 5.903

Lira+Met Positive 5.479 5.371 5.586

Lira+Met Negative 5.355 5.182 5.527

Metformin Positive 5.611 5.523 5.698

Metformin Negative 5.942 5.741 6.143

Placebo Positive 5.766 5.675 5.857

Placebo Negative 5.648 5.474 5.821

Fasting glucose (mg/dL) p-interaction =

0.2013

Glarg->Met Positive 106.84 103.52 110.16

Glarg->Met Negative 100.47 92.76 108.17

Lira+Met Positive 97.58 93.48 101.67

Lira+Met Negative 98.85 92.42 105.28

Metformin Positive 104.49 101.14 107.84

Metformin Negative 109.02 100.56 117.47

Placebo Positive 112.64 109.16 116.11

Placebo Negative 108.31 101.87 114.74

Fasting C-peptide (ng/mL) p-interaction =

0.021

Glarg->Met Positive 3.25 2.85 3.65

Glarg->Met Negative 3.54 2.61 4.47

Lira+Met Positive 3.01 2.51 3.51

Lira+Met Negative 2.85 2.06 3.65

Metformin Positive 3.25 2.84 3.65

Metformin Negative 5.00 3.97 6.03

Placebo Positive 3.51 3.09 3.94

Placebo Negative 3.21 2.44 3.99

Fasting insulin (uU/mL) p-interaction =

0.0752

Glarg->Met Positive 13.91 10.91 16.91

Glarg->Met Negative 15.22 8.24 22.20

Lira+Met Positive 11.91 8.21 15.61

Lira+Met Negative 11.86 6.07 17.66

Metformin Positive 13.09 10.06 16.13

Metformin Negative 24.25 16.61 31.89

Placebo Positive 14.87 11.71 18.03

Placebo Negative 12.80 7.10 18.50

(Continued)

TABLE 5 | Continued

Treatment Positivity* Adjusted 95% confidence p-value†

mean limits

2-Hr glucose (mg/dL) p-interaction =

0.4106

Glarg->Met Positive 175.60 161.77 189.44

Glarg->Met Negative 165.39 133.35 197.43

Lira+Met Positive 138.20 121.05 155.34

Lira+Met Negative 121.32 94.42 148.22

Metformin Positive 179.68 165.78 193.58

Metformin Negative 201.57 166.24 236.90

Placebo Positive 172.46 157.98 186.94

Placebo Negative 162.84 136.51 189.17

M/I (mg/kg/min/pg/L) p-interaction =

0.3043

Glarg->Met Positive 3.75 2.96 4.75

Glarg->Met Negative 3.05 1.83 5.09

Lira+Met Positive 2.76 2.06 3.70

Lira+Met Negative 2.63 1.66 4.16

Metformin Positive 3.92 3.10 4.95

Metformin Negative 6.41 3.74 10.99

Placebo Positive 4.11 3.18 5.31

Placebo Negative 3.92 2.49 6.18

Steady state C-peptide (ng/mL) p-interaction =

0.037

Glarg->Met Positive 4.09 3.76 4.46

Glarg->Met Negative 3.56 2.97 4.26

Lira+Met Positive 6.03 5.43 6.69

Lira+Met Negative 7.68 6.50 9.08

Metformin Positive 3.99 3.67 4.34

Metformin Negative 4.20 3.46 5.11

Placebo Positive 3.90 3.56 4.27

Placebo Negative 4.50 3.83 5.28

ACPRg (ng/mL) p-interaction =

0.016

Glarg->Met Positive 1.97 1.81 2.14

Glarg->Met Negative 1.85 1.55 2.22

Lira+Met Positive 2.61 2.36 2.90

Lira+Met Negative 3.22 2.72 3.79

Metformin Positive 1.97 1.81 2.14

Metformin Negative 1.90 1.56 2.30

Placebo Positive 1.76 1.60 1.92

Placebo Negative 2.39 2.04 2.80

ACPRmax (ng/mL) p-interaction =

0.7970

Glarg->Met Positive 5.07 4.49 5.73

Glarg->Met Negative 4.91 3.78 6.38

Lira+Met Positive 3.78 3.25 4.39

Lira+Met Negative 3.63 2.85 4.63

Metformin Positive 4.68 4.15 5.28

Metformin Negative 5.24 3.93 6.99

Placebo Positive 5.11 4.48 5.84

Placebo Negative 5.60 4.41 7.13

(Continued)
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TABLE 5 | Continued

Treatment Positivity* Adjusted 95% confidence p-value†

mean limits

Insulinogenic index p-interaction =

0.4370

Glarg->Met Positive 118.53 94.12 142.93

Glarg->Met Negative 112.65 56.81 168.50

Lira+Met Positive 112.27 81.81 142.73

Lira+Met Negative 106.30 59.11 153.50

Metformin Positive 100.26 76.15 124.38

Metformin Negative 84.41 23.12 145.70

Placebo Positive 126.73 101.78 151.68

Placebo Negative 170.97 122.39 219.54

C-peptide index p-interaction =

0.6880

Glarg->Met Positive 8.43 7.07 9.78

Glarg->Met Negative 7.50 4.41 10.58

Lira+Met Positive 9.29 7.62 10.95

Lira+Met Negative 9.42 6.81 12.04

Metformin Positive 7.92 6.58 9.26

Metformin Negative 7.72 4.31 11.13

Placebo Positive 8.63 7.24 10.02

Placebo Negative 10.27 7.72 12.81

Adjusted mean for values at month-12 visits. All models are adjusted for age, sex,

race/ethnicity, baseline insulin sensitivity, and BMI. Glarg->Met: Participants receiving

3 months of insulin glargine followed by 9 months of metformin, Lira+Met: 12 months

of liraglutide + metformin, Metformin: 12 months of metformin alone, and Placebo: 12

months of placebo.

*Positivity over 12 months: Negative results are negative at baseline and 12 month

samples. Positive responses are positive at either baseline, month-12, or baseline

and month-12.
†P-values indicate interaction between treatment and positivity.

794 participants identified to be at risk of T2D development
and observed no significant associations between β-cell function,
insulin sensitivity, or insulin resistance and autoantibody
positivity which is consistent with our observations. In another
study, Tiberti et al. (43) concluded, based on their results,
that different antigen specificities may be important in the
autoantibody response during different stages of T2D disease
progression. This phenomenon of changing antigen specificities
may be one underlying mechanism for relapsing/remitting
stages of autoimmune disease both in autoantibody and cellular
autoimmune compartments (38–42, 44).

For islet reactive T cells, we observed 50% of NdxT2D
and 60.4% of IGT participants to be positive at baseline and
this percentage increased substantially at 12 months for both
NdxT2D and IGT participants, 68.4 and 83.9%, respectively.
For islet reactive T cells, participants with recently diagnosed
T2D demonstrated prevalence of T(+) similar to that reported
in people with established T2D (16–18). Prior to this study,
no reports have been published investigating islet reactive T
cells in participants with recently diagnosed drug naïve T2D
or participants with IGT. The high prevalence of islet reactive
T cells in participants with IGT was unexpected. Changes
in antigen specificities of T cells, changes in autoantibody

specificities, and changes in responding cellular populations
have been reported to underlie the maturation of autoimmune
responses in T2D (42, 44). These changes in autoimmune
reactivity may be responsible for the differences observed
between participants with IGT, recently diagnosed T2D, and
established T2D. One prominent advantage of our T cell assay
is the inclusion of a large array of islet proteins, allowing
for the identification of T cell reactivity to multiple islet
proteins potentially limiting the impact of changing antigen
specificity during disease progression and potentially stimulating
multiple cellular populations. The stimulation of various cellular
populations and cells with varying specificities may allow us to
identify more subjects in different stages of disease development.
This advantage may account for the high level of T cell positivity
in participants with IGT. Assaying multiple autoantibodies as
T2D progresses, not only GADA as performed in this study,
may also identify a higher prevalence of humoral autoreactivity.
Our data also suggest that islet autoimmunity in T2D may
be overlooked if only one time point is assayed, only one
autoantibody tested, or one islet antigen used to determine
autoimmune status of a subject. Moreover, future studies
identifying varying antigen specificities of cellular populations
associated with different stages of disease progression, may help
to uncover important biomarkers associated with early β-cell
functional decline.

In this study, looking at the T cell responses (Figure 1), we
observed that T(+) participants with T2D had a significantly
higher fasting glucose, higher 2 h glucose, and a lower steady
state C-peptide, whereas, the T(+) participants with IGT trended
toward a lower ACPRg. These results in participants with recently
diagnosed T2D demonstrate that T(+) participants have worse
β-cell dysfunction compared to T(−) participants correlating
with previous studies in people with established T2D (17–19).
We did not observe any significant associations between β-
cell dysfunction and GADA positivity in either adults with
recently diagnosed T2D or IGT. Taken together, these results
suggest that cellular islet autoimmunity is an important part
of T2D. Moreover, cellular islet autoimmunity is present in the
very early stages of β-cell functional decline and is associated
with fasting and post-prandial hyperglycemia and decreased β-
cell function.

Significant interactions were observed between T(+) and
treatment groups for both participants who were recently
diagnosed with T2D and participants with IGT (Figure 2), but
not between GADA and RISE treatments. Of interest, was the
interaction between liraglutide + metformin for both T(+)
and T(−) participants. Even though T(+) was associated with
significantly lower SSCP and a trend toward lower ACPRg
compared to T(−), liraglutide + metformin was associated with
higher SSCP and ACPRg in the T(+) and T(−) compared
to placebo treated participants (Figure 2). Liraglutide has been
reported to potentially have anti-inflammatory properties and
have positive effects on diabetes disease management (32, 33,
45, 46). While the current study examining treatment effects
was exploratory, future studies will be needed to investigate
whether liraglutide is indeed beneficial to participants with
cellular islet autoreactivity.
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Changes in GADA and T-cell positivity were observed in
both groups of participants between baseline and 12 months.
These changes, either from negative to positive or positive
to negative were observed to be present among all four of
the RISE treatment groups. Therefore, we concluded that the
changes observed in GADA and T cell reactivity between
baseline and 12 months were most likely not a result of the
RISE treatments. Longer follow-up of the participants with
newly diagnosed T2D and IGT will help to further clarify
the importance of potentially transient vs. persistent islet
autoreactivity in T2D.

Lastly, the RISE clinical trial reported that the progression of
T2D in youth is more rapid than in adults (46). Previously, we
have identified the presence of T(+) in children with T2D (47),
however in this ancillary study we were unable to incorporate
children into the study due to the blood sample demands
associated with the RISE clinical trial. In general, as individuals
age immune responses decline (48). Therefore, it would be of
interest in future studies to investigate islet cellular autoimmunity
and its relationship to β-cell function in youth to determine if
the presence of islet reactive T cells play a role in the accelerated
progression of T2D in youth

In summary, this is the first study to show that T cells capable
of recognizing islet proteins are present in a large percentage
of adults with very early β-cell functional decline and that
the presence of the cellular autoimmunity is associated with
a detrimental effect on β-cell function. This study supports
the previous studies in established T2D and suggests that
immunomodulatory therapies aimed at controlling cellular islet
autoimmunity may be important in treatment for T2D.
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