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Abstract

We describe the epidemiological characteristics, pattern of circulation, and geographical

distribution of influenza B viruses and its lineages using data from the Global Influenza B

Study. We included over 1.8 million influenza cases occurred in thirty-one countries during

2000–2018. We calculated the proportion of cases caused by influenza B and its lineages;

determined the timing of influenza A and B epidemics; compared the age distribution of B/

Victoria and B/Yamagata cases; and evaluated the frequency of lineage-level mismatch for

the trivalent vaccine. The median proportion of influenza cases caused by influenza B virus

was 23.4%, with a tendency (borderline statistical significance, p = 0.060) to be higher in

tropical vs. temperate countries. Influenza B was the dominant virus type in about one every

seven seasons. In temperate countries, influenza B epidemics occurred on average three

weeks later than influenza A epidemics; no consistent pattern emerged in the tropics. The

two B lineages caused a comparable proportion of influenza B cases globally, however the

B/Yamagata was more frequent in temperate countries, and the B/Victoria in the tropics (p =

0.048). B/Yamagata patients were significantly older than B/Victoria patients in almost all

countries. A lineage-level vaccine mismatch was observed in over 40% of seasons in tem-

perate countries and in 30% of seasons in the tropics. The type B virus caused a substantial

proportion of influenza infections globally in the 21st century, and its two virus lineages dif-

fered in terms of age and geographical distribution of patients. These findings will help

inform health policy decisions aiming to reduce disease burden associated with seasonal

influenza.

Introduction

Influenza causes a major burden of disease on populations globally [1]. The impact of seasonal

and pandemic influenza on population health in high-income countries has been described

extensively [2]. In Europe, influenza ranks first among infectious diseases in terms of burden,

accounting for 30% of the total disability-adjusted life years (DALYs) lost due to infectious dis-

eases annually [3]. More recently, evidence has been accumulating that the burden of disease

associated with influenza is high in low- and middle-income countries as well [4]. Type A

viruses cause most influenza cases and are responsible for pandemics, but influenza B is an

important cause of morbidity and mortality during interpandemic periods, and its prevention

represents an important public health priority globally [5–6]. Influenza B viruses split into two

antigenically distinct phylogenetic lineages (B/Victoria/2/87 representative, abbreviated B/Vic-

toria, and B/Yamagata/16/88 representative, abbreviated B/Yamagata) in the early 1980s [7].

Whilst the circulation of the Victoria lineage was geographically limited to eastern Asia for

most of the 1990s, the two lineages have co-circulated globally in the 21st century [8–9].

The mainstay of influenza prevention is vaccination, aimed primarily at individuals who

are at greater risk of developing complications when infected, like the elderly, pregnant
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women, and people with underlying medical conditions, and more recently at children to pro-

vide both direct protection to the children and indirect protection to the wider population

[10]. Both the composition and period of administration of the vaccine are crucial to ensure

adequate immunity against influenza; thus, investigating the timing of influenza epidemics

and the patterns of circulation of the different influenza virus types, subtypes and lineages is of

great importance from a public health perspective [11]. Until 2012, trivalent influenza vaccines

(TIV) were available that contained only one type B influenza virus, belonging to either the B/

Victoria or B/Yamagata lineage. Each year, the WHO issued recommendations for the B virus

strain to be included in the TIV, but the frequency of lineage-level vaccine mismatch has been

high (around 50%) [5]. This often resulted in unsatisfactory protection, considering the limited

efficacy against the mismatched lineage [12], and substantial health impact [13]. Quadrivalent

influenza vaccine (QIV), containing one B/Victoria and one B/Yamagata virus strain, were

first approved by the US Food and Drug Administration (US-FDA) in 2012. This prompted

the establishment of several studies that aimed to describe the epidemiology, clinical character-

istics and burden of disease of influenza B in more depth, and to compare the cost-effective-

ness of QIV vs. TIV in different settings and populations.

Despite significant advances in our understanding of influenza B [14], important knowl-

edge gaps persist, in particular concerning the pattern of circulation and geographical distribu-

tion of B/Victoria and B/Yamagata viruses, and the age distribution of patients who are most

often infected with either lineage. These aspects are of great importance, however, for instance

in order to evaluate the cost-effectiveness of alternative influenza prevention strategies and

thus enable more appropriate public health choices (e.g. around the choice of tri- and quadri-

valent vaccines) [15]. In fact, while some reports have addressed this topic in single countries

[16–22], a global overview is still lacking. Here, we conducted a global analysis of the epidemi-

ology of influenza B virus and its lineages using the database of the Global Influenza B Study

(GIBS).

Methods

The Global Influenza B Study

The rationale and methodology of the Global Influenza B Study has been described in detail

elsewhere [14,23–24]. The GIBS database encompasses epidemiological and virological influ-

enza surveillance data from thirty-one countries around the world (Fig 1). Participating coun-

tries were classified as located in the Northern hemisphere (n = 11), inter-tropical belt

(n = 15), or Southern hemisphere (n = 5) based on the latitude of the country’s population cen-

tre [25]. Participating countries were required to make available influenza surveillance data for

as many consecutive years as possible (from 2000 onwards). Data include the weekly number

of laboratory-confirmed influenza cases broken down by virus type (A, B), type A subtype

(H1N1, 2009 pandemic H1N1, H3N2, A not subtyped), and type B lineage (Victoria, Yama-

gata, B not characterized) and weekly influenza-like illness/acute respiratory infection rates

(per 100,000 population or 100 consultations, depending on country). Information on age

(exact age or age groups) was also available. In most participating countries, the influenza sur-

veillance system covers the whole national territory, and a sample of influenza virus positive

specimens or virus isolates is routinely sent to a WHO collaborating centre for further investi-

gations. However, countries differ in other important aspects of their surveillance system, e.g.

the clinical case definition in use, the distribution of outpatients and inpatients being sampled,

and the availability of population denominators [14,24]. The GIBS database was initially

assembled in 2013–14 by merging influenza surveillance data up to as late as December 2013

from thirty countries [14], but was updated for the purposes of this paper with data until 2015

Epidemiology of influenza B virus and its lineages
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to 2018 (depending on the country) for twenty-five countries. The Netherlands joined the

project in 2018, bringing the total number of participating countries to thirty-one.

Data for China were provided separately for the Northern and Southern parts of the coun-

try, which were therefore entered separately in the analyses (for brevity, however, we will us

the term “country” to refer to a whole country or a part of it henceforth). Brazil also provided

data stratified by sub-national regions (i.e. five administrative regions: north, north-east, cen-

tral-west, south, and south-east); however, geographically-stratified data were too sparse in

some years, thus we opted to treat Brazil as a single country in the analysis.

Statistical methods

Similar to previous GIBS publications [14,23–24], the unit of analysis was the “season”: this

corresponded to the calendar year in tropical countries and countries located in the Southern

hemisphere, and was defined as the period between the 27th week of a year and the 26th week

of the following year for countries located in the Northern hemisphere. As previously

explained [23], the purpose of this methodological approach is to give each “season” an equal

weighting in the analysis, thus limiting the impact on results arising from any differences in

reporting between countries (e.g. high- vs. low-resources countries) and over time within the

same country (e.g. before vs. after the 2009 pandemic).

For each country, we included in the analyses the seasons with at least 20 weeks of reported

data and at least 100 laboratory-confirmed influenza cases. In each season, we calculated the

percentage of influenza cases that were due to influenza B. We then determined the percentage

of cases that were caused by viruses belonging to the B/Victoria or B/Yamagata lineage: in this

analysis, to increase the stability of the results, we only included (for each country) the subset

of seasons with 50 or more characterized influenza B viruses. The non-parametric Kruskal-

Fig 1. Countries participating in the Global Influenza B Study (GIBS), 2000–2018.

https://doi.org/10.1371/journal.pone.0222381.g001
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Wallis test was applied to compare the median proportion of influenza A and B cases (over all

influenza cases) and B/Victoria and B/Yamagata cases (over all cases with characterized influ-

enza B viruses) between countries based on their latitude (Northern hemisphere, inter-tropical

belt, or Southern hemisphere) and population age structure (median age below 30 years,

between 30 and 35 years, or above 35 years) [25].

We compared the timing of the primary peak of influenza A and B epidemics in each coun-

try using the EPIPOI software [26]. For this analysis, we excluded data from the 2009 season

(2009–2010 in Northern hemisphere countries) because of the markedly atypical timing of the

influenza A(H1N1)pdm09 pandemics. Time series were first standardized by dividing the

weekly number of influenza cases by the maximum weekly number (per country by defined

season). Next, a periodic annual function (PAF) was generated by summing up the annual,

semi-annual and quarterly harmonics (obtained by Fourier decomposition). The timing of the

primary peak (defined as the month where the PAF reaches its maximum value) was then

compared for A and B epidemics in each country.

We aimed to evaluated the frequency of influenza B lineage-level vaccine mismatch, which

was defined as a mismatch between the lineage that caused the majority (>50%) of influenza B

cases in a given season and country, and the lineage included in the trivalent vaccine. Informa-

tion on influenza vaccine formulation was retrieved from the WHO website [27]. The above

definition is straightforward for temperate countries in the Northern and Southern hemi-

sphere, but much less so for countries of the inter-tropical belt. While the WHO issues recom-

mendations on the composition of influenza vaccines to be used in tropical countries [28],

these countries often adopt either formulation based on local considerations or make no spe-

cific recommendations [29]. To cope with this and consider all possible scenarios (and also for

consistency with previous GIBS publications [14]), the frequency of B lineage-level vaccine

mismatch in tropical countries was calculated by assuming that: (i) all countries situated north

of the equator use the northern hemisphere vaccine, and all countries south of the equator use

the southern hemisphere vaccine formulation; (ii) all countries use the northern hemisphere

vaccine formulation; or (iii) all countries use the southern hemisphere vaccine formulation.

The recent update of the GIBS database and the resulting increase in the number of cases

with characterized influenza B viruses made it possible to compare the age distribution of

influenza B/Victoria and B/Yamagata cases in a similar way to what had been done previously

for influenza B vs. A (and its subtypes) [14,24]. This analysis was limited to countries for

which information on the exact age was available for at least 50 B/Victoria and at least 50 B/

Yamagata influenza cases over all seasons available. The virus-lineage-specific age distribution

of influenza B cases was visualized, separately in each country, using histograms with 5-age-

year-wide bars. Since the distributions were skewed to the right, we used the non-parametric

Wilcoxon rank sum test to compare the median age of influenza B cases by virus lineage.

Statistical analyses were conducted using Stata software version 14 (StataCorp LP, College

Station, TX, USA). All statistical tests were two-sided, and p-values were considered statisti-

cally significant when below 0.05.

Results

The database of the Global Influenza B Study encompassed a total of 1.820.301 influenza cases

between 2000 and 2018, of which 419,167 (23.0%) had type B influenza. Cases were unevenly

distributed between countries, with USA and Australia contributing 54.1% and 25.3% of all

influenza cases to the database, respectively. Information on age was not available for the USA;

for the remaining countries, information on age was available for most (95.0%) influenza

cases. After applying our exclusion criteria, 299 seasons with 100 or more reported influenza
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cases overall were included in the analysis, of which 110 were from Northern hemisphere

countries, 131 from countries located in the inter-tropical belt, and 58 from Southern hemi-

sphere countries. The median number of seasons per country was nine, ranging from three

(for Turkey) to eighteen (for New Zealand). The number of overall and influenza B cases in

each country and season included in the analysis, the proportion of influenza B cases of which

the virus was characterized, and their breakdown into B/Victoria and B/Yamagata lineages,

are provided in S1 Table.

Frequency of influenza B

Influenza B virus caused a median 23.4% (interquartile range [IQR] 9.3–38.9%) of reported

influenza cases in a season. More specifically, the proportion of influenza cases caused by the B

virus type was<20% in 118 seasons (42.3%), between 20% and 50% in 125 seasons (41.8%),

and above 50% in 45 seasons (15.1%). The proportion of influenza B cases over all influenza

cases reported in the season varied geographically (Fig 2): its median value tended to be higher

(with borderline statistical significance, p = 0.060) in countries of the inter-tropical belt

(27.4%, IQR 12.2–41.7%) compared to temperate countries of the Northern (21.0%, IQR 7.3–

37.4%) and Southern (22.2%, IQR 9.1–34.5%) hemispheres. The proportion of seasons in

which influenza B cases constituted between 20 and 50% or more than 50% of all reported

influenza cases did not significantly differ (p = 0.275) between tropical countries (47.3% and

16.0%, respectively) and temperate countries of the two hemispheres (39.9% and 14.3%,

respectively).

Timing of influenza A and B epidemics

In countries of the Southern hemisphere, influenza A epidemics typically peaked in July-Sep-

tember, on average 1.1 month earlier than influenza B (August-September) (Table 1). Influ-

enza epidemics also peaked in the winter months of Northern hemisphere countries, earlier

for influenza A (January-February, except Ukraine, in March) than for influenza B (February-

March, except England, in January), with an average difference of 0.6 months. The only excep-

tion was Bhutan (i.e. the southernmost countries among those situated in the Northern hemi-

sphere), where both influenza A and B epidemics typically peaked in August. There was more

variability in countries of the inter-tropical belt: the timing of the primary peak varied widely

between countries and could take place in practically any month of the year, with a small dif-

ference in timing (0.3 months earlier on average) for the primary peak of influenza A and B

epidemics.

Frequency of B/Victoria and B/Yamagata lineages viruses

There were 84 seasons where the virus lineage was determined for 50 or more influenza B

cases (out of a total 299 seasons, 28.1%) and this data covered 18 countries (out of 31). In these

seasons, the B/Victoria and B/Yamagata lineage viruses caused a similar range of proportions

of influenza B cases. More precisely, the median proportion of influenza B cases reported in a

season that were caused by B/Victoria lineage viruses was 46.0% (IQR 5.3–89.6%). The range

of the proportion of B/Victoria over all influenza B cases was 0%-100%, meaning that there

were seasons in which all influenza B cases were caused by either virus lineage. Co-circulation

of the two lineages was frequent: in 27 (32.1%) of 84 seasons, both lineages accounted for at

least 20% of influenza B cases, while the B/Victoria and B/Yamagata lineages caused over 80%

of all influenza B cases in 27 (32.1%) and 30 (35.8%) seasons, respectively.

The proportion of either lineage over all influenza B cases varied according to the age struc-

ture of countries, and consequently, according to the countries’ latitude as well (Fig 3). The

Epidemiology of influenza B virus and its lineages

PLOS ONE | https://doi.org/10.1371/journal.pone.0222381 September 12, 2019 6 / 17

https://doi.org/10.1371/journal.pone.0222381


proportion of influenza B cases caused by the B/Victoria lineage in a given season varied

widely (ranging from 0% to nearly 100%) also in the analyses stratified by the country’s age

structure and latitude. However, the B/Victoria lineage was more frequent (p-value 0.049) in

countries with a median age below 30 years (median proportion over all influenza B

cases = 67.0%) compared to countries with a median age was 30–35 years (42.0%) or above 35

years (36.2%). Likewise, the median proportion of B/Victoria over all characterized influenza

B cases in a season was higher in countries of the inter-tropical belt (57.5%) compared to tem-

perate countries of the Northern (27.9%) and the Southern hemisphere (43.8%) (p-

value = 0.048).

Age distribution of B/Victoria and B/Yamagata influenza cases

In Table 2, we compared the median age of influenza B cases according to virus lineage. In

Australia, B/Victoria cases were non-significantly older than B/Yamagata cases: the median

Fig 2. Distribution of influenza seasons by proportion of influenza B cases and geographical area (Inter-tropical

belt, Northern hemisphere, Southern hemisphere). Red bars indicate 25th, 50th (median) and 75th percentiles. The

Global Influenza B Study, 2000–2018.

https://doi.org/10.1371/journal.pone.0222381.g002
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age was 11 vs. 8 years, respectively. In all other countries, B/Yamagata cases were older than B/

Victoria cases, and the difference between the median age was always significant except in

Madagascar (p-value 0.248) and in Ukraine (p-value 0.082).

The visual inspection of the graphs revealed a fairly consistent pattern in the age distribu-

tion of B/Victoria and B/Yamagata cases (S1 File). In most countries, influenza B/Victoria

cases tended to be distributed according to their age along a unimodal curve, with a peak

below 10 years of age, while the age distribution of B/Yamagata cases frequently followed a

bimodal curve, with an earlier, larger peak below 10 years of age, and a smaller, yet discernible

peak at older age, mostly between 25 and 50 years of age. The adult age peak of B/Yamagata

Table 1. Typical timing of the peak of influenza A and B epidemics according to countries’ latitude. The Global

Influenza B Study, 2000–2018.

Country Latitude Typical timing of influenza peak

A B

Southern hemisphere

New Zealand 41.8 S Aug (1st half) Aug (2nd half)

Chile 35.8 S Jul (2nd half) Sep (2nd half)

Argentina (Santa Fe) 31.4 S Aug (1st half) Sep (2nd half)

South Africa 29.0 S Jul (1st half) Sep (2nd half)

Australia 25.8 S Sep (1st half) Sep (1st half)

Inter-tropical belt

Madagascar 19.4 S Feb (1st half) Mar (1st half)

Brazil 10.8 S Jun (2nd half) Oct (1st half)

Ecuador 2.0 S May (1st half) Jul (1st half)

Indonesia 1.7 S Feb (1st half) Apr (2nd half)

Kenya 0.4 S Jul (2nd half) Mar (2nd half)

Singapore 1.2 N Jun (1st half) May (2nd half)

Cameroon 5.7 N Nov (1st half) Nov (1st half)

Ivory Coast 7.6 N Nov (2nd half) Oct (1st half)

Panama 8.6 N Jun (2nd half) Jul (2nd half)

Costa Rica 10.0 N Dec (2nd half) Oct (1st half)

Nicaragua 12.9 N Nov (1st half) Aug (2nd half)

El Salvador 13.8 N Jun (2nd half) Jul (1st half)

Honduras 14.8 N Nov (1st half) Jul (1st half)

Guatemala 15.7 N Mar (2nd half) Sep (1st half)

Viet Nam 16.7 N Aug (1st half) Dec (1st half)

Northern hemisphere

Bhutan 27.4 N Aug (2nd half) Aug (2nd half)

China South 31.1 N Feb (2nd half) Mar (2nd half)

Morocco 32.0 N Jan (2nd half) Feb (1st half)

Turkey 39.0 N Feb (1st half) Feb (2nd half)

Portugal 39.3 N Jan (2nd half) Feb (1st half)

China North 39.5 N Jan (2nd half) Mar (1st half)

Italy 42.9 N Feb (2nd half) Feb (2nd half)

USA 45.6 N Feb (1st half) Mar (2nd half)

Kazakhstan 48.0 N Feb (2nd half) Feb (2nd half)

Ukraine 49.1 N Mar (1st half) Mar (1st half)

Netherlands 52.3 N Feb (1st half) Mar (1st half)

England 52.3 N Jan (2nd half) Jan (2nd half)

https://doi.org/10.1371/journal.pone.0222381.t001
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cases was barely noticeable in countries where the majority of inhabitants are younger than 25

years (e.g. Madagascar and Ivory Coast), and became increasingly evident as the median age of

the country population increased. A partial exception was Portugal, where the peak in the age

Fig 3. Proportion of influenza B cases in a season that were caused by the B/Victoria lineage viruses, according to countries median age (top)

and geographical area (bottom). The Global Influenza B Study, 2000–2018.

https://doi.org/10.1371/journal.pone.0222381.g003
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distribution of B/Victoria cases was between 10 and 20 years of age, and B/Yamagata distrib-

uted along a unimodal curve peaking at above 50 years of age.

Frequency of lineage-level influenza B trivalent vaccine mismatches

The proportion of influenza B lineage-level vaccine mismatch was 54.2% in countries in the

Southern hemisphere, and 42.9% in countries of the Northern hemisphere. For countries in

the inter-tropical belt, the proportion of seasons with a lineage-level vaccine mismatch was

29.6% in the scenario in which these countries use the vaccine composition recommended for

the hemisphere they are situated in; 40.7% assuming all these countries used the recommended

vaccine composition for the Northern hemisphere; and 22.2% if all countries used the recom-

mended vaccine composition for the Southern hemisphere.

Discussion

Our analysis found that influenza B virus was responsible for nearly one fourth of all influenza

cases in an average season between 2000 and 2018. More specifically, influenza B virus

accounted for over 20% of all influenza cases in more than half of the seasons, and was the

dominant virus type in about one out of every seven seasons. This proportion varied geograph-

ically, as the proportion of influenza B over all influenza cases tended to be higher on average

in tropical countries compared to countries of the Northern and Southern hemispheres. These

findings were broadly in line with reports from countries around the world [5,9,20–21,30–31]

and with GIBS data published in 2015 [14], with moderate discrepancies (less than 5%) being

most likely linked to the variability of the time span covered by different studies. Influenza B

epidemics tended to peak on average three weeks later than influenza A epidemics during the

winter period in temperate countries of both hemispheres, which is consistent with previous

country reports [21,30,32–34]. The timing of influenza A and B epidemics was different in

Table 2. Age distribution of influenza B/Victoria and B/Yamagata patients by country (sorted by median age of the general population). The Global Influenza B

Study, 2000–2018.

Country (a) Median age general population No. influenza B cases Median age (IQR)

Victoria Yamagata Victoria Yamagata p-value (b)

Madagascar 19.7 787 405 7 (4–16) 8 (3–17) 0.248

Ivory Coast 20.9 240 153 3 (1–8) 5 (2–32) 0.002

South Africa 27.1 61 102 3 (1–29) 29 (1–54) 0.003

Indonesia 30.2 422 235 10 (6–20) 25 (7–36) <0.001

Turkey 30.9 98 339 12 (6–22) 34 (11–48) <0.001

Chile 34.4 1351 1950 8 (3–18) 14 (6–21) <0.001

Singapore 34.6 413 921 15 (8–32) 35 (12–51) <0.001

New Zealand 37.9 232 1036 15 (7–33) 35 (11–52) <0.001

Australia 38.7 648 276 11 (5–23) 8 (3–36) 0.468

England 40.5 478 877 16 (8–29) 40 (17–53) <0.001

Ukraine 40.6 109 186 13 (8–19) 15 (7–32) 0.082

Portugal 42.2 57 183 19 (13–36) 46 (34–57) <0.001

Netherlands 42.6 354 773 19 (7–36) 46 (26–58) <0.001

Italy 45.5 68 510 10 (6–19) 12 (6–47) 0.009

IQR: inter-quartile range
(a) Countries were included if information on exact age was available for�50 B Victoria and�50 B Yamagata influenza cases.
(b) Wilcoxon rank-sum test for comparison of medians

https://doi.org/10.1371/journal.pone.0222381.t002
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tropical countries where they were highly heterogeneous and showed no consistent pattern in

the timing of the different epidemics. Influenza viruses exhibit differential ability to induce

temporary immunity against re-infection with other viruses in experimental settings [35]. This

“viral hierarchy” may help explain the differences in timing of epidemics caused by different

virus types and subtypes where the weather conditions that are most favourable to the occur-

rence of influenza epidemics (e.g. cold-dry) last for only a limited number of weeks each year.

The study of patterns of circulation of B/Victoria and B/Yamagata lineages revealed two

main findings. Firstly, the proportion of B cases caused by either lineage in a given season ran-

ged between 0% and nearly 100% in each geographical area (i.e. anywhere around the world

seasons occurred where all influenza B cases were caused by either the B/Victoria or the B/

Yamagata lineage), which emphasizes the challenges faced when trying to predict which line-

age will cause most influenza B cases next season. This helps explain the very high frequency of

lineage-level vaccine mismatch for the TIV which was around 50% (i.e. close to the scenario in

which the choice of the vaccine lineage is made at random) in temperate countries of the two

hemispheres, which has been reported in the past [30,36–37].

The second important finding that emerges from the B/Victoria-B/Yamagata lineage analy-

sis is that whilst the two lineages caused a comparable proportion of influenza B cases globally

during the study period, their distribution varied geographically, as B/Victoria was relatively

more frequent in tropical countries, while B/Yamagata was more frequent in temperate climate

countries of the Southern and Northern hemispheres. The reason for this pattern of circulation

of the two lineages is not clear. One possibility is that the survival and transmissibility of B/Vic-

toria and B/Yamagata viruses is differentially affected by “cold-dry” and “humid-rainy” envi-

ronmental conditions that drive the occurrence of influenza epidemics in temperate and

tropical countries, respectively [38]. This hypothesis does not seem, however, to be supported

by the available evidence, which suggests instead that influenza viruses of different types and

subtypes (e.g. A(H3N2), A(H1N1)pdm09, and B) are similarly affected by weather conditions

[39]. Based on our findings on the differential age distribution of B/Victoria and B/Yamagata

infected cases, a more likely explanation for the unequal geographical distribution of the two B

lineages lies is in the diverse demographic structure of world countries, with those located

around the tropics having a lower median age, on average, than those in temperate climates.

In this regard, our study showed consistently at a global level (i.e. across countries that dif-

fer greatly under many aspects, including the type of influenza surveillance system) that B/

Yamagata cases are on average older than B/Victoria cases, and in particular, that the former

virus lineage infects adult individuals (�25 years) more frequently than the latter. The only

exception (i.e. the only country in which B/Victoria cases were older than B/Yamagata cases,

albeit not significantly) was Australia. The reason for this divergent pattern is not clear; how-

ever, since the majority of B/Yamagata cases in the database from Australia occurred in 2008

(see S1 Table), this finding might be driven by a single season with an unusual age distribution

of B/Yamagata patients. Importantly, our findings support earlier work showing that each

influenza A subtype (H3N2, pre-2009-pandemic H1N1, and H1N1pdm09) tends to affect a

different age group [24]. A recent study has shown that the B/Victoria viruses antigenic drift

parallels that of A(H3N2), with limited cross-reactivity between phylogenetic clusters com-

pared to B/Yamagata (which, in contrast, resembled A(H1N1) under this regard, with multiple

variants circulating and greater levels of antigenic cross-reactivity) [40]. According to these

observations, one would expect re-infection among adult individuals to occur more frequently

for B/Victoria rather than B/Yamagata, but the observed pattern runs counter to this expecta-

tion. Vijaykrishna and colleagues suggested that the observed differential age distribution may

be explained by either the higher effective reproductive number of B/Victoria; a broader

response against B/Victoria viruses in older people; and/or differences in the prevalence of

Epidemiology of influenza B virus and its lineages

PLOS ONE | https://doi.org/10.1371/journal.pone.0222381 September 12, 2019 11 / 17

https://doi.org/10.1371/journal.pone.0222381


receptor binding molecules that help B/Victoria and B/Yamagata viruses infect respiratory

tract cells in young children and adults [40]. Another hypothesis is that the bimodal age distri-

bution of B/Yamagata cases may be the result of a shorter duration of acquired immunity

developed after infection with B/Yamagata vs. B/Victoria viruses [41]. Finally, antigenic origi-

nal sin (i.e. preferential response to influenza B viruses encountered in the past [42]) may also

play a role. If this were true, the mean age of patients infected with either B lineage would be

expected to drift over time: this has occurred in Australia between 2008–2011 [40], but we

were unable to replicate these results in the GIBS database (results not shown).

These findings have important implications for assessing the impact of influenza B viruses

in a population each season. Knowing early in the season (through surveillance activities)

which influenza B lineage virus is circulating will allow one to predict which age groups will be

more affected, with B/Yamagata seasons being generally characterized by more adults and

elderly people being infected and, therefore, by a greater burden of disease compared to B/Vic-

toria seasons. This appears to have been the case during the 2017/18 season in Europe, when

B/Yamagata was dominant (and there was a lineage-level vaccine mismatch) and a high bur-

den of influenza B was observed in many European countries [43].

We analyzed influenza surveillance data from around the world to determine the epidemi-

ology of influenza B virus and its lineages in the 21st century. We have enriched the analysis of

an earlier GIBS paper [14] by including more countries (31 vs. 26) and additional years (data

to up to 2018): the overall number of reports analysed is now twice as large (>1.8 million vs.
935,000 cases). This allowed us to conduct a comprehensive comparative analysis of the epide-

miological characteristics of B/Victoria and B/Yamagata virus lineages, thus achieving a better

understanding of the epidemiology of influenza B globally. The most important limitation of

our study is that it relies on data that were collected within national surveillance systems rather

than for research purposes. Countries participating in GIBS inevitably differ in terms of a

number of important characteristics, including percentage of out- and in-patients included,

number of years with data and average number of influenza cases reported per year, propor-

tion of influenza B viruses that were characterized availability of information on age of these

cases and sampling strategies across age groups. In each individual country, changes in the

aforementioned characteristics may have occurred over time, for instance before and after the

2009 pandemic. Another limitation of our study is the uneven distribution of cases among

countries and seasons, which is partly due to differences among countries in terms of popula-

tion, the intensity of surveillance activities, and the coverage of each country’s influenza sur-

veillance system. Throughout this paper, we have used statistical methods that were intended

to minimize the impact of this variability on the results. These include the use of the ‘season’ as

a unit of analysis for the comparison of the frequency of B influenza across countries, the stan-

dardization offered by the EPIPOI software in the analysis of temporal patterns of influenza

epidemics, and the use of medians to compare the age distribution of influenza cases between

countries. However, we acknowledge that these sources of variability may have affected our

findings to an extent that is difficult to quantify precisely, and a further improvement in the

harmonization of influenza surveillance data remains desirable as it would allow researchers to

conduct more detailed and in-depth analyses and obtain more reliable results.

In conclusion, our study provides important new information that describes the epidemiol-

ogy of influenza B viruses and its lineages during the start of the 21st century. We showed that

influenza B virus caused nearly one fourth (on average) of all influenza cases occurring annu-

ally in the world during 2000–2018, and that both lineages accounted each for a comparable

proportion of all influenza B cases globally. We also observed that cases infected with the B/

Victoria or B/Yamagata lineages differed consistently (i.e. in a similar fashion across countries)

in terms of their age distribution, and suggested that this may help explain the uneven
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geographical distribution of the two lineages globally. Finally, we confirmed that the TIV suf-

fers from a high frequency of lineage-level mismatch, especially in temperate countries of the

two hemispheres. While expanding our knowledge of the epidemiology and pattern of circula-

tion of influenza B virus, these findings will help inform health policy decisions aiming to

reduce disease burden associated with seasonal influenza locally, regionally and globally.
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Castrucci, Antonino Bella, Hervé A. Kadjo, Coulibaly Daouda, Ainash Makusheva, Olga

Bessonova, Sandra S. Chaves, Gideon O. Emukule, Jean-Michel Heraud, Norosoa H. Raza-

najatovo, Amal Barakat, Fatima El Falaki, Adam Meijer, Gé A. Donker, Q. Sue Huang, Tim
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