
Journal of Travel Medicine, 2018, 1–13
doi: 10.1093/jtm/tay110

Review

Review

Tafenoquine for travelers’ malaria: evidence, rationale

and recommendations

J. Kevin Baird, PhD*

Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta 10430, Indonesia; and Nuffield
Department of Medicine, the Centre for Tropical Medicine and Global Health, University of Oxford, OX3 7FZ, UK

*To whom correspondence should be addressed. Email: kevin.baird@ndm.ox.ac.uk

Submitted 25 September 2018; Revised 17 October 2018; Editorial decision 21 October 2018; Accepted 30 October 2018

Abstract

Background: Endemic malaria occurring across much of the globe threatens millions of exposed travelers. While

unknown numbers of them suffer acute attacks while traveling, each year thousands return from travel and become

stricken in the weeks and months following exposure. This represents perhaps the most serious, prevalent and

complex problem faced by providers of travel medicine services. Since before World War II, travel medicine prac-

tice has relied on synthetic suppressive blood schizontocidal drugs to prevent malaria during exposure, and has

applied primaquine for presumptive anti-relapse therapy (post-travel or post-diagnosis of Plasmodium vivax) since
1952. In 2018, the US Food and Drug Administration approved the uses of a new hepatic schizontocidal and hypno-

zoitocidal 8-aminoquinoline called tafenoquine for the respective prevention of all malarias and for the treatment of

those that relapse (P. vivax and Plasmodium ovale).
Methods: The evidence and rationale for tafenoquine for the prevention and treatment of malaria was gathered by

means of a standard search of the medical literature along with the package inserts for the tafenoquine products

Arakoda™ and Krintafel™ for the prevention of all malarias and the treatment of relapsing malarias, respectively.

Results: The development of tafenoquine—an endeavor of 40 years—at last brings two powerful advantages to tra-

vel medicine practice against the malaria threat: (i) a weekly regimen of causal prophylaxis; and (ii) a single-dose

radical cure for patients infected by vivax or ovale malarias.

Conclusions: Although broad clinical experience remains to be gathered, tafenoquine appears to promise more

practical and effective prevention and treatment of malaria. Tafenoquine thus applied includes important biological

and clinical complexities explained in this review, with particular regard to the problem of hemolytic toxicity in

G6PD-deficient patients.
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Introduction

Each of the five species of malaria-causing plasmodial parasites
naturally infecting humans often progress to threatening clinical
syndromes in malaria-naïve patients unless prompt diagnosis
and appropriate therapy first occurs. Death as an outcome of
infection is confirmed in all of these species: Plasmodium falcip-
arum, Plasmodium vivax, Plasmodium malariae, Plasmodium
ovale and Plasmodium knowlesi.1–5 Infections by some species
may more rapidly and frequently progress to serious illness than
others, but malaria in all its forms provokes a debilitating febrile

illness posing a potentially mortal threat in non-immune
patients.6 The notion of intrinsically benign or malignant species
of the plasmodia should be acknowledged as dangerous dogma
and the diagnosis of any malaria managed as a clinical emer-
gency.7 Successfully preventing such emergencies in travelers
merits the relatively complex and difficult clinical task of doing
so practically and effectively.

Naturally acquired immunity, community-based measures of
prevention and control, along with local access to competent
healthcare provided by malaria—aware governments, together
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greatly mitigate the harm caused by these parasites in endemic
areas.8–10 In contrast, protection of relatively vulnerable trave-
lers almost wholly depends on the recommendations and prac-
tices of travel medicine providers—local protections for them
effectively do not exist beyond the passive benefit of reduced
transmission and risk. Among the agencies and experts offering
the distinct advice to travelers and residents alike, strategic
thinking has historically been focused on the species once
known as ‘malignant tertian malaria’, P. falciparum. In contrast,
‘benign tertian malaria’, P. vivax, was deeply neglected, and the
tools and advice for its prevention, treatment or control were
inadequate.11–14 In 2015, the World Health Organization
(WHO) acknowledged the mortal risk of vivax malaria and the
neglect of it in public health and clinical medicine.15

A great deal of recent work and progress begins to correct
the problem of neglect of vivax malaria in endemic communi-
ties,16 but travel medicine strategy and practices remain aimed
principally at falciparum malaria.17–19 Up to the present day,
suppressive chemoprophylaxis applying blood schizontocidal
drugs dominates travel medicine practice.20 A fundamental bio-
logical distinction between falciparum and vivax malarias-
dormant liver stages called hypnozoites present in the latter and
absent in the former—explains the inadequacy of suppressive
chemoprophylaxis alone against the malarias.21–23 Latent mal-
aria and the threat of relapse require additional (post-travel pre-
sumptive anti-relapse therapy (PART)) or alternative (causal
prophylaxis) approaches to chemoprevention.

Two regulatory events in the USA in 2018 offer potentially
transformative changes in how travel medicine deals with the mal-
aria threat.24 The Food and Drug Administration (FDA) approved
a new 8-aminoquinoline drug called tafenoquine for uses in the
treatment or prevention of malaria: Krintafel™ (GlaxoSmithKline®,
USA) or Arakoda™ (60 Degrees Pharmaceuticals® LLC, USA),
respectively (Figure 1). The US Army discovered tafenoquine in

1978 during an era of historic neglect of antimalarial drug develop-
ment25,26 relative to the comparatively vigorous current efforts.27

Tafenoquine thus lingered through fits and starts of clinical develop-
ment in the three decades that followed.28 Approximately 10 years
ago, dawning realization of the clinical and public health import-
ance of vivax malaria helped spur commitment to making tafeno-
quine available for use (Bill and Melinda Gates Foundation,
Medicines for Malaria Venture and GSK).29,30

Complex biology governs the rationale underpinning safe
and appropriate use of tafenoquine in travel medicine. The class
effect of hemolytic toxicity in patients having the X-linked trait
of glucose-6-phosphate dehydrogenase (G6PD) deficiency sub-
stantially deepens the complexity of its use. This review aims to
explain these complexities along with the evidence and rationale
for potential roles of tafenoquine for the prevention or treat-
ment of malaria.

Essential Biology

The life cycles of the plasmodia guide chemotherapeutic and
chemopreventive strategies. The many stages of them are vari-
ably susceptible to antimalarial classes of drugs (Figure 2), most
having class-specific therapeutic effects. Clinically applied blood
schizontocidal drugs, for example, have no hypnozoitocidal
activity. Nonetheless, cross-class effects among antimalarials
occur, sometimes species-specific in manner; e.g. the blood schi-
zontocide chloroquine also exerts gametocytocidal activity in P.
vivax but not P. falciparum.31 Tafenoquine may be unique
among registered antimalarial compounds in having demon-
strable activity among all classes of antimalarials.32,33

All malarias derive from the bite of infectious anopheline
mosquitos (excepting congenital or transfusion/transplant
malarias). Injected plasmodial tachysporozoites invade hepatic
cells, multiply as hepatic schizonts and after a week or more

Figure 1. Evolution of the 8-aminoquinoline hypnozoitocides, including the winnowing out of irreversible severe neurotoxicity of plasmocid and

related compounds distinguished by fewer than four methylene groups separating the amino groups of the alkyl chain at the defining 8-amino pos-

ition. Plasmochin and others (including primaquine) having at least four methylene groups exhibited no such neurotoxicity but instead reversible

toxicity at sub-lethal doses involving principally hepatic, hematological and gastrointestinal systems
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emerge as infectious merozoites into the bloodstream where
they again multiply asexually (schizogony) in red blood cells.
Repeated cycles of that reproduction provoke the non-specific
cyclic symptoms of acute malaria; typically daily bouts of spik-
ing fever and shaking chills, often accompanied by headache,
nausea, vomiting and myalgia. Some of those parasites become
circulating sexual forms called gametocytes that may infect feed-
ing anophelines but provoke no illness.

The infective bite of the relapsing malarias, P. vivax and P. ovale,
includes bradysporozoites that become latent hepatic hypnozoites.
The timing of their activation to hepatic schizogony and subsequent
clinical attacks varies greatly, between a month and several years
after infection. In general, attacks occurring less than a month after
infection derive from tachysporozoite-borne active hepatic schizonts,
whereas after 1 month attacks probably derive from the delayed
hepatic schizogony of bradysporozoite-borne activated hypnozoites.
These clinical events are called primary attacks and relapses.

The malarias infecting humans may be divided into relapsing
and non-relapsing species, i.e. P. vivax and P. ovale, and P. falcip-
arum, P. malariae, and P. knowlesi, respectively (Table 1). This
fundamental distinction defines essential features of the treatment
of the malarias; therapy of non-relapsing acute malarias involves
only blood schizontocidal drugs (and gametocytocidal single-dose

primaquine not considered here), whereas that of the relapsing
malarias includes a hypnozoitocide. Strategy for the prevention of
the malarias also invokes non-relapsing and relapsing biology and
antimalarial drug classes; suppressive chemoprophylaxis employs
blood schizontocides against asexual reproduction in blood,
whereas causal chemoprophylaxis applies hepatic schizontocides
or hypnozoitocides in killing parasites before they mature to either
hepatic schizonts or hypnozoites (Figure 2). Widely used suppres-
sive chemoprophylactic drugs do not interfere with hepatic devel-
opment, with the exception of the causal activity of atovaquone
against hepatic schizonts of P. falciparum34,35 but not against hyp-
nozoites of P. vivax36,37 or those of Plasmodium cynomolgi in rhe-
sus macaques.38

This review specifically considers the role of the new 8-
aminoquinoline called tafenoquine in travel medicine practice.
In terms of chemotherapy, only the relapsing malarias and hyp-
nozoitocidal activity are relevant here. On the other hand, che-
moprevention engages all malarias and activity against the
hepatic stages of any plasmodial species, be those active schi-
zonts, latent hypnozoites, or, more probably, their respective
earliest (<48 h) post-invasion forms.39 The broad spectrum
activity of tafenoquine includes relatively potent blood schizon-
tocidal effects,40 but its clinical use as such is not recommended.

Figure 2. Antimalarial classes as guided by life cycle of the plasmodia

Table 1. Characteristics of relapsing and non-relapsing malarias

Relapsing Non-relapsing

Species P. vivax, P. ovale, P. cynomolgia P. falciparum, P. malariae, P. knowlesib

Hypnozoites Present Absent
Clinical attacks/infection Variable, typically >3 1
Curative therapy Blood schizontocidal, Hypnozoitocidal Blood schizontocidal

Gametocytocidalc

Suppressive chemoprophylaxis Ineffective against relapses occurring post-
chemoprophyaxis

Effective

Post-travel presumptive anti-relapse therapy Not indicated after causal prophylaxis but
necessary after suppressive prophylaxis

Not indicated

Causal chemoprophylaxis Effective Effective

aA natural zoonosis of Southeast Asian macaques confirmed in only a single patient but perhaps more common than now appreciated.
bA natural zoonosis of Southeast Asian macaques confirmed in thousands of patients.
cA single dose of 0.25mg/kg primaquine to prevent onward transmission. Not recommended in relapsing malarias because hypnozoitocidal therapy also gametocytocidal.
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Rationale for prioritized causal prophylaxis

Suppressive chemoprophylaxis of malaria with blood schizonto-
cides like quinine, atabrine, chloroquine, doxycycline, mefloquine
and atovaquone–proguanil has successively dominated practice
in travel medicine for over a century.41,42 This strategy served the
intended purpose of effectively preventing attacks by what had
been considered the only intrinsically dangerous species, P. falcip-
arum. The inadequacy of chemoprophylactic suppression alone
against the delayed attacks of the relapsing malarias has long
been understood and thoroughly demonstrated.43–46 Though not
always prescribed or even recommended,20 post-travel PART
using hypnozoitocidal primaquine addressed that inherent inad-
equacy. However, that practice also imposed G6PD-deficiency
risk management, along with the inconvenience and adherence
issues of 14 daily doses. Some authorities and experts have
recommended daily primaquine (0.5mg/kg) during exposure
under some circumstances as safe, well-tolerated and effective
causal prophylaxis (in non-pregnant, G6PD-normal travelers),47

but with the important drawback of off-label use. Further, prima-
quine having poor activity against the asexual blood stages of P.
falciparum48 raises the specter of unmitigated prophylaxis break-
throughs. Primaquine as primary causal prophylaxis has thus not
been widely adopted in travel medicine.

While chemoprophylaxis of any sort against significant risk of
malaria imposes some obstacles and pitfalls, it is certainly preferred
over no protection and may be less problematic than standby emer-
gency self-treatment practices.49–51 Figure 3 illustrates the practical
protections and pitfalls of suppressive prophylaxis against non-
relapsing (upper panel) and relapsing malarias (lower panel) relative
to those of causal prophylaxis. The failure to properly load suppres-
sive dosing before travel or to continue dosing sufficiently long after
travel results in attacks during and after travel in both types of
malarias. Fully compliant loading and post-exposure suppressive
dosing successfully prevents non-relapsing but not relapsing malaria
attacks delayed after travel. Causal prophylaxis during exposure
(loading or post-exposure dosing is minimal), in contrast, effectively
prevents both types of malarias. Causal prophylaxis exceeds sup-
pressive approaches in terms of simplicity of use and thoroughness
of protection, but the good efficacy of fully compliant suppressive
prophylaxis against P. falciparum has been broadly accepted as the
standard-of-care in travel medicine.

Acute falciparum malaria is unquestionably a dangerous infec-
tion that may rapidly progress to complicated and severe disease
syndromes in malaria-naïve patients. It does so in travelers more
often than the other plasmodia,52 with the possible exception of P.
knowlesi.53 However, the notion of P. falciparum as the only spe-
cies capable of such harm has been discredited with evidence,
much of it only recently gathered.2–5,54–59 When the malarias are
allowed to progress to severe and complicated disease in travelers,
the frequency of death among them appears essentially equal, ~5–
10%.52 All of the plasmodia are intrinsically dangerous and poten-
tially lethal. Chemoprophylaxis strategy aimed at some species but
not others, unless absolutely necessary, fails reason and many
patients. Broad spectrum chemoprophylaxis against attacks by
any plasmodial species, be those primary or relapsing, would
potentially offer a conspicuously superior option.

The fact that P. falciparum acquired in Africa indeed causes
most (~70%) malaria in travelers19,60,61—a problem solved by

appropriate suppressive chemoprophylaxis—tends to obscure
the broader geographic dominance of P. vivax. Excepting rela-
tively few and minor geographic areas (e.g. Haiti), endemic
transmission of P. vivax occurs wherever P. falciparum occurs,
including much of malarious Africa.62–64 Endemic transmission
of P. vivax extends well beyond the tropical range of P. falcip-
arum (e.g. to the Korean Peninsula).65 Once travelers are
deemed to be in need of chemoprevention against malaria by
estimated weight of risk of exposure,66,67 most of them will be
at risk of infection by the hypnozoites of P. vivax, P. ovale or
both (Figure 4). There may thus be few travelers not benefiting
from an approach to chemoprophylaxis that prevents the form-
ation of latent hypnozoites and post-travel attacks.

The availability of tafenoquine offers the critical strategic
advantages of causal prophylaxis, along with practical advan-
tages over primaquine for that indication. Tafenoquine over-
comes three of the four key disadvantages of primaquine in
comparison to most suppressive prophylaxis options: (i) chemo-
prophylaxis is an approved indication; (ii) dosing is weekly rather
than daily; and (iii) blood schizontocidal activity may mitigate
prophylaxis breakthroughs. The relatively very long plasma half-
life of tafenoquine relative to primaquine (~15 days vs 6 h) con-
fers many of its advantages. The key disadvantage is the 8-
aminoquinoline liability of hemolytic toxicity in G6PD-deficient
patients, and that problem is deepened by slow excretion. The
safe use of tafenoquine or primaquine is nonetheless manageable
by understanding G6PD deficiency and its diagnosis.

G6PD deficiency

The inherited X chromosome-linked G6PD deficiency trait is the
most common human genetic abnormality and its genotypes and
frequencies vary tremendously.68 It tends to be absent in Native
Americans, present at low frequencies (<1%) among most
Caucasians and prevalent among people residing in malaria-
endemic nations (averaging 8%).69 The extent of harm caused by
daily primaquine as hypnozoitocide depends on dose, the variant
of G6PD deficiency involved, and whether hemi-, homo- or het-
erozygous.70 Effects range from relatively mild and self-limiting
to life-threatening. Caucasian, Middle Eastern and Asian peoples
tend to have the most severely impaired G6PD deficiency var-
iants.71 In moderately deficient (40–60% of normal activity)
G6PD-deficient heterozygous females having the moderately
impaired Asian Mahidol variant, a single 300-mg dose of tafeno-
quine proved slightly more hemolytic (nadir of ~23% Hb drop)
than a 14-day daily regimen of 15-mg primaquine in that trial
(~16% drop)72 or others (~13% Hb drop).73 Prescribing tafeno-
quine for any indication requires ruling out any G6PD deficiency,
excepting female heterozygotes having >70% of normal activity.

Conventional qualitative screening for G6PD deficiency prior to
tafenoquine use may not suffice and quantitative testing is indicated
by standard laboratory spectrophotometric assay. Patients having
<70% of normal G6PD activity may not receive tafenoquine.74

Qualitative screening, for example by the NADPH fluorescent spot
test (FST) or newly available point-of-care rapid diagnostic tests for
G6PD deficiency (RDT), lack sensitivity to deficiency above 30% of
normal activity.75–77 Although qualitative screening offers nearly
100% sensitivity and specificity for male hemizygotes, female
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homozygotes and female heterozygotes having <30% of normal
activity,78,79 the latter having 30–70% of normal G6PD activity
will often screen as normal.80 The basis of this problem lies in the
phenomenon of lyonization during embryonic development of
female heterozygotes resulting in apparently random frequencies of

active/inactive normal vs abnormal X-chromosomes and red blood
cell mosaicism for G6PD deficiency.76 Recent efforts to develop sim-
ple and practical quantitative point-of-care test technologies may
soon bear devices that greatly increase access to such testing and
safe use of 8-aminoquinolines.81

Figure 3. Schematic illustrating pitfalls and protections of suppressive (yellow dose indicators) or causal (orange dose indicators) chemoprevention

of non-relapsing malaria like P. falciparum (top panel; red triangles and squares for inoculation and attack, respectively) or relapsing species like

P. vivax (bottom panel; green triangles and squares)
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Impaired CYP2D6 metabolism

Clinical and laboratory evidence suggested that the efficacy of
primaquine may depend on natural variation in cytochrome P-450
2D6 (CYP2D6) isotype activity.82–84 In a trial of 177 Indonesian
patients with vivax malaria given directly observed high-dose
primaquine (0.5mg/kg/day for 14 day) as PART in combination
with artesunate, artesunate–pyronaridine or dihydroartemisinin–
piperaquine, 26 (15%) experienced relapses during 1 year of
follow-up free of reinfection risk.85 Among the 21 relapsing sub-
jects evaluated for CYP2D6 genotype and dextromethorphan
metabolism phenotype, 20 exhibited significantly impaired
CYP2D6 activity.86 Relatively common impaired CYP2D6 alleles
like *10 (in Asian people) coupled with other less frequent
impaired alleles (e.g. *4, *5 or *41) appeared to explain most
therapeutic failures despite otherwise adequate dosing.

Although tafenoquine activity against rodent hepatic schi-
zonts seems to also depend on CYP2D6 activity,87 one rando-
mized multi-center trial did not detect an association of
CYP2D6 genotypes with tafenoquine efficacy (but did with the
primaquine comparator arm).88 The efficacy of tafenoquine in
humans is not known to require metabolism by CYP2D6 or any
other cytochrome P-450 isotype or monoamine oxidase, but this

body of evidence is as yet far from thorough or conclusive.
Tafenoquine activity may or may not come with the liability of
CYP2D6 dependency—decisive studies are needed to inform
this important question.

Weekly tafenoquine for causal prophylaxis

Tafenoquine was registered with the US FDA under the trade-
name Arakoda™ by 60 Degrees Pharmaceuticals® (USA) in
2018 with a labeled indication for chemoprevention of malaria
in adult patients (≥18 year) confirmed to be G6PD-normal
(>70% of normal activity) and not pregnant, lactating or having
a history of psychoses.74 The drug is available as tablets con-
taining 100mg base. A loading dose of 200mg tafenoquine dai-
ly for 3 days during the week before travel is recommended,
followed by weekly maintenance doses of 200mg commencing
7 days after the last loading dose. Upon return from travel, the
final dose should occur 7 days after the last maintenance dose
taken in the malarious area.74

The label for Arakoda™ includes an indication for ‘terminal
prophylaxis’, an antiquated term for post-travel PART in con-
nection with suppressive prophylaxis during travel.89 The term
is not particularly apt for tafenoquine as Arakoda™ because it

Figure 4. Geographic distribution and prevalence of P. vivax (A) and P. falciparum (B) in 201065,120 reproduced here under Creative Commons

license
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is no more than a final weekly dose after travel rather than the
distinct dosing for PART with tafenoquine (i.e. 300mg rather
than 200mg). Post-travel PART, i.e. terminal prophylaxis, is
not necessary with tafenoquine (or primaquine) causal prophy-
laxis. On the other hand, when suppressive chemoprophylaxis
is used and post-travel PART is indicated, tafenoquine as a sin-
gle 300-mg dose may suffice in lieu of 14 days of primaquine
(Table 2).

The clinical experience with 200-mg weekly tafenoquine
prophylaxis is now limited to trials conducted in 462 non-
immune subjects naturally exposed to falciparum and vivax
malaria in Southeast Asia90; 152 semi-immune subjects exposed
to falciparum malaria in holoendemic sub-Saharan Africa91,92

and 12 non-immune, malaria-naïve volunteers experimentally
challenged with blood stages of P. falciparum.74 Comparators
in these trials included mefloquine (with or without post-travel
PART with primaquine) or placebo (Table 3). There was no pla-
cebo control in Trial 1 (Australian soldiers in Timor Leste), but
a comparator of weekly mefloquine followed by post-travel
PART with primaquine; four post-exposure attacks occurred
among subjects taking tafenoquine, and one also occurred in
that period among mefloquine-treated subjects. Another ana-
lysis of this trial mathematically derived a hypothetical malaria
attack rate (8%) and estimated 100% protective efficacies of
tafenoquine or mefloquine against primary attacks.93 The
placebo-controlled trial of tafenoquine prophylaxis in Kenyan
adults91 showed 86% protective efficacy during 15 weeks of
heavy exposure to risk of P. falciparum (Trial 2, Table 3).
Another trial in Ghana also included a placebo control but with
a mefloquine comparator (Trial 3, Table 3):92 after 12 weeks
the protective efficacy of tafenoquine or mefloquine was 87%
for each for P. falciparum. A separate analysis of these African
trials estimated 94% and 95% protective efficacies for tafeno-
quine and mefloquine, respectively.94 The African studies did
not assess efficacy against late attacks by relapsing malarias.
Shanks95 explained the limitations and obstacles to conducting
chemoprophylaxis trials. While head-to-head trials of the
chemoprophylactic options against primary and delayed attacks
would be ideal, they are also unlikely to be possible.

No clinical trial of tafenoquine has definitively demonstrated
a causal vs suppressive prophylaxis mechanism. An early human
challenge trial demonstrated a single 600mg dose of tafenoquine
successfully prevented P. falciparum in three of four subjects chal-
lenged.96 At such a dose, slowly eliminated tafenoquine would
have exerted blood schizontocidal activity over the normal

incubation period of P. falciparum (i.e. less than several weeks) if
hepatic schizontocidal activity (causal) had been inadequate.
Nonetheless, given the proven causal activity of primaquine
against acute P. falciparum and acute or latent P. vivax mal-
aria,39 the structural relatedness of primaquine to tafenoquine
(Figure 1), and evidence from an experiment in rhesus macaques
challenged with P, cynomolgi sporozoites,38 a causal mechanism
of prophylaxis very likely pre-empts the suppressive activity of
tafenoquine. Nonetheless, some workers argue that tafenoquine
prophylaxis may include a significant suppressive activity compo-
nent.97 A randomized, placebo-controlled trial at Gabon mea-
sured the durability of post-treatment prophylaxis of tafenoquine
at variable daily doses administered for only 3 days: after 77
days, 14 of 82 placebos experienced P. falciparum, whereas 16/
79, 3/86, 1/79 and 0/84 subjects did with daily doses of 31.25,
62.5, 125 and 250mg tafenoquine, respectively.98 Such protec-
tion very long after dosing logically hints at suppressive prophy-
laxis, but this is not relevant with weekly tafenoquine dosing.
Efficacious monthly dosing of tafenoquine during long-term tra-
vel, perhaps exploiting both causal and suppressive activities,
may yet be demonstrated.

The label for Arakoda™ warns that adverse reactions may be
delayed in onset or prolonged in duration due to the relatively
very long plasma half-life of tafenoquine.99 The listed warnings
and precautions include hemolytic anemia, G6PD deficiency in
pregnancy and lactation, methemoglobinemia, psychiatric effects
and hypersensitivity reactions. An integrated safety analysis by
the developers of Arakoda™ reported that diarrhea, nausea,
vomiting, sinusitis, gastroenteritis and back/neck pain occurred at
higher frequencies (≥1%) relative to placebo; only the latter two
occurring at >5%.100 Two trials followed up on the observed
high rate (93%) of mild reversible vortex keratopathy and retinal
abnormalities (39%) in the subjects of the trial in Southeast Asia
and Australia91 and reported no concerns with regard to func-
tional visual impairment.101,102 The 6-month limitation on tafe-
noquine prophylaxis in the Arakoda™ label stems from a lack of
data rather than any indication of harm beyond that period.
Necessity in practice with tafenoquine will likely extend that
exposure period, and the reporting of adverse events in practice
will later inform evidence-based limitations of use (https://www.
fda.gov/safety/MedWatch/default.htm).

For most G6PD-normal, non-pregnant adult travelers at sub-
stantial risk of any malaria, weekly tafenoquine as causal prophy-
laxis provisionally (pending greater clinical experience with it)
offers a superior option to either causal daily primaquine or any

Table 2. Chemoprophylactic strategies and agents

Chemoprophylaxis strategy

Suppressive Causal

Agent Mefloquine Doxycycline Atovaquone–proguanil Primaquine Tafenoquine
Dosing Weekly Daily Daily Daily Weekly
Post-exposure PART required Yes Yes Yes No No
Pregnancy Yes No No No No
G6PD-deficient safety Yes Yes Yes No No
Children Yes No Yes Yes Insufficient evidence
Parasite resistance Yes Yes Yes No Improbable
CYP-dependent No evidence No evidence No evidence Yes Insufficient evidence
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suppressive malaria prophylactic regimen (weekly or daily with
or without post-travel PART). It is compatible with both short-
notice or short-duration travel and particularly favored where
endemic vivax or ovale malaria transmission occurs. Mainstream
use of tafenoquine for the prevention of malaria in travelers
offers a potential solution to the problem of delayed attacks by
the relapsing malarias.

Single-dose tafenoquine for radical cure of relapsing

malaria

The introduction of tafenoquine into practice as a hypnozoitoci-
dal 8-aminoquinoline requires examination of the therapeutic
principles at work. The primaquine standard-of-care, problematic
as it may be, defines those with decades of experience and many
millions of patients.103–106 Primaquine nonethless imposes the

Table 3. Human trials of 200mg weekly tafenoquine for prophylaxis against malaria

Trial 1 Trial 2 Trial 3 Trial 4

Location Timor Leste/Australia Kenya Ghana Australia
Exposure 6mo meso-endemic P. falciparum and P. vivax;

6mo post-exposure
15 weeks exposure to
holoendemic P.
falciparum

12 weeks exposure to
holoendemic P. falciparum

Experimental P.
falciparum blood
stages

Subjects Australian soldiers Resident adults Resident adults (excluding
reproductive age females)

Malaria-naïve adults

Number of
subjects and
armsa

TQ = 462
MQ + PQ = 153

TQ = 61
Placebo = 62

TQ = 91
MQ = 46
Placebo = 94

TQ = 12
Placebo: 4

Protective
Efficacy

Not estimable without placebo; 5 attacks
occurred, all post-exposure; 4 in TQ group

86% TQ = 87%
MQ = 87%

100%

Reference 87 88 89 71

aTQ, tafenoquine administered weekly 200mg; MQ, mefloquine administered weekly 250mg; PQ, primaquine administered daily 30mg for 14 days immediately following travel.

Figure 5. Hypothesized relative attack rates in the months following radical cure illustrate possible impacts of variable risks of relapse or reinfection

on the estimation hypnozoitocidal efficacy of tafenoquine (TQ) fixed at a presumed ‘actual’ 95% rate compared to a chloroquine (CQ) arm without

hypnozoitocidal therapy (relapse and reinfection attacks)

SUMMARY BOX 1. KEY POINTS ON TAFENOQUINE PROPHYLAXIS IN TRAVEL MEDICINE

• Suppressive malaria prophylaxis standard-of-care is not adequate to the threat of delayed attacks after travel by the

relapsing malarias.

• Relapsing malarias occur wherever there is falciparum malaria, with few and minor exceptions.

• Causal prophylaxis is effective against all malarias and prevents delayed attacks after travel.

• Causal prophylaxis is suitable for both short-notice and short-duration travel.

• Tafenoquine is a new drug that offers the advantages of causal prophylaxis with a weekly dosing regimen.

• Tafenoquine is hemolytically toxic to patients having inherited G6PD deficiency, so is prohibited in those patients along

with pregnant and lactating women. Safety in children is not yet established.
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difficulties of unknown mechanism of therapeutic activity against
a cryptic and highly nuanced stage of some plasmodia—the hyp-
nozoite—coupled with a vitally important hemolytic toxicity
problem also of unknown mechanism in patients having a highly
prevalent and diverse genetic abnormality, G6PD deficiency.
Estimates of primaquine efficacy as impacted by parasite biology,
epidemiology and partner blood schizontocides imposes great
complexity of interpretation.107 These issues all also bear on tafe-
noquine and its use in radical cure of the relapsing malarias.

Estimates of the efficacy of hypnozoitocides like tafenoquine
are subject to important confounding factors. The natural acti-
vation of hypnozoites typically occurs over months following
infection.108 When relapse occurs in the presence of risk of
reinfection, these two sources of acute malaria temporally min-
gle and no molecular laboratory technology differentiates them.
Post-hypnozoitocidal recurrences in endemic areas may thus be
represented by both therapeutic failures (relapse) and the pri-
mary attacks of mosquito-borne reinfection—recrudescence
with blood schizontocidal failure may also occur but is not con-
sidered here. The rates of both relapse and reinfection naturally
vary widely across endemic zones and each may impact inher-
ently variable estimates of hypnozoitocidal efficacy. Figure 5
presents hypothetical rates of each in high and low transmission
settings in order to illustrate these potential impacts. High trans-
mission with low relapse risk (e.g. <30%) may greatly under-
estimate efficacy (left panels), an effect mitigated by high relapse
risk (e.g. >70%), especially where there is low risk of reinfection
(right panels). Reported estimates of efficacy from endemic
areas are thus not absolute but reported as the fraction of
patients not experiencing a recurrent parasitemia during months
of follow-up, often relative to a hypnozoitocidal comparator or
placebo control group (also called a relapse control).
Conducting treatment and follow-up where reinfection does not
occur and with a relapse control arm largely resolves these
ambiguities.85,109 Such a trial for tafenoquine has yet to be com-
pleted, though one is in progress in Indonesia in 2018.

The two multi-center, double-blind and placebo-controlled
randomized clinical trials estimating efficacy of tafenoquine at a
single dose of 300mg combined with standard chloroquine ther-
apy (1500mg base over 3 days) included 317 subjects thus dosed
against naturally acquired P. vivax infections in Brazil, Peru,

Ethiopia, Thailand, Cambodia and the Philippines (Trials 1 and
2, Table 4).110,111 A total of 187 subjects in those trials received
chloroquine and a placebo of tafenoquine. Subjects were fol-
lowed for recurrent infections for six months. A total of 226 of
317 (71%) subjects did not experience recurrence within 6
months of tafenoquine and chloroquine therapy, whereas 79 of
187 (42%) subjects treated with chloroquine and placebo did so.
In a third trial lacking a placebo control, tafenoquine (n = 166)
or primaquine (n = 85) combined with chloroquine resulted in
73% and 75% remaining free of recurrence for 6 months (Trial
3, Table 4), consistent with non-inferiority of single-dose tafeno-
quine relative to daily 15mg primaquine for 14 days.110

An important factor regarding hypnozoitocidal therapy bear-
ing upon both efficacy and safety is co-administration with var-
ied blood schizontocidal therapies. Indeed, the discovery effort
leading to primaquine stemmed from an unexpected drug–drug
interaction (DDI) between atabrine (mepacrine) and plasmochin
(pamaquine) disqualifying co-administration for radical cure.112

The developers of plasmochin and primaquine each reported
DDI phenomena with varied partner blood schizontocides
impacting efficacy, safety or both. Tafenoquine has thus far
been examined only in combination with chloroquine in vivax
malaria patients. However, it was evaluated with several distinct
partner blood schizontocides against P. cynomolgi relapses in
rhesus macaques.113 Those investigators reported a 10-fold
increase in tafenoquine efficacy when administered with chloro-
quine, mefloquine or artemether–lumefantrine compared to tafe-
noquine alone. Over 60 years ago, Alving et al. reported
essentially similar findings with primaquine given concurrent vs
consecutive quinine or chloroquine.114 How these purely blood
schizontocidal drugs so dramatically impact the hypnozoitocidal
efficacy of 8-aminoquinolines remains unknown.

While chloroquine or artemether–lumefantrine did not sig-
nificantly impact tafenoquine pharmacokinetics in healthy sub-
jects, dihydroartemisinin–piperaquine increased the Cmax of
tafenoquine by 38%, the area under the concentration (AUC)
curve by 12%, and the plasma half-life by 29%.115,116

Tafenoquine did not appear to impact the pharmacokinetics or
dynamics of chloroquine, artemether–lumefantrine, or dihy-
droartemisinin–piperaquine. The FDA label for Krintafel™ cites
chloroquine as an example of appropriate companion therapy,

Table 4. Randomized clinical trials of tafenoquine for PART against vivax malaria

Trial 1 Trial 2 Trial 3

Location Multi-centers in Asia, Africa, and
Americas

Multi-centers in Asia, Africa and
Americas

Multi-centers in Asia, Africa and
Americas

Subjects Adult non-pregnant G6PD-normal
residents with acute vivax malaria

Adult non-pregnant G6PD-normal
residents with acute vivax malaria

Adult non-pregnant G6PD-normal
residents with acute vivax malaria

Treatment arms, and
numbers of subjectsa

TQ + CQ = 57
PQ + CQ = 50
Placebo + CQ = 54

TQ + CQ = 260
PQ + CQ = 129
Placebo + CQ = 133

TQ + CQ = 166
PQ + CQ = 85

% Recurrence-free after
6 months

TQ + CQ = 89
PQ + CQ = 77
Placebo + CQ = 38

TQ + CQ = 62
PQ + CQ = 70
Placebo + CQ = 28

TQ + CQ = 73
PQ + CQ = 75

Reference 105 106 106

aTQ, 300mg single dose tafenoquine; CQ, 1500mg chloroquine in three daily doses; PQ, 15mg primaquine daily for 14 days.
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implicitly allowing for other partner blood schizontocides for
radical cure.110 The data from P. cynomolgi in macaques seem
to affirm that view so far as mefloquine and artemether–lume-
fantrine are concerned.112

The package insert for Krintafel™ expresses an indicated use
in radical cure of P. vivax malaria in patients at least 16 years
of age who are also receiving companion blood schizontocidal
therapy.111 The warnings and precautions expressed therein are
essentially similar to those for Arakoda™ (see above). Both
labels warn of serious psychotic adverse reactions having
occurred at the indicated dose (for Krintafel™) or higher dosing
(for Arakoda™) in patients with a history of psychoses, along
with serious hypersensitivity events (e.g. angioedema).74,111

Tafenoquine (as Arakoda™ or Krintafel™) may or may not be
suited to patients with psychiatric histories; the evidence needed
to definitively inform that question is lacking. In the instance of
primaquine, there have been no significant clinical neurotoxicity
signals after decades of use.117,118 Indeed, in the defining neuro-
toxicological studies of 8-aminoquinolines in rhesus macaques,
severe irreversible brainstem neuronal injury occurred only
among compounds of the plasmocid (or Rhodoquine) subclass
(Figure 1).119 Among the plasmochin (or pamaquine) subclass
of 8-aminoquinolines (all 8-aminoquinolines that advanced to
human clinical trials, including primaquine and, later, tafeno-
quine), no such neurotoxicity occurred.

In summary, adult G6PD-normal non-pregnant or lactating
patients diagnosed with acute P. vivax malaria, or those return-
ing from travel of risk without causal prophylaxis, a single
300mg dose of tafenoquine provides safe, well-tolerated, and
efficacious PART. Post-diagnosis PART may be confidently
combined with chloroquine, mefloquine, or artemether–lume-
fantrine. Post-travel PART should consider the apparently con-
spicuous dependency of tafenoquine efficacy on the presence of
select blood schizontocides as convincingly demonstrated in the
P. cynomolgi animal model. Tafenoquine without a companion
blood schizontocide possibly not killing hypnozoites at pre-
scribed dose merits clinical caution and scientific attention.
More details are available in the FDA Advisory Committee
Briefing Document for Krintafel™: https://www.fda.gov/
downloads/advisorycommittees/committeesmeetingmaterials/
drugs/anti-infectivedrugsadvisorycommittee/ucm612875.pdf

Conclusions

The availability of tafenoquine for the prevention and treatment
of malaria appears to offer potentially transformative new
options in the practice of travel medicine. These applications
strictly require reliable screening for G6PD deficiency, like the
current standard of responsible care involving primaquine for
causal prophylaxis or for post-travel or post-diagnosis PART in
travelers. Excepting travel to the very few malarious areas
where infection by hypnozoites is highly improbable, G6PD
screening should be acknowledged as indicated in any traveler
taking any chemoprophylactic option. Avoidance of G6PD
screening with non-hemolytic suppressive chemoprophylactics
(without post-travel PART) invites risk of post-travel attacks.
No species of plasmodia is intrinsically benign. They all merit
the diligence and relative difficulty of preventing them.
Tafenoquine offers G6PD-normal and non-pregnant adults a
convenient, safe, well-tolerated and efficacious means of pre-
venting all malarias during travel or treating those that relapse
after travel. The important work needed to assure the safety of
tafenoquine in children is in progress, along with appropriate
formulation for them. Far broader clinical experience with tafe-
noquine will have to accrue before fully understanding both its
advantages and limitations, but its promise certainly merits such
accrual.
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SUMMARY BOX 2. KEY POINTS ON TAFENOQUINE RADICAL CURE IN TRAVEL MEDICINE

• Suppressive malaria prophylaxis standard-of-care requires post-travel presumptive anti-relapse therapy (PART) to des-

troy latent hypnozoites and prevent delayed attacks in the months following travel.

• A diagnosis of acute relapsing malaria (P. vivax or P. ovale) in any patient requires PART to destroy latent hypnozoites

and prevent subsequent attacks by them.

• Primaquine has been the standard-of-care for PART as 14 daily doses of 0.5mg/kg for the past 66 years.

• Tafenoquine is a new drug with an indication for post-travel or post-diagnosis PART against relapsing malarias as a sin-

gle adult dose of 300mg.

• Tafenoquine is, like primaquine, hemolytically toxic to patients having inherited G6PD deficiency, so is prohibited in

those patients along with pregnant and lactating women. Safety in children is not yet established.
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