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Abstract
Cholesterol-rich, apolipoprotein B (apoB)-containing lipoproteins are now
widely accepted as the most important causal agents of atherosclerotic
cardiovascular disease. Multiple unequivocal and orthogonal lines of evidence
all converge on low-density lipoprotein and related particles as being the
principal actors in the genesis of atherosclerosis. Here, we review the
fundamental role of atherogenic apoB-containing lipoproteins in cardiovascular
disease and several other humoral and parietal factors that are required to
initiate and maintain arterial degeneration. The biology of foam cells and their
interactions with high-density lipoproteins, including cholesterol efflux, are also
briefly reviewed.
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It has been over a century since the “cholesterol hypothesis” for the 
pathogenesis of atherosclerosis was put forward1,2. In the ensuing 
decades, we learned that the key sources of cholesterol in the patho-
genesis of atherosclerosis are apolipoprotein B (apoB)-lipoproteins 
from plasma. When one considers the totality of the evidence—
from epidemiology, genetics (including Mendelian randomiza-
tion studies), cell biology, experimental models, and randomized 
controlled clinical trials—the fundamental role of cholesterol-rich 
apoB-containing lipoproteins in atherosclerotic cardiovascular  
disease (ASCVD) is now widely held as proven, central, and  
causative. Low-density lipoprotein (LDL) is the principal driver of 
the initiation and progression of the atherosclerotic plaque3. Indeed, 
the confirmation of a direct link between plasma cholesterol on 
apoB-containing lipoproteins and atherosclerosis has led to one 
of the greatest advances in modern medicine: the discovery and  
development of statins.

The fundamental role of cholesterol-rich apoB-containing lipopro-
teins in the genesis of atherosclerosis cannot be overstated. These 
atherogenic lipoproteins comprise chylomicron remnants, very-
low-density lipoprotein (VLDL), intermediate-density lipoprotein, 
LDL, and lipoprotein(a). ApoB is a large protein that envelops the 
surface of atherogenic lipoproteins as a macromolecular scaffold to 
provide structural integrity. The apoB molecule, present in a defined 
stoichiometry, one single copy per particle, also serves as a ligand 
for LDL receptor-mediated clearance. LDL is the most abundant 
atherogenic lipoprotein in the fasting blood and the most promi-
nent driver of circulating cholesterol into the artery wall. However, 
mounting evidence demonstrates that most apoB-containing lipo-
proteins (up to about 70 nm in diameter), except for fully formed 
chylomicrons and large VLDL, are capable of promoting plaque 
formation4.

Although ApoB-containing lipoproteins are required for athero-
genesis, they are not the only force at play, and several other  
humoral and parietal factors are needed to initiate and maintain 
the arterial degeneration process in generally reproducible and 
geographically confined sites within the arterial tree. These sites 
are non-random and are conditioned by hemodynamic parameters, 
such as low shear stress and non-pulsatile or non-laminar flow5. 
These disturbances in coronary flow characteristics are related 
to the topography of the vascular tree and are found in areas of  
branching and increased vessel curvature6. Although hemody-
namic characteristics play an important role in the site specificity 
of atherosclerotic lesions, they by themselves are not responsible  
for the initiation of atherosclerosis. Rather, these hemodynamic  
factors induce specific coronary segments and their gene expres-
sion profile to differentially interact with systemic factors, result-
ing in susceptibility to atherosclerosis at specific locations7. These 
local coronary hemodynamic factors and flow characteristics are  
intrinsically linked to endothelial function, inflammation, and 
the subsequent development of atherosclerosis5. The low shear 
stress and disturbed flow play an important role in the initiation 
and propagation of atherosclerosis via activation of endothelial 
cells and upregulation of adhesion molecules on their surface. 
These adhesion molecules facilitate the recruitment of circulating  
inflammatory cells to the subendothelial space8. Additionally,  
these same factors can alter endothelial function in a manner that 
impairs atheroprotective functions. Also, matrix proliferation, and 

hence an increased affinity for LDL retention at these sites, likely 
contributes to their enhanced susceptibility to atherosclerosis7,9.

As stated above, plasma apoB-containing lipoproteins penetrate  
the endothelial cell lining of the artery wall in susceptible  
regions of non-laminar flow and enter the intimal space where they 
may be trapped by interaction of the positively charged residues 
(arginine and lysine) on apoB with the negatively charged sulfate 
groups of subendothelial proteoglycans10,11. While LDL is trapped 
in the extracellular matrix, LDL receptors (LDLRs) on foam cells 
can recognize native or minimally modified LDL (MM-LDL), 
oxidized LDL without extensive protein modification12. While  
apoB-containing lipoprotein retention within the arterial wall 
is initially related to direct binding of LDL to proteoglycan gly-
cosaminoglycan chains, infiltration of the intima by macro-
phages that secrete bridging molecules, such as lipoprotein lipase,  
triggers a transition to indirect binding of apoB-containing  
lipoproteins. These bridging molecules work together in sync with 
other proatherogenic modifications of the extracellular matrix 
and LDL, culminating in enhanced retention of atherogenic  
lipoproteins13. As the oxidation of the lipoprotein becomes more 
profound, its affinity for the LDLR diminishes, but its ability to 
get inside cells actually increases because of the action of scav-
enger receptors such as scavenger receptor-A (SRA) and CD3614. 
Unlike the LDLR, scavenger receptors are not subject to feedback  
regulation by cellular cholesterol levels; thus, arterial macrophages 
can internalize unregulated quantities of cholesterol ester and  
eventually transform into foam cells15,16. This lack of feedback 
regulation elevates the quantitative importance of the scavenger 
receptor above that of LDLR in terms of the amount of cholesterol  
uptake by arterial macrophages. Interestingly, triglyceride-rich 
apoB-containing lipoproteins (that is, remnants) do not require 
oxidative modification to be recognized and massively taken up 
by arterial macrophages. Furthermore, these remnant lipoproteins 
incite a more profound inflammatory response than do LDLs17. 
The debate regarding the relative atherogenic potential of LDL 
versus other apoB-containing lipoproteins rages on and remains 
unresolved. However, one must keep in mind that, possibly with 
the exception of severe familial hypercholesterolemia, the etiology 
of atherogenesis in the typical person reflects more the accumu-
lation of remnant lipoproteins than that of pure, triglyceride- 
depleted LDL. This is known as the post-prandial hypothesis of 
atherogenesis, first formulated nearly 70 years ago18–20.

Although most attention has been focused on the role of oxidized 
LDL in foam cell formation, it is also important to consider that 
non-oxidized, modified forms of LDL (small dense, electronega-
tive, and especially desialylated) have been implicated in athero-
genesis as well21.

Cholesterol-laden foam cells activate a gene expression program 
that augments inflammatory pathways and induces production 
of various proteases (for example, collagenases, elastases, and  
cathepsins)22. Cumulatively, this has the effect of recruiting more 
monocytes into the coronary intima and of opening up passages for 
the arrival of smooth muscle cells from the media23. The current 
view of this process sees the initial response to the subendothelial 
retention of lipoproteins as an appropriate and measured attempt 
to clear unwanted and dangerous debris from the artery wall. 
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Ultimately, however, the ensuing chronic inflammatory response 
becomes maladaptive in advanced atherosclerosis largely due to 
altered behavior of arterial phagocytes which underlie defects in 
inflammation resolution24. Owing to the lipid load, vascular foam 
cells lose the mobility typical of inflammatory cells and are unable 
to egress out of the arterial wall. In addition, during the early stages 
of plaque development, apoptotic cells are taken up by other phago-
cytes in a process called efferocytosis and are effectively cleared. 
However, late-stage atherosclerosis is characterized by defective 
efferocytosis which leads to an increased inflammatory response, 
necrotic core expansion, and plaque progression. Macrophage 
necrosis leads to an even more prominent inflammatory response in 
a self-perpetuating cycle.

As discussed thus far, apoB-containing lipoproteins are intrin-
sically linked to the initiation, development, and propagation 
of atherosclerosis. On the other hand, high-density lipoprotein 
(HDL) is seen as anti-atherogenic because of its role in cellular 
cholesterol extraction and reverse cholesterol transport. Animal 
experiments involving transplantation of atherosclerotic aortic 
segments into normolipidemic hosts demonstrate decreases in the 

macrophage content of the transplanted aorta25. Furthermore, this 
response is exaggerated by overexpression of apolipoprotein A1 
(apoA-I) in the recipient26. However, new insights into HDL biol-
ogy are yielding a more complex story. Although targeting LDL 
cholesterol (LDL-C) has had stunning results, it is distressing that 
interventions targeting HDL cholesterol (HDL-C) have not yielded 
benefit, given that the epidemiological association of HDL-C and 
ASCVD is at least as strong as that of LDL-C27–29. As it turns out, 
HDL-C, a static measure of cellular cholesterol carried by plasma 
HDL, may be a poor surrogate for the key biological activities of 
HDL. Although HDL performs myriad non-redundant functions 
that extend beyond lipid metabolism (for example, anti-oxidative,  
anti-platelet, anti-inflammatory, and anti-apoptotic properties), 
its role in reverse cholesterol transport may be its most important 
with regard to mitigating plaque development, vulnerability, and 
(ultimately) catastrophic atherosclerotic events (Figure 1)30. In 
that regard, a dynamic measure of HDL function may enhance its  
prognostic capability. An initial investigation revealed that assay-
ing cholesterol efflux from cultured cells (the first step in reverse  
cholesterol transport) was more closely correlated with carotid 
intima media thickness and angiographic coronary artery disease 

Figure 1. The odds are stacked against atherosclerotic plaque regression. The arterial wall is under constant assault by a variety of 
atherogenic particles, each carrying a large cholesterol cargo. While a foam cell takes up hundreds of molecules of cholesterol from each 
atherogenic particle via a wide array of receptors, it can only eliminate cholesterol through channels that allow the passage of few molecules 
at a time. ABCA1, ATP-binding cassette transporter A1; ABCG1, ATP-binding cassette transporter G1; HDL, high-density lipoprotein; HSPG, 
heparin sulfate proteoglycans; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; Lp(a), lipoprotein(a); oxLDL, oxidized 
low-density lipoprotein; SRA1, scavenger receptor A1; SRB1, scavenger receptor B1.

Page 4 of 8

F1000Research 2017, 6(F1000 Faculty Rev):134 Last updated: 13 FEB 2017



when compared with HDL-C31. Another study demonstrated that 
cholesterol efflux capacity predicts incident ASCVD events32. 
These findings have been validated in an additional large study33,34 
but challenged in another34. HDL consists of particles that vary 
in size, composition, and function35. Presumably, at least some of 
the functional heterogeneity of the HDL spectrum is explained by  
differences in its proteome and lipidome36,37. This facet of HDL 
biology is a current focus of intense investigation that may bear  
the fruit of more intelligent drug development.

The necrotic core is not the only compositional change affect-
ing plaque size and stability. Advanced plaques are also marked  
by the presence of cholesterol crystals. Interestingly, some of the 
crystals are derived from erythrocytes, whose membranes are the 
richest in free cholesterol among all cells in the body. Intraplaque 
hemorrhage has emerged as a significant contributing factor to 
enlargement of the necrotic core38. The source of hemorrhage is 
thought to arise from leaky new capillaries that infiltrate the plaque 
as futile neovascularization attempts in response to a hypoxic 
environment created by increased lesion burden and inflamma-
tory macrophages39. The capillaries within the plaque typically  
lack an intact basement membrane, are poorly stabilized by  
surrounding pericytes, and show less than tight endothelial  
junctions, all factors likely responsible for their inability to hold 
contents.

Macrophage engulfment of cholesterol crystals or de novo for-
mation of intracellular cholesterol crystals will induce lysosomal 
destabilization and release of cathepsin B to the cytoplasm, which 
activates a multimolecular signaling complex known as the nucle-
otide-binding leucine-rich repeat-containing pyrin receptor 3 
(NLRP3) inflammasome40. Activation of the NLRP3 inflamma-
some results in caspase-1-mediated production of interleukin-1 
beta (IL-1β) and ultimately IL-6, which amplifies the inflammatory 
cascade41. The significance of this discovery needs to be stressed, as 
it offers a mechanistic relationship between hypercholesterolemia 
and vascular inflammation42. The importance of cholesterol crystals 
within foam cells extends beyond its ability to augment inflamma-
tion. Crystalline cholesterol may also provoke plaque rupture by 
physical disruption of the fibrous cap43.

Abela and Aziz44,45 and Kellner-Weibel et al.44,45 investigated the 
role of crystalline cholesterol in advanced atherosclerotic lesions. 
They observed that crystallization of cholesterol can result in sharp-
edged cholesterol crystals with the potential to penetrate biologi-
cal membranes. They hypothesized that these cholesterol crystals 
could induce plaque rupture by mechanical perforation of the outer 
layers of atherosclerotic plaques. To support this hypothesis, they 
used scanning electron microscopy to demonstrate cholesterol crys-
tals perforating the arterial intima in patients who had died from 
acute coronary syndromes46. The authors found no cases of choles-
terol crystal perforation in subjects with severe atherosclerosis but  
without acute cardiac events. These pioneering studies were the first 
to suggest that cholesterol crystals can trigger plaque disruption  
and vascular injury. However, although these studies are compel-
ling, it is not entirely clear whether cholesterol crystals are causally 
linked, or are merely bystanders, to plaque rupture.

The focus of this review has been on experimental models of athero-
sclerosis spanning numerous decades. However, several orthogonal 

lines of evidence have now clearly established the link between 
lipids and ASCVD. Starting with the visionary Framingham Heart 
Study in 1948, numerous large epidemiological studies performed 
around the globe provided highly reproducible results47–51. The  
consistency of the epidemiology was truly stunning and sug-
gested the association of LDL-C with ASCVD. Demonstration 
of the causal role of LDL with ASCVD emerged from genetics 
(familial hypercholesterolemia, genome-wide association studies, 
and Mendelian randomization studies). Individuals with geneti-
cally elevated LDL-C are at high risk for ASCVD, whereas indi-
viduals with genetically low LDL-C are at exquisitely low risk for 
ASCVD. The results of the large prospective, double-blind, ran-
domized, placebo-controlled statin mega-trials further supported 
the notion that LDL is causal in ASCVD, although many investiga-
tors for years attributed the benefits of statins to their “pleiotropic”  
effects52–57. The results of the IMPROVE-IT trial (Improved  
Reduction of Outcomes: Vytorin Efficacy International Trial) 
finally created a wedge between certainty and doubt58. All things 
considered, there is now unequivocal evidence that cholesterol-
rich apoB-containing lipoproteins are inextricably linked with  
ASCVD and are the principal drivers of this process. For two and 
half decades, statins enjoyed a privileged status; they were con-
sidered the most effective class of drugs to reduce LDL-C and 
ASCVD events to which no additional drug impacted outcomes. 
The IMPROVE-IT trial ushered in the new era where LDL lower-
ing with non-statin agents has demonstrated the ability to add to the 
benefits of statin therapy58. This has brought in renewed energy for 
the discovery of novel cholesterol-lowering strategies. Within the 
last decade, investigators have successfully linked genetic insights 
to molecular pathways, allowing the swift development of a new 
class of potent LDL-C-lowering drugs, the proprotein convertase 
subtilisin-kexin type 9 (PCSK9) inhibitors59–61. These agents hold 
the potential to transform ASCVD risk reduction given their tre-
mendous LDL-lowering power62. However, is it likely that the 
epidemic of cardiovascular disease will be stopped by an LDL-
lowering agent usually started when the patient is near to, or has  
already had, the first ischemic event? We think not. The real revo-
lution in the prevention and management of ASCVD will arrive 
with tools that prohibit plaque development (needed by large  
numbers of relatively young and healthy individuals) and tools 
that induce plaque regression (needed by patients with established 
disease). These tools are likely to affect parietal processes, such 
as endothelial function, inflammatory responses, macrophage  
survival and egress, and lipid efflux. At last check, nothing in the 
literature forecasts the arrival of these tools in practice anytime 
soon.
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