
Research Article
An Ensemble-Based Multiclass Classifier for Intrusion Detection
Using Internet of Things

Deepti Rani ,1 Nasib Singh Gill ,1 Preeti Gulia ,1 and Jyotir Moy Chatterjee 2

1Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India
2Department of Information Technology, Lord Buddha Education Foundation, Kathmandu, Nepal

Correspondence should be addressed to Jyotir Moy Chatterjee; jyotirchatterjee@gmail.com

Received 25 March 2022; Accepted 26 April 2022; Published 20 May 2022

Academic Editor: Arpit Bhardwaj

Copyright © 2022 Deepti Rani et al. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Internet of 'ings (IoT) is the fastest growing technology that has applications in various domains such as healthcare,
transportation. It interconnects trillions of smart devices through the Internet. A secure network is the basic necessity of the
Internet of 'ings. Due to the increasing rate of interconnected and remotely accessible smart devices, more and more
cybersecurity issues are being witnessed among cyber-physical systems. A perfect intrusion detection system (IDS) can probably
identify various cybersecurity issues and their sources. In this article, using various telemetry datasets of different Internet of
'ings scenarios, we exhibit that external users can access the IoT devices and infer the victim user’s activity by sniffing the
network traffic. Further, the article presents the performance of various bagging and boosting ensemble decision tree techniques of
machine learning in the design of an efficient IDS. Most of the previous IDSs just focused on good accuracy and ignored the
execution speed that must be improved to optimize the performance of an IDmodel. Most of the earlier pieces of research focused
on binary classification. 'is study attempts to evaluate the performance of various ensemble machine learning multiclass
classification algorithms by deploying on openly available “TON-IoT” datasets of IoT and Industrial IoT (IIoT) sensors.

1. Introduction

For the last few decades, Internet of'ings (IoT) technology
has been continuously integrated with various application
domains, especially in design of automation-enabled
homes, cities, and industries. A plethora of physical and
virtual “things” communicate with each other using the
Internet. IoT has become a usual chunk of people’s lives and
it is expanding rapidly due to its capability of providing
superior services. IoT has improved people’s everyday lives
by automating very common home services such as con-
trolling the temperature of refrigerators, turning on/off light
bulbs, operating ACs, and locking/unlocking doors. IoT has
reshaped even the modern technologies with the absolute
connection of things in various domains, namely, home,
industry, and business [1]. However, due to the frequent
rising of IoT technology, it is exposed to many technical and
security challenges [2]. 'e Internet of 'ings is described
as a group of physical objects and applications that are

embedded with several components including sensors,
actuators, software, processors, and many other technolo-
gies and services which enable devices and systems to
connect and communicate with other devices over the
Internet using a communication network. 'e sensors and
actuators embedded with devices collect valuable infor-
mation from the related environment of the physical world
and transmit it over the network. Data gathered from these
automated devices flow in the form of signals which might
carry suspected network traffic along with the normal
network traffic. 'e traffic signals flowing over the network
might be stored on different levels of IoT platform. Data
storage might occur on network, cloud, fog, or device itself,
and unauthorized users might smartly access the whole
system through anomalous traffic signals [3, 4]. IoT devices
could be easily compromised by malicious users by merging
anomalous traffic with normal traffic. An attacker can easily
access the user’s login and trace his activities to figure out
confidential information [5].

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 1668676, 16 pages
https://doi.org/10.1155/2022/1668676

mailto:jyotirchatterjee@gmail.com
https://orcid.org/0000-0003-1565-224X
https://orcid.org/0000-0002-8594-4320
https://orcid.org/0000-0001-8535-4016
https://orcid.org/0000-0003-2527-916X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1668676

Every device operates in a specific pattern. If a user tries
to operate any device differently, that results in a change in
the normal behavior of that device, and the modified be-
havior is considered as malicious [6]. In such situations, the
current behavior is matched with the historical behavior of
the specific device to verify the mode of behavior (whether
safe or unsafe). Intrusions could be identified by recognizing
changes that happened in the behavior of events [7]. 'e
actual authorized user could be alerted if such kind of
changes occurs. In IoT-enabled smart home environment,
the attackers can make physical effects on various devices
like smart refrigerators, smart doorbells, fire alarms, smart
heaters, domestic useable smart healthcare devices, etc. If
these devices are controlled by malicious users, they can
make changes in the behavior of these devices. By gaining
unauthorized home access, the attackers can disrupt the
power supply, close and open door locks without the user’s
permission, and give wrong instructions to a smart refrig-
erator or a heater, which may cause massive hazards [8].
Attacks on computers are generally limited to data loss, but
attacks on IoTsystems might result in the loss of data as well
as loss of someone’s life too.

'e malicious access could be prevented by robust se-
curity schemes. In this context, there are several major
methods that have been gaining the remarkable attention of
researchers. Handling of any cybercrime-related problem
should be started with the intrusion detection system (IDS).
Intrusion detection (ID) is the most effective mechanism to
detect the mode of a device’s behavior [9]. Illustration of the
user’s behavioral pattern and secure cyber systems might
lead to anomalous behavior detection [10]. Intrusion de-
tection is a process of scanning the incidents which arise in
different network systems and examining them to find clues
related to incidents [11]. It is an effective technique that can
reduce the growing cybersecurity issues through the pro-
active security system. So far, IDSs proposed by different
researchers have achieved remarkable results to predict
known and unknown intrusions in wired and wireless IoT
networks. 'e network traffic might be examined to un-
derstand the properties of the attacks and the transmission
medium [12]. 'e main contributions of this study are as
follows:

(i) 'is study provides a diversified evaluation of
network traffic routines in IoT enabled smart
environment.

(ii) 'is study also highlights the review of various
decision tree ensemble techniques for the classifi-
cation of network traffic data of IoT systems.

(iii) 'is study adopts various classification metrics to
predict malicious network traffic as well as normal
traffic with the help of collected data patterns.

(iv) 'e work in this study also focuses on the com-
parison of various ensemble learning techniques for
multiclass classification and threat detection in IoT
environment.

For practical implementation, the “TON_IoT” datasets
have been accessed from an open-access location [13]. Here,

a CSV file of “TON_IoT” has been downloaded that includes
heterogeneous data sources collected from telemetry data-
sets of IoT and IIoT sensors. It has been classified using
various multiclass classifiers to predict the labels by training
the model with training data samples.'e proposedmodel is
trained using the collected datasets and the extracted fea-
tures. In a smart IoT environment, a particular device
generally operates in a unique pattern. In this article, Section
2 presents the motivation and related work to the proposed
work. Section 3 presents the methods and techniques used
for the proposed work. Bagging and boosting ensemble
approaches have been explored thoroughly for multiclass
classification for the purpose of ID. Section 4 comes with
details of the considered datasets and the procedure followed
for dataset selection used in the practical implementation.
Section 5 comprises the experimental results and metrics
with a brief discussion, computation, and analysis.

2. Motivation and Related Work

IoT is an emerging technology that is growing day by day.
IoT system’s users have to face various unexpected situa-
tions. 'ere are numerous challenges in the path of suc-
cessful IoT infrastructure. Smart devices are the major pillars
of IoT infrastructure. 'e things of daily needs, which are
positioned in domestic, industrial, and other application
areas, are now interconnected with the Internet and are
enabled with very few security measures. 'erefore, the
security and privacy of the IoT environment are really
unpredictable. 'e interconnected IoT systems generate an
amount of digital data related to the objects, applications,
and their behavior. 'e generated data needs to be collected,
processed, analyzed, and distributed securely and efficiently.

In view of the increasing number of cybercrimes in
connected devices, it is required to formulate new generation
approaches to identify the classes of intrusions. 'e present
section provides an exploration of some recently developed
ID models using machine learning technologies. 'e IDS
emerged in the 1980s for the security of traditional networks
against various malicious activities [14]. So far, many se-
curity experts and researchers have formulated several IDSs
to identify anomalous activities in IoT-enabled smart en-
vironments [15]. However, most of the ID models have been
developed using machine learning techniques. IDS designed
using a machine learning approach provides a promising
solution to identify various security issues. Machine
learning-based ID approaches are able to recognize mali-
cious patterns in incoming network traffic [16].

Many pieces of research have been conducted so far for
threat detection by inspecting the network traffic [17] and
classification of events [2]. Authors in [18] presented an ID
model to identify unsupervised anomalies and traffic clas-
sification using the dataset KDD-Cup99 [19] and real-world
network logs for confirmation of the effectiveness of per-
formance. Incremental statistics have been used for feature
extraction. Authors in [20] proposed a dataset to incorporate
legal and simulated IoT traffic with different types of attacks.
Many researchers [20–22] have addressed various existing
datasets and evaluated the reliability of the BoT-IoT dataset

2 Computational Intelligence and Neuroscience

using statistical machine learning and deep learning ap-
proaches for forensics.

IoTnetworks incorporate the usual network components
(laptops, routers, and workstations) with smart IoT devices.
Machine-to-machine communication, cloud instances, and
popular IoT application providers come up with services in
different distributed IoT environments [23]. In [24], the
authors analyzed the vulnerable traffic using three machine
learning classifiers, namely logistic regression, random
forest, and support vector machine (SVM). 'e authors
analyzed the data collected from various IoT devices using
different statistical parameters. Data mining, machine
learning, and deep learning are the most recent data pro-
cessing and forecasting approaches which are useful for ID.
However, machine learning is the most effective approach
due to its better true positive rate (TPR) as compared to
other approaches [25]. Rose et al. in [26] explored the
prospective of network profiling and monitoring using a
dynamic anomaly-based IDS for the investigation of sus-
pected network transactions and potential attacks. Ibrahim
et al. [27] compared the performance of the CatBoost
classifier with SVM, logistic regression, gradient boosting,
AdaBoost [28], random forest, decision tree, K-nearest
neighbor (KNN), and many others. Alqahtani et al. [29]
proposed a genetic XGBoost-based IDS model using the
dimensionality reduction feature selection method to detect
botnet attacks on data traffic in IoT, where a publicly
available N-BaIoT [30] dataset was used for practical
implementation. Tang et al. proposed IDS using light gra-
dient boosting (LGB) and auto-encoder [31]. LGB is one of
the most efficient methods of boosting family.

'e decision tree is one of the leading approaches of
machine learning to make analysis and prediction of in-
trusions [32]. Decision tree algorithms are supervised ma-
chine learning mechanisms that make decisions using bias
and variance analysis approaches. Ensemble learning deci-
sion tree-based classification model provides more accurate
and efficient performance compared to a single decision
tree-based classification model. Ensemble methods use the
concept of integrating weak learners to attain a strong
predictive model to gain better performance. 'e gradient
boosting approach is more promising compared to tradi-
tional classification approaches of machine learning [33].
Hyper-parameters are required to be finely tuned to improve
the accuracy performance of the model.

Ensemble methods have been implemented in several
data mining competitions like KDD-Cup, Netflix Prize, and
proposals for the ID framework [34]. Ensemble learning is a
learning approach that improves the performance of a
machine learning model by incorporating many machine
learning models. Most of the winning results of various
competitions (like Kaggle) have been in favor of ensemble
learning-based approaches. Ensemble methods are com-
monly used for building ID models due to their feature
characterization. Ensembles of different features are com-
bined for a final decision [35]. Ensembles are also used to
detect some malicious executables that have never been
noticed earlier [36]. It was first implemented by Tianqi Chen
but later contributed by many researchers [37]. It relates to a

wide collection of tools under DistributedMachine Learning
Community (DMLC). XGBoost is one of the best promising
ensemble methods that come with competitive outputs [38].
XGBoost allows the tuning of regularization parameters to
improve the accuracy, efficiency, and feasibility of the model.
Authors in [39] focused on building a strong classification
model for IDS. In this article, various decision tree ensemble
learning techniques have been analyzed for the prediction of
anomalous patterns in the network traffic of IoT systems. In
this article, the practical will be carried out using the “TON-
IoT” datasets [13].

3. Methods and Techniques Used for
Proposed Work

Data analysis is an approach to discover useful information
by evaluating raw data. It is performed using data analysis
tools and a sequence of processes including data cleaning,
data transformation, and data modeling. Data analysis helps
to make useful predictions and forecasting from big data.
'ere are several techniques to perform data analysis such as
traditional techniques, soft computing techniques, and
forecasting techniques. 'e selection of data analysis tech-
nique depends on the aim of the investigation and type of
data (quantitative or qualitative).

Traditional techniques include regression methods, ex-
ponential methods, and least-squares reweighting iterative
methods. Traditional techniques are generally used for
predictive analysis of small-size datasets for solving simple
statistical problems. Some major limitations are associated
with the traditional techniques, such as overfitting during
processing big data, feature engineering problems, less ac-
curacy, and execution speed. Overfitting and underfitting are
the major problems exhibited by statistical models [40]. A
statistical model is said to have underfitting when it is not
able to capture the underlying logic of the data. It destroys
the accuracy of the machine where the model is deployed. It
usually happens due to a lack of availability of enough data to
build an accurate model. 'is problem can be overcome by
using more data and reducing features in feature selection.
Underfitting gives high bias and low variance. On the other
hand, a model is said to be overfitted when it is trained with a
lot of data. Due to the bulkiness of data in the dataset, the
model starts learning with noise and inaccurate data which
can lead to the building of unrealistic models. It cannot be
avoided completely but can be reduced by reducing the size
of the network and appropriate data selection methods [41].
Overfitting has high variance and low bias.

Soft computing techniques include neural networks
(ANN), fuzzy logic, knowledge-based expert systems, and
genetic algorithms. Soft computing is a new multidisci-
plinary system that encourages the design of new generation
artificial intelligence (AI) to provide solutions to real-world
issues. It also motivates the integration of computational
tools, techniques, and applications in different combinato-
rial forms. It is a cost-effective and rapid solution to various
complex problems for which solutions do not exist [42]. But
it is still a developing and growing technique. Some major
limitations are associated with these systems such as high

Computational Intelligence and Neuroscience 3

execution time, loss of model interoperability, computa-
tional overloading, and limited generalization [43].

Forecasting methods have been focused on for the last
few decades for various applications to predict a large
number of service points. 'ese can be called as predictive
analysis methods. Conventional forecasting and advanced
forecasting techniques are commonly used data analysis and
forecasting techniques. Conventional methods include
simple linear regression, multiple linear regression, and
straight-line methods. 'ese methods provide sensible
forecasting prediction, but modern forecasting approaches
provide much better accuracy as compared to conventional
techniques. Moreover, modern techniques have advantages
like flexibility, higher efficiency, and interpretability on big
datasets. Modern forecasting methods include various
machine learning methods such as gradient boosting
methods (GBM) and deep learning techniques such as long-
short term memory (LSTM). Artificial neural network
(ANN) is also a type of advanced forecasting. 'ese tech-
niques provide powerful time-series forecasting and pre-
dictive analysis even for big data [44]. 'is study utilizes
machine learning-based modern data analysis methods for
constructing and designing the proposed model.

3.1. Ensemble Learning. Ensemble approaches have been
extensively deployed for application forecasting in various
areas due to their simplicity of implementation. Ensemble
means to view a group of elements all together instead of
using them individually. In the ensemble-based approach,
multiple models are created and combined to solve a
complex problem [45]. Machine learning algorithms aim to
build an unbiased model from a dataset. 'e constructed
model is designated as training or learning, and the model
that learns from the data is named as learner or hypothesis.
Figure 1 shows an ensemble-based learning model that
assembles a set of classifiers to classify new data points by
choosing certain weak predictions to combine them into a
strong predictor. Instead of a single classifier, the ensemble
methods use a combination of multiple classifiers or pre-
dictors which are trained to resolve the same problem and
aggregated with each other to obtain better results. Ensemble
methods may either use homogeneous base models or
different types of base models [43]. Ensemble-based ma-
chine learning can optimize the performance of a model by
aggregating the prediction results obtained from selected
weak models [46]. While aggregating the base models, it is
required that a base model with high variance and low bias
must be aggregated using a variance reducing scheme, and a
base model with high bias and low variance must be ag-
gregated using a bias reducing scheme [47].

Most of the traditional learning approaches which
generate a single hypothesis face many computational,
statistical, and representational problems which could be
conquered by ensemble learning to some extent [48]. 'e
resulting prediction of the ensemble is obtained through
majority voting [49]. 'ese techniques generally depend on
randomization approaches, which are able to generate
manifold solutions to imminent problems. Ensemble assists

to upgrade the generalization and robustness of the model.
Decision tree-based traditional learning methods face high
variance and bias problems. Actually, the bias-variance
trade-off is the basic property of a predictive model. Bias
occurs due to wrong belief in the algorithm and high bias
indicates the underfitting of the model. On the other hand,
the variance occurs due to the sensitivity of the algorithm
and indicates that the model is too complex, and it leads to
overfitting. Hence, there must be a proper balance between
bias and variance in an ideal model. An individual decision
tree generates a single hypothesis, and an ensemble of de-
cision trees can producemuch better results by reducing bias
and variance [48]. Bagging and boosting are most widely
used ensemble approaches [50] that will be discussed further
in this section.

3.1.1. Bagging. Bagging is also recognized as bootstrap ag-
gregation, and it uses sequential as well as parallel methods
to generate samples. Bagging generally uses analogous weak
learners and trains them concurrently, followed by com-
bining them using certain averaging methods. In bagging,
multiple base learners are hypothesized on a randomly se-
lected set of training instances with replacement, and a base
learner is trained on each set [51]. Bagging follows “voting”
and “regression averaging” methods for solving the classi-
fication problems. Random forest (RF) is an example of
bagging that is widely used in design of an IDS [52]. 'e
structure of bagging algorithm is very much similar to the
structure of general ensemble learning and has been shown
in Figure 1.

(1). Random Forest (RF). Random forest is one of the most
successful and well-known ML algorithms that is known for
high accuracy and independent fast learning over datasets of
distinct nature. In [49], Breiman proposed a value for this
parameter which is “[log2 (#f) + 1]”, where “f” is the set of
features. Random forest algorithm is an ensemble approach
that makes predictions on the basis of results obtained from
a group of decision trees. It performs the resampling of trees
using the bootstrap (bagging) mechanism [53].'e trees in a
forest are trained using a bootstrap subset created for
training. Each node in RF is split using the best predictor
that is chosen randomly at the node level. 'e additive
random layer makes it stronger against overfitting. A small
de-correlating twist is made to improve the bagged trees.
Many decision trees could be built by bagging on bootstrap
sets of training data. A random sample of n predictors is
selected as a splitting candidate out of a complete set of
predictors. 'e number of trees in the forest becomes larger,
so the generalization error of random forest meets a limit.
'e major advantage of random forest is that parameters are
rarely required to be tuned and remarkable results could be
obtained through default parameter settings [54]. Here, the
parameters that need to be tuned are related to controlling
the depth of the decision tree.'e growth of the decision tree
could be bounded by tuning the “maximum depth” and
“number of instances per node.”

Random Forest (Bagging) Algorithm

4 Computational Intelligence and Neuroscience

Step1: Select P random data points (random samples)
from the training set of the given dataset.
Step2: Build the decision tree using selected data points
for every point.
Step3: Specify m, the number of decision trees to be
built.
Step4: Repeat steps 1 and 2.
Step5: Find the predictive value of each decision tree
and the data points to the winner of majority voting.

Advantages of Random Forest

(i) RF has the potential to solve both classification and
regression problems.

(ii) RF can improve the accuracy of the model.
(iii) RF is less liable to the problem of overfitting.

Disadvantages of Random Forest

(i) Computations may become more complex due to
the high number of trees.

(ii) 'e algorithm may make modifications by minor
data transformation.

3.1.2. Boosting. Boosting is a technique used for improving
the accuracy of a learning model. Boosting adopts the se-
quential ensemble method [55]. Using the boosting tech-
nique, the ensemble learner can boost the weak learner and
convert into strong learner [50]. A strong learner is an
optimized learner that approaches nearly perfect (moderate)
performance. 'e idea behind boosting is to reduce clas-
sification errors and improve the results over many other
classification algorithms. A set of learners are trained se-
quentially and merged for prediction. Each base model
depends on the previous base model.

Machine learning models designed using boosting al-
gorithms emphasize the premium quality prediction done by
a single model. Models designed using boosting methods
produce superior results [56]. A specific weak model can be
improved using the boosting mechanism. 'e boosting al-
gorithm attempts to enhance the prediction potential by

training a series of weak models. Each next individual model
is trained with the input data and the weakness of its pre-
vious model and attempts to recover the deficiency of its
predecessor. A model developed using the boosting tech-
nique is recognized as a generic model instead of the specific
model. 'e idea behind boosting is to design an efficient
algorithm to convert relatively weak hypotheses into very
strong hypotheses. 'ese strong learners of boosting algo-
rithms are also faster than the learners of bagging (random
forest). Actually, boosting algorithm boosts the performance
of classification as well as regression [57]. Figure 2 shows the
boosting ensemble-based learning model, where each in-
dividual model learns on the weakness of its previous model.

Boosting Algorithm

Step 1: Train the first base model (say model 1) with
input Dataset D and the learning algorithm.
Step 2: Calculate the result in the form of weight.
Step 3: Train the next base model with the weak pre-
dicted result of its previous model and repeat step 2.
Step 4: Repeat step 3 until model N.
Step 5: Obtain weight N as the final prediction and
generate the final result.

(2) Gradient Boosting (GB): AdaBoost was later gener-
alized as GB. In AdaBoost, the weak learner refers to the
decision tree with a single split called decision stumps. GB is
one of the most powerful decision tree algorithms of ma-
chine learning. Prediction models built using GB give
outstanding accuracy and speed in the case of large and
complex datasets (a large number of features and/or sam-
ples) [57]. Bias and variance are two significant errors that
are solved by machine learning-based models. GB ensemble
models reduce bias errors very efficiently. Gradient boosting
algorithm integrates a number of weak classifiers to make a
strong classifier F(x) [29]. In the GB approach, the classi-
fication depends on the residuals of the previous iterations.
Consider a training dataset D; where D� {Xiyi}1 ..,..N, and the
objective of GB is to get an approximation. Gradient
boosting constructs an additive approximation of the
weighted sum of functions (F∗(X)) that has been presented
as follows:

Input X

Learner /Hypothesis 1

Learner /Hypothesis 2

Learner /Hypothesis …

Learner /Hypothesis n

Combine the best
predictors.

.

.

Output Y

Weak Prediction 1

Weak Prediction 2

Weak Prediction ...

Weak Prediction n

.

.

.

Figure 1: Ensemble-based learning model.

Computational Intelligence and Neuroscience 5

F
∗
(X) � Fk−1(X) + ρkhk(X), (1)

where ρk is the weight of the kth function hk (X). 'e ap-
proximation is built iteratively; for which constant ap-
proximation, F0(X) is obtained initially for F∗(X). 'e
functions are the models of an ensemble technique. If the
iterative process is not regularized properly, the built model
can face the overfitting problem. 'ere are many regulari-
zation parameters that can be considered to control the GB
additive process. Gradient boosting can be regularized
naturally using the shrinkage process to reduce every step of
the gradient descent F∗(X). 'e following equation intro-
duces the shrinkage into GB using regularization parameters
] and k:

Fk(X) � Fk−1(X) +]ρkhk(X), 0<]≤ 1, (2)

where parameter] is the “learning rate” and k represents the
number of components. 'ese regularization parameters
can control the degree of fit that affects the result optimality.
Increasing or decreasing the value of learning rate influences
the outcome. 'e effect of every feature is calculated se-
quentially in order to obtain target accuracy [45].

Loss function L(φ) is used to calculate the residuals. 'e
loss function is optimized using gradient descent. Final
result Ø(X) is calculated by adding the results of the T se-
quential classifiers. fk is the decision tree and M is the total
number of iterations [58]. 'e following equation presents
the mathematical calculation of final result of GB:

Y � [(X) � 􏽘
M

k�1
fk(X), (3)

where fk ∈ F. Gradient boosting method requires the fol-
lowing three main components: loss function optimization,
prediction using weak learner, and an additive model to add
a weak learner for minimization of a loss function. 'is
algorithm incorporates many weak learners into a strong
learner in a repetitive manner [59].

Advantages of Gradient Boosting

(i) Gradient boosting is a greedy algorithm that can
quickly overfit the training dataset.

(ii) Performance of the algorithm can be improved by
reducing the overfitting.

(iii) Using the regularization approach, various parts of
the algorithm can be panelized.

Disadvantages of Gradient Boosting

(i) High running rate, power consumption, memory
usage, and training time.

(ii) Interpretability problem.

(3). Extreme Gradient Boosting (XGB): Extreme gradient
boosting or XGBoost is a decision tree-based improved GB
algorithm that can improve the accuracy, efficiency, and
feasibility of ensemble-based IDS [60]. It can smoothly deal
with bias-variance trade-offs. It is recently being dominated
by prediction problems including unstructured data (text,
images, voice). It can be used to solve a wide range of
problems including classification, regression, user-defined
prediction, and ranking. It performs parallel computation at
the node level that makes it faster and more powerful than
GB [61]. Many researchers have proved it as one of the
fastest and memory-efficient machine learning algorithms.
XGBoost as an anomaly detection system gives superior
performance. 'e following equation shows the mathe-
matical explanation of XGBoost:

F(X, w) � 􏽘
K

k�0
αkhk X, wk(􏼁

� 􏽘
K

k�0
fk X, wk(􏼁.

(4)

'e main aim of XGB is residual fitting. Residual is the
difference between real and predicted values. Here, X is the
input data, F(X, w) is the model to be obtained, hk is used for
a single tree, w is the tree’s parameter, and αn is weight of k
number of trees. We can obtain the optimal model by
minimizing the loss function F∗ [38]. XGBoost also follows
the randomization technique to improve the performance of
training speed and to reduce the overfitting. 'e random-
ization technique in XGBoost contains the following four
major hyper-parameters: column subsampling of a tree and
its node levels; random subsamples for training independent
trees; learning rate; and n estimators. XGBoost is a con-
venient algorithm to construct a robust classification model.
Due to various features, it can efficiently deal with many

………….Model 1

W
eak

ne
ss

Weak
ness

W
eak

ness

Model 2

Boosting Ensemble (Learning from individual previous model)
Weight 1 Weight 3Weight 2 Weight N

Input Original
Dataset

Generate Final
Result

Model 3 Model N

Figure 2: Boosting ensemble-based learning model

6 Computational Intelligence and Neuroscience

issues related to data classification and high-level pre-
processing [39]. It is able to convert a weak (hypothesis)
learner into a strong (hypothesis) learner using the opti-
mization process. By adding every new tree enables the
classification model to develop fewer false alarms, accurate
data classification, and easy data labeling [62].

Advantages of XGBoost

(i) XGB is comparatively faster than other existing
boosting algorithms.

(ii) It contains linear as well as tree learning
algorithms.

(iii) XGB library is mainly used to design faster and
highly efficient decision tree models.

(iv) It reduces the computing time and optimally
utilizes the memory.

(v) It performs parallel processing. It can use all cores
of the device it is executing on.

(vi) Regularization is a significant feature that enables
it to reduce overfitting problems.

(vii) Portability and flexibility are the important fea-
tures of this algorithm.

(viii) XGB is able to convert a weak learner into a strong
learner using its optimization process.

(ix) It can efficiently detect and handle missing and null
values.

(x) In XGB, tree pruning continues to the maximum
depth.

(xi) XGB can utilize the resources efficiently.

Disadvantages of XGBoost

(i) Although it has a simple solution, it is still not
convenient to optimize memory usage.

(ii) XGB takes high execution time.

(4). Light Gradient Boosting Method (LGBM)
LGBM is a novel boosting model which was proposed by

Microsoft in 2017. 'e outcomes of various machine
learning techniques and the results of ensemble-based
techniques are tested with various parameters such as ac-
curacy and speed. LGB is a distributed, quick, and high-
performance gradient-based uplifting algorithm that is de-
rived from popular machine learning algorithms [63].
Samples with small gradients are well trained (sometimes
generate a small error in training) and those with large
gradients are undertrained.'is algorithm expands leaf-wise
instead of node-wise and the maximum delta value is chosen
for leaf-wise augmentation. It can be used for solving many
machine learning problems like regression, classification,
and prediction [58, 64].'e process of bucketing continuous
features into discrete bins increases the training speed. 'is
factor also improves the efficiency. It follows the leaf-wise
split method instead of level-wise, which results in much
more complex trees. 'is factor plays a role in attaining
higher accuracy. However, it can lead to an overfitting
problem which can be prevented by tuning the parameter
“max_depth”. LGB is composed of decision trees which are
constructed using the following procedure.

'e method to calculate the gain of variation occurs
under weak and strong gradients. 'e training samples are
organized in decreasing order as per the absolute value of
their big and small gradients (gi). 'e first s% samples with
bigger gradients are preserved to construct the subset of
samples S. 'e remaining set SC is created by the (1− s) % of
samples with smaller gradients [31]. 'e subset R with size
r∗| SC| is constructed randomly. Finally, the samples are
divided in accordance with the evaluated V∗j (d) (variance
gain) on S ∪ R subset. Equation (5) presents the mathe-
matical formula for variance gain. Let the feature set be xi ,

where x1, x2, x3, xn

Vj ∗ (d) �
1
n

􏽐 xi ∈ Sagi +(1 − s/r) 􏽐 xi ∈ Ragi(􏼁
2

n
j
a(d)

+
􏽐 xi ∈ Sbgi +(1 − s/r) 􏽐 xi ∈ Rbgi(􏼁

2

n
j

b(d)
⎛⎝ ⎞⎠, (5)

where Sa � xi ∈ S: xij ≤ d􏽮 􏽯, Sb � xi ∈ S:􏼈 xij >d},
Ra � xi ∈ R: xij ≤d􏽮 􏽯, and Rb � xi ∈ R: xij >d􏽮 􏽯; d is the
point of partitioning the dataset to calculate the best gain
invariance; and 1 − s/r is used for normalizing the gradient
sum over R. Each feature in xi is utilized to calculate the split
of training data covering all trees. Important hyper-pa-
rameters of LGB are “learning_rate”, “max_depth”, and
“n_estimators” which could be tuned to obtain the best
performance of the model. LGB uses exclusive feature
bundling and gradient-based one-side sampling (GOSS) for
faster processing [65].

Advantages of LGBM

(i) LGB is the fastest among all decision tree-based
algorithms.

(ii) It serves the fastest training speed and reduces
computational complexity.

(iii) In LGB, continuous values are replaced by discrete
bins resulting in less memory consumption.

(iv) It consumes low communication cost.

(v) It performs with good accuracy.

(vi) Less time consumption for data preprocessing and
decision-making is the most significant feature of
LGB.

Disadvantages of LGBM

(i) Sometimes it compromises in accuracy.

Computational Intelligence and Neuroscience 7

(5) CatBoost (CB). CatBoost is a novel open-sourced GB
library that strongly deals with categorical features even
during the time of preprocessing [27]. It is used as a new
framework for leaf value calculation while choosing the tree
schema, which helps to minimize overfitting. It gives good
performance in terms of accuracy. Decision trees are suitable
for datasets containing numerical features. However, data-
sets that contain categorical features cannot be predicted by
a decision tree. Such features contain discrete sets of values
such as name and ID, which are not comparable with each
other. CatBoost is feasible for such features that convert
categorical data to numerical data before training while
preprocessing [66]. 'e main hyper-parameters of CatBoost
are given in Table 1.

Advantages of CatBoost

(i) High training and test accuracy.

Disadvantages of CatBoost

(i) It compromises in speed.

'ere are certain key differences between bagging and
boosting ensemble algorithms which have been identified by
exploration of the existing literature and research work done
earlier in this section (see Table 2).'e next section identifies
the differences between bagging and boosting-based algo-
rithms on the basis of practical analysis.

4. Dataset Selection and Practical
Implementation

Several methods of machine learning have been used so far
for anomaly detection considering binary classification with
different experimental setups [66–71]. In many cases, they
have achieved outperforming results. In this section, the
study explores and analyzes the performance of bagging and
boosting algorithms to identify the best algorithm for ID
model considering the multiclass classification of the “TON-
IoT dataset” which consists of further datasets related to
individual IoT home scenarios. Each dataset has a specific
number of features and number of instances (see Table 3).
'rough experiments, the study predicts the nature of the
individual record in a dataset means whether it is normal or
anomalous. 'is study utilizes ensemble-based bagging and
boosting techniques that are trained on IoT datasets of
certain home scenarios. Each dataset has 7 or 8 multiclass
labels which will be further classified using ensemble-based
classification techniques [72].

4.1. Procedure for Data Computing and Analysis. 'e entire
computing and data analysis procedure will be implemented
using python programming in the jupyter notebook: An
interactive computing environment.

(i) Identify and adopt a dataset suitable for ID prob-
lems that contain the records of network traffic of
IoT environment.

(ii) Download the “CSV” file containing the “TON-IoT”
dataset that will be utilized as an array.

(iii) Load and prepare data to train and evaluate a model.
Data will be prepared using certain preprocessing
techniques, namely, data cleaning, data transfor-
mation [73], scaling, and feature engineering [74].

(iv) Split the dataset array (features or attributes) into X
(input) and Y (output). Specify the attribute indices
in the format of the NumPy array. After analyzing
the significance of features, select the most prom-
ising features to compute the output [75]. 'e
feature selectionmethod removes the noisy data and
improves the performance of the classifiers [76].

(v) Split the X and Y data into training and test data.
'e training data will be used to prepare and train a
model and test data will be used to make predic-
tions. Specify the size of test data. Calculate
Y_prediction using scikit learn method
“model.predict()”.

(vi) Train the model using different ensemble-based
classification algorithms of machine learning.

5. Experimental Results and Discussion

In this section, the results have been figured out by imple-
menting the ensemble-based machine learning approach on
training and test data of TON-IoT datasets based on IoT
sensors. Generally, the test_size is taken as 20% to 35% of the
total data and the rest of the data is used to train the model.
Each individual ensemble algorithm has its classifier method
that is utilized for designing the model. Table 1 presents the
details of various classifiers considered in this article.

Performance of bagging and boosting algorithms could
be optimized by tuning their respective hyper-parameters.
'e values are assigned to the hyper-parameters of each
classifier and tested until they reach to their best perfor-
mance. Hyper-parameters of XGB could be more finely
tuned as compared to other classifiers.

5.1. Selection of Ensemble Algorithms. 'e algorithm for
model designing will be selected on the basis of analysis and
results obtained using different parameters. Different bagging
and boosting algorithms will be examined and validated on
couple of important metrics such as accuracy score, speed,
precision, recall, F1-score, and mean accuracy.

Table 4 shows the computed results of the train and test
accuracy of ensemble bagging (random forest) and ensemble
GB (XGB, LGB, and CB) classifiers. 'e accuracy perfor-
mance depends on train_test_split parameters such as
“test_size” and “random_state”. 'e performance has been
evaluated on data extracted from different IoT devices
(fridge, garage door, GPS tracker, motion light, thermostat,
and weather monitoring system) in a smart home envi-
ronment. In different cases, the accuracy scores of the ex-
amined algorithms slightly vary from each other. Accuracy is
a prime metric to compare ML-based models, and a good
model must attain high accuracy. However, it is a necessary
condition, not sufficient. 'e algorithm must be evaluated
on a number of parameters to validate and prove its
efficiency.

8 Computational Intelligence and Neuroscience

5.2. Evaluation Metrics. Along with the accuracy, some
other metrics (true positive rate (TPR), false positive rate
(FPR), precision, recall, F1-score) also have been utilized to
evaluate the performance of the algorithms for the proposed
ID model. Accuracy is the percentage of correctly classified
anomalous and the normal index. TPR and TNR are the
percentages of correctly classified total relevant detection

rates. 'e following equation presents the formula for
mathematical calculation of accuracy:

Accuracy �
TP + TN

TP + FN + TN + FP
. (6)

(i) True positive (TP) refers to the number of the actual

Table 1: Details of classifiers.

Algorithm Classifier Tuned hyper parameters
Random forest RandomForestClassifier(. . ..) Random_state, n_jobs, max_depth; n_estimators, criterion� “entropy”
Extreme gradient
boosting XGBClassifier(. . ..) random_state, n_estimators, max_depth, learning_rate,

eval_metric� “mlogloss”
Light gradient boosting LGBMClassifier(. . ..) Random_state, n_estimators, num_leaves, max_depth
CatBoost CatBoostClassifier(.) learning_rate, iterations, max_depth, loss_function� “Multiclass”

Table 2: Summarized differences between Bagging and Boosting.

Bagging Boosting
Weak models often learn independently in parallel Weak models often learn sequentially in an adaptive way
Bagging focuses on obtaining an ensemble model with less
variance

Boosting focus on producing a strong model with less bias but variance can
also be reduced

Different weak learners can be fitted independently and train
concurrently

Different weak learners cannot be fitted independently but models are fitted
iteratively and training of each model depends on the model fitted

previously
'e idea behind boosting is to construct a set predicting
model by aggregating the results of base models.

'e idea behind boosting is to construct a set of models which are
aggregated to get a strong learner.

Table 3: Specification of TON_IoT datasets [13].

Datasets Features No. of
instances Input features Output feature� “type” (classes)

TON_IoT (IoT_Fridge) 6 587077 “Date”, “time”, “fridge_temperature”,
“temp_condition”, “label”

“Normal”, “backdoor”, “ddos”, “injection”,
“password”, “ransomware”, “xss”

TON_IoT
(IoT_Garage_Door) 6 591447 “Date”, “time”, “door_state”,

“sphone_signal”, “label”
“Normal”, “backdoor”, “ddos”, “password”,
“injection”, “scanning”, “ransomware”, “xss”

TON_IoT
(IoT_GPS_Tracker) 6 595687 “Date”, “time”, “latitude”, “longitude”,

“label”
“Normal”, “backdoor”, “ddos”, “injection”,
“password”, “ransomware”, “scanning”, “xss”

TON_IoT
(IoT_Motion_Light) 6 452263 “Date”, “time”, “motion_status”,

“light_status”, “label”
“Backdoor”, “ddos”, “injection”, “normal”,

“password”, “ransomware”, “scanning”, “xss”
TON_IoT
(IoT_'ermostat) 6 442229 “Date”, “time”, “current_temperature”,

“thermostat_status”, “label”
“Backdoor”, “injection”, “normal”,

“password”, “ransomware”, “scanning”, “xss”
TON_IoT
(IoT_Weather) 7 650243 “Date”, “time”, “temperature”, “pressure”,

“humidity”, “label”
“Normal”, “backdoor”, “ddos”, “injection”,
“password”, “ransomware”, “scanning”, “xss”

Table 4: Accuracy score.

Dataset name
Random forest XGBoost LGBM CatBoost

Train Test Train Test Train Test Train Test
TON_IoT (IoT_Fridge) 91.36 91.36 91.37 91.36 91.36 91.35 91.38 91.37
TON_IoT (IoT_Garage_Door) 93.16 93.14 93.16 93.14 93.16 93.14 93.16 93.14
TON_IoT (IoT_GPS_Tracker) 92.94 92.91 97.26 97.28 94.89 94.74 94.18 94.07
TON_IoT (IoT_Motion_Light) 92.08 92.16 92.09 92.11 92.09 92.11 92.09 92.11
TON_IoT (IoT_'ermostat) 95.31 95.32 95.33 95.32 95.31 95.32 95.32 95.32
TON_IoT (IoT_Weather) 96.69 96.69 96.49 96.26 96.91 96.80 95.84 95.84

Computational Intelligence and Neuroscience 9

threats which have been classified as threats. It
means the predicted and actual classes are the same
and true.

(ii) True negative (TN) refers to the normal events
which have been classified as normal. It means the
predicted and actual classes are the same but false.

(iii) False positive (FP) refers to the number of normal
events misclassified as intrusions. It means the
predicted and actual classes are not the same and
they are true and false, respectively.

(iv) False negative (FN) refers to the number of intru-
sions misclassified as normal. It means predicted
and actual classes are not the same and they are false
and true, respectively [77]. It shows that some
threats in the IoT environment have not been
predicted. 'is is known as “unbalanced classifi-
cation” [78].

Just measuring the accuracy with good results is not
sufficient to prove it a most efficient algorithm; still, there are
chances that the model will predict false negative values.

TPR or Sensitivity or Recall �
TP

TP + FN
, (7)

FPR or (1 − Specificity) �
FP

TN + FP
. (8)

TPR or recall or sensitivity determines that how many
relevant instances have been selected. TPR and TNR de-
termine the percentage of total relevant attack vectors and
normal events, respectively, which have been correctly
classified by the classifier. TPR and FPR are the detection
rates, where TPR is the actual positive rate and the FPR is the
actual negative rate.

'e precision or specificity determines the percentage of
relevant outcomes that means how many instances are
relevant out of the total selected instances. Equations (9) and
(10) refer to the mathematical formula of Precision and F1-
score, respectively. F1-score refers to the harmonic mean of
precision and recall. It might be due to disproportionate
class distribution in the training dataset.

Precision �
TP

TP + FP
, (9)

F1_score � 2∗
Precision∗Recall
Precision∗Recall

. (10)

Here, the precision, recall, and F1-score of different
algorithms have been computed followed by the analysis of
the classification reports of different decision tree classifiers
for the considered datasets. Table 5 shows that in most cases,
boosting-based algorithms result in the highest classification
scores. But no specific boosting algorithm produces the
highest classification score for all the considered datasets and
this analysis could not prove the highest efficiency of any
algorithm. Hence, this evaluation could not do enough work
to identify the most efficient algorithm for classification and
prediction model for ID.

Now this study examines the mean accuracy of con-
sidered datasets using earlier discussed algorithms and some
more GB (HistGradient boosting) algorithms to validate
their efficiency (see Table 6). 'e mean accuracy score
evaluation has been performed using “kFoldCrossValida-
tion” method of “sklearn.model_selection” module of
sklearn library with random sets of train and test data. It is
obtained by calculating the average of k recorded accuracy. It
also serves as a performance metric of the model that val-
idates the performance more strongly. 'is is a method to
train and test the model on a different set of samples instead
of repeating the same data sample. By selecting the value of
k, one can estimate the skill of the model on random
partitions of the original data. Here, the “RepeatedStrati-
fiedKfold” method of cross-validation has been utilized with
parameters “n_splits”, n_repeats”, and “random_state” to
obtain the prediction accuracy. Table 6 shows that using the
k-fold cv, the accuracy of XGBoost and CatBoost was found
better than other comparative algorithms. 'e parameters
have been tuned to obtain the highest accuracy. Here, the
code has been executed with different values assigned to the
hyper-parameters. 'e values of “n_splits� 5” and
“n_repeats� 3” have been assigned and the results produced
by CatBoost algorithm are highest in accuracy.

Table 7 shows the runtime consumed by various en-
semble-based classification algorithms examined in this
study. Runtime is the execution time that represents the total
time consumed by an algorithm from start to stop. If the data
size is big, then it will consume time in seconds. It is very
much important to select an ideal algorithm that can execute
the problem in minimum time duration. For example, a
model has been designed for the classification of records for
prediction of crime, and if it is taking too much execution
time, then it might lead to a delay in crime investigation. It
may also cause destruction and theft of pieces of evidence
during the delay time.Hence, runtime is also an important
parameter to select an algorithm. Here, the LGB classifier has
taken the minimum time (in seconds) that is many times less
compared to some other algorithms.'erefore, an ID model
designed using LGB can give the best possible performance
in terms of speed.

Figures 3(a) to 3(x) present the ROC-AUC curves for the
“TON_IoT” dataset in different home scenarios. 'e curves
measure the correctness of the rank order of classification
[34]. 'e results have been represented using the receiver
operating characteristic (ROC) curve that shows the graph of
the performance of a classification framework at each
classification threshold. 'ese are important aspects of
machine learning for graphical representation of true pos-
itive (actual positive) rate and false positive (actual negative)
rate. ROC curves are generated by plotting the connection
(trade-off) between TPR (recall) and FPR on distinct
threshold locations. ROC curves are used to test and
compare the adequacy of a model. Figures 3(a) to 3(d)
present the TPR and FPR for IoT_Fridge; Figures 3(e) to
3(h) present the TPR and FPR for IoT_Garage_Door;
Figures 3(i) to 3(l) present the TPR and FPR for IoT_GP-
S_Tracker; Figures 3(m) to 3(p) present the TPR and FPR for
IoT_Motion_Light; Figures 3(q) to 3(t) present the TPR and

10 Computational Intelligence and Neuroscience

FPR for IoT_'ermostat; and Figures 3(u) to 3(x) present
the TPR and FPR for IoT_Weather using random forest,
XGB, LGBM, and CatBoost classifiers.

Table 8 presents the ROC_AUC score that is computed
using the ROC_AUC_Score () method whose parameters are

“y”, “predict_proba(X)”, and “multi_class� ovr”. 'e pre-
dict_proba(X) calculates the probability of the types of output
classes on the basis of input samples. 'e performance of the
classification results generally depends on some hyper-pa-
rameters of “make_classification” function, namely, “Number

Table 5: Classification report.

Dataset Models Precision Recall F1-score

TON_IoT (IoT_Fridge)

Random forest 0.89 0.91 0.89
XGB 0.89 0.91 0.89
LGBM 0.89 0.91 0.89
CB 0.90 0.91 0.89

TON_IoT (IoT_Garage_Door)

Random forest 0.90 0.93 0.91
XGB 0.90 0.93 0.91
LGBM 0.90 0.93 0.91
CB 0.90 0.93 0.91

TON_IoT (IoT_GPS_Tracker)

Random forest 0.92 0.93 0.92
XGB 0.97 0.97 0.97
LGBM 0.95 0.95 0.95
CB 0.94 0.94 0.94

TON_IoT (IoT_Motion_Light)

Random forest 0.89 0.92 0.90
XGB 0.89 0.92 0.90
LGBM 0.89 0.92 0.90
CB 0.89 0.92 0.90

TON_IoT (IoT_'ermostat)

Random forest 0.92 0.95 0.94
XGB 0.93 0.95 0.94
LGBM 0.92 0.95 0.94
CB 0.92 0.95 0.94

TON_IoT (IoT_Weather)

Random forest 0.97 0.97 0.96
XGB 0.96 0.96 0.96
LGBM 0.97 0.97 0.97
CB 0.96 0.96 0.96

Table 6: Mean accuracy (cross validation).

Dataset name
Mean accuracy (Cross_Validation)

Random
forest

Gradient
boosting

HistGradient
boosting

XGB
classifier

LGBM
classifier CB classifier

TON_IoT (IoT_Fridge) 94.3 92.0 93.8 94.3 93.9 94.5
TON_IoT
(IoT_Garage_Door) 93.9 91.1 93.6 93.9 93.6 94.4

TON_IoT (IoT_GPS_Tracker) 94.3 92.0 93.9 94.0 93.9 94.5
TON_IoT
(IoT_Motion_Light) 95.2 92.6 94.8 95.2 94.8 95.4

TON_IoT (IoT_'ermostat) 93.7 91.8 93.3 93.3 93.4 93.8
TON_IoT (IoT_Weather) 95.4 93.1 95.4 95.4 95.4 95.7

Table 7: Runtime (in seconds) performance.

Dataset name
Runtime (in seconds)

Random forest Gradient boosting HistGradient boosting XGB classifier LGB classifier CB classifier
TON_IoT (IoT_Fridge) 39.935 41.937 8.119 43.124 6.495 113.525
TON_IoT (IoT_Garage_Door) 43.233 54.916 9.368 50.577 5.997 124.883
TON_IoT (IoT_GPS_Tracker) 40.104 46.075 8.329 43.663 5.966 114.045
TON_IoT (IoT_Motion_Light) 45.709 52.981 12.657 51.432 5.019 132.642
TON_IoT (IoT_'ermostat) 49.82 36.902 6.753 36.856 5.447 95.517
TON_IoT (IoT_Weather) 51.05 61.381 8.928 53.552 6.729 134.768

Computational Intelligence and Neuroscience 11

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2

normal vs Rest
backdoor vs Rest
ddos vs Rest
injection vs Rest
password vs Rest
ransomware vs Rest
xss vs Rest

0.4
False Positive Rate

Multiclass_Fridge_Ran_For_ROC curve

0.6 0.8 1.0

(a)

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2

normal vs Rest
backdoor vs Rest
ddos vs Rest
injection vs Rest
password vs Rest
ransomware vs Rest
xss vs Rest

0.4
False Positive Rate

Multiclass_Fridge_XGB_ROC curve

0.6 0.8 1.0

(b)

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2

normal vs Rest
backdoor vs Rest
ddos vs Rest
injection vs Rest
password vs Rest
ransomware vs Rest
xss vs Rest

0.4
False Positive Rate

Multiclass Fridge_LGBM_ROC curve

0.6 0.8 1.0

(c)

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2

normal vs Rest
backdoor vs Rest
ddos vs Rest
injection vs Rest
password vs Rest
ransomware vs Rest
xss vs Rest

0.4
False Positive Rate

Multiclass FridgecatGB_ROC curve

0.6 0.8 1.0

(d)

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass_Ran_For_Garage_Door ROC curve

0.6 0.8 1.0

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

(e)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass_XGB_GarageDoor ROC curve

0.6 0.8 1.0

(f)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass LGBM_Garage_Door_ROC curve

0.6 0.8 1.0

(g)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass Garage_catGB_ROC curve

0.6 0.8 1.0

(h)

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass GPSTracker_RanFor_ROC curve

0.6 0.8 1.0

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

(i)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass GPSTracker_XGB_ROC curve

0.6 0.8 1.0

(j)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass GPSTracker_LGBM_ROC curve

0.6 0.8 1.0

(k)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e
0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass GPSTracker_catGB_ROC curve

0.6 0.8 1.0

(l)

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass_MotionLight_RanFor_ROC curve

0.6 0.8 1.0

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

(m)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass_MotionLight_XGB_ROC curve

0.6 0.8 1.0

(n)

normal vs Rest
backdoor vs Rest
ddos vs Rest
injection vs Rest
password vs Rest
ransomware vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass MotionLight_LGBM_ROC curve

0.6 0.8 1.0

(o)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass MotionLight_catGB_ROC curve

0.6 0.8 1.0

(p)

Figure 3: Continued.

12 Computational Intelligence and Neuroscience

of samples”, “selected features”, and “random states”. Here
“ovr” stands for One-Vs-Rest that is used for multiclass
classification. It divides the multiclass dataset into numerous
binary classification problems. AUC presents the relation
between TPR and FPR.'e highlighted values in Table 8 show
that the boosting classifier, especially LGB, produces highest
ROC_AUC score in most of the cases.

'e ROC_AUC curves in Figures 3(a) to 3(x) show that
the random forest and the light gradient boost (LGB) al-
gorithms have the highest TPR and FPR. LGB takes the
lowest runtime and high TPR and FPR. Sometimes LGB

compromises in the accuracy but not too much. 'e ac-
curacy results produced by LGB are not very much less than
others. Runtime must also be considered for selecting an
efficient predictive algorithm in designing a model for an
IDS.

6. Conclusion

In this article, the ensemble-based machine learning algo-
rithms handled very complex and big data of Internet of
'ings with good potentiality. 'e ensemble bagging and

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass �ermostat_RanFor_ROC curve

0.6 0.8 1.0

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

(q)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass �ermostat_XGB_ROC curve

0.6 0.8 1.0

(r)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass �ermostat_LGBM_ROC curve

0.6 0.8 1.0

(s)

backdoor vs Rest
injection vs Rest
normal vs Rest
injection vs Rest
password vs Rest
ransomware vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass �ermostat_catGB_ROC curve

0.6 0.8 1.0

(t)

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass_Weather_Ran_For_ROC curve

0.6 0.8 1.0

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

(u)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass_Weather_XGB ROC curve

0.6 0.8 1.0

(v)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass Weather_LGBM_ROC curve

0.6 0.8 1.0

(w)

backdoor vs Rest
ddos vs Rest
injection vs Rest
normal vs Rest
password vs Rest
ransomware vs Rest
scanning vs Rest
xss vs Rest

1.0

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

0.6

0.4

0.2

0.0

0.0 0.2 0.4
False Positive Rate

Multiclass Weather_catGB_ROC curve

0.6 0.8 1.0

(x)

Figure 3: ROC_AUC curves of classification models of datasets: (a) Fridge using random forest, (b) Fridge using XGBoost, (c) Fridge using
LGBM, (d) Fridge using CatBoost, (e) Garage_Door using random forest, (f) Garage_Door using XGBoost, (g) Garage_Door using
LGBoost, (h) Garage_Door using CatBoost, (i) GPS_Tracker using random forest, (j) GPS_Tracker using XGBoost, (k) GPS_Tracker using
LGBoost, (l) GPS_Tracker using CatBoost, (m) Motion_Light using random forest, (n) Motion_Light using XGBoost, (o) Motion_Light
using LGBoost, (p) Motion_Light using CatBoost, (q)'ermostat using random forest, (r)'ermostat using XGBoost, (s)'ermostat using
LGBoost, (t) 'ermostat using CatBoost, (u) Weather using random forest, (v) Weather using XGBoost, (w) Weather using LGBoost, and
(x) Weather using CatBoost.

Table 8: ROC_AUC_Score.

Dataset name
ROC_AUC score

Random forest XGB classifier LGB classifier CB classifier
TON_IoT (IoT_Fridge) 98.57 98.70 98.65 98.74
TON_IoT (IoT_Garage_Door) 98.57 98.74 98.95 98.99
TON_IoT (IoT_GPS_Tracker) 98.23 98.26 98.69 98.39
TON_IoT (IoT_Motion_Light) 98.80 98.91 98.99 98.86
TON_IoT (IoT_'ermostat) 98.57 98.63 99.33 98.75
TON_IoT (IoT_Weather) 98.78 98.73 99.23 99.03

Computational Intelligence and Neuroscience 13

boosting classification approaches have been analyzed to
retain a good multiclass classification model that can predict
the types of normal and anomalous classes in IoT network
traffic. 'is article also has validated the algorithms for
designing a model for intrusion detection by training on
several sets of train data and evaluated on separate test data
by tuning the values of hyper-parameters. For avoiding the
repetitions, each time the training and test sets have been
shuffled using “RepeatedStratifiedKfold” methods of cross-
validation. In this article, the comparison of ensemble
bagging and boosting algorithms has been carried out in
terms of accuracy score, mean accuracy score, speed, pre-
cision, recall, F1-score, and auc_score. 'e light gradient
boosting (LGB) algorithm is the most efficient algorithm in
terms of speed and ROC_AUC score. Sometimes LGB
compromises in terms of accuracy. Still, the accuracy score is
very good, and it is not very much less than other classi-
fication algorithms. Random forest is also one of the most
accurate algorithms but it takes high execution time and
computational power and it is too much complex. Speed is
an important metric for an intrusion detection model to
obtain quick outcomes and LGB was found to be the fastest
algorithmwith lowest runtime. Hence, light gradient boost is
the best algorithm to be selected for designing an efficient
intrusion detection system. In future, the proposed work will
be helpful to design a very fast, accurate, and lightweight
intrusion detection model for IoT-based smart environ-
ment. 'e proposed work will be helpful to perform mul-
ticlass classification of datasets containing large number of
complex data records. 'ere is a wide scope of the proposed
work not particularly for intrusion detection in IoT but also
for classification and prediction of various applications of
different environments.

Data Availability

'e data are available on request from the corresponding
author.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

References

[1] D. J. Langley, J. Van Doorn, I. C. L. Ng, S. Stieglitz, A. Lazovik,
and A. Boonstra, “'e Internet of Everything: smart things
and their impact on business models,” Journal of Business
Research, vol. 122, pp. 853–863, 2021.

[2] S. Kennedy, H. Li, C. Wang, H. Liu, B. Wang, and W. Sun, “I
can hear your alexa: voice command fingerprinting on smart
home speakers,” in Proceedings of the 2019 IEEE Conference on
Communications and Network Security (CNS), pp. 232–240,
Washington, DC, USA, June 2019.

[3] J.-S. Fu, Y. Liu, H.-C. Chao, B. K. Bhargava, and Z.-J. Zhang,
“Secure data storage and searching for industrial IoT by in-
tegrating fog computing and cloud computing,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4519–4528, 2018.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog com-
puting and its role in the internet of things,” in Proceedings of

the 1st ACM MCC Workshop on Mobile Cloud Computing,
pp. 13–15, Helsinki, Finland, August 2012.

[5] A. M. Gamundani, A. Phillips, and H. N. Muyingi, “An
overview of potential authentication threats and attacks on
internet of things(IoT): a focus on smart home applications,”
in Proceedings of the 2018 IEEE International Conference on
Internet of =ings (i=ings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (Smart-
Data), pp. 50–57, Halifax, NS, Canada, July 2018.

[6] N. Amraoui and B. Zouari, “Anomalous behavior detection-
based approach for authenticating smart home system users,”
International Journal of Information Security, pp. 1–26, 2021.

[7] A. Chowdhury, “Recent cyber security attacks and their
mitigation approaches - an overview,” in Applications and
Techniques in Information Security. ATIS 2016, L. Batten and
G. Li, Eds., vol. 651, pp. 54–65, Springer, Berlin, Germany,
2016.

[8] E. Fernandes, A. Rahmati, and N. Feamster, “New problems
and solutions in IoTsecurity and privacy,” 2019, https://arxiv.
org/abs/1910.03686.

[9] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and
S. C. de Alvarenga, “A survey of intrusion detection in In-
ternet of 'ings,” Journal of Network and Computer Appli-
cations, vol. 84, pp. 25–37, 2017.

[10] J. McCarthy, M. Powell, K. Stouffer et al., Securing
Manufacturing Industrial Control Systems: Behavioral
Anomaly Detection, National Institute of Standards and
Technology (NIST), Gaithersburg, Maryland, 2020.

[11] M. Masdari and H. Khezri, “A survey and taxonomy of the
fuzzy signature-based intrusion detection systems,” Applied
Soft Computing, vol. 92, Article ID 106301, 2020.

[12] B. Li, J. Springer, G. Bebis, and M. Hadi Gunes, “A survey of
network flow applications,” Journal of Network and Computer
Applications, vol. 36, no. 2, pp. 567–581, 2013.

[13] D. N. Moustafa, “TON_IoT telemetry datasets: a new gen-
eration dataset of IoT and IIoT,” 2021, https://research.unsw.
edu.au/projects/TONiot-datasets%20-%20Processed_IoT.

[14] A. S. Ashoor and S. Gore, “Importance of intrusion detection
system (IDS),” International Journal of Scientific Engineering
and Research, vol. 2, no. 1, 2011.

[15] I. Ullah and Q. H. Mahmoud, “A two-level flow-based
anomalous activity detection system for IoT networks,”
Electronics, vol. 9, no. 3, pp. 1–18, 2020.

[16] H. Tahaei, F. Afifi, A. Asemi, F. Zaki, and N. B. Anuar, “'e
rise of traffic classification in IoTnetworks: a survey,” Journal
of Network and Computer Applications, vol. 154, Article ID
102538, 2020.

[17] A. Aksoy and M. H. Gunes, “Automated IoT device identi-
fication using network traffic,” in Proceedings of the ICC 2019 -
2019 IEEE International Conference on Communications
(ICC), pp. 1–7, Shanghai, China, May 2019.

[18] A. Juvonen and T. Sipola, “Anomaly detection framework
using rule extraction for efficient intrusion detection,”
pp. 1–35, 2014, https://arxiv.org/abs/1410.7709.

[19] Kdd Cup, “KDD cup 1999 data, the UCI KDD archive in-
formation and computer science University of California,”
1999, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
htmll.

[20] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull,
“Towards the development of realistic botnet dataset in the
internet of things for network forensic analytics: bot-IoT
dataset,” Future Generation Computer Systems, vol. 100,
pp. 779–796, 2019.

14 Computational Intelligence and Neuroscience

https://arxiv.org/abs/1910.03686
https://arxiv.org/abs/1910.03686
https://research.unsw.edu.au/projects/TONiot-datasets%20-%20Processed_IoT
https://research.unsw.edu.au/projects/TONiot-datasets%20-%20Processed_IoT
https://arxiv.org/abs/1410.7709
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.htmll
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.htmll

[21] A. Verma and V. Ranga, “Machine learning based intrusion
detection systems for IoT applications,” Wireless Personal
Communications, vol. 111, no. 4, pp. 2287–2310, 2020.

[22] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani,
“CorrAUC: a malicious bot-IoT traffic detection method in
IoT network using machine-learning techniques,” IEEE In-
ternet of =ings Journal, vol. 8, no. 5, pp. 3242–3254, 2021.

[23] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of things (IoT): a vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[24] S. Bagui, X. Wang, X. Wang, and S. Bagui, “Machine learning
based intrusion detection for IoT botnet,” International
Journal of Machine Learning and Computing, vol. 11, no. 6,
pp. 399–406, 2021.

[25] C.-C. Sun, A. Hahn, and C.-C. Liu, “Cyber security of a power
grid: state-of-the-art,” International Journal of Electrical
Power & Energy Systems, vol. 99, pp. 45–56, 2018.

[26] J. R. Rose, M. Swann, G. Bendiab, S. Shiaeles, and
N. Kolokotronis, “Intrusion detection using network traffic
profiling and machine learning for IoT,” in Proceedings of the
IEEE 7th International Conference on Network Softwarization
(NetSoft), pp. 409–415, Tokyo, Japan, June 2021.

[27] A. A. Ibrahim, L. Raheem, M. Muhammed, A. Rabiat, and
A. Ganiyu, “Comparison of the CatBoost classifier with other
machine learning methods,” International Journal of Ad-
vanced Computer Science and Applications, vol. 11, no. 11,
2020.

[28] B. M. M. AlShahrania and M. T. Quasim, “Classification of
cyber-attack using Adaboost regression classifier and securing
the network,” Turkish Journal of Computer and Mathematics
Education, vol. 12, no. 10, pp. 1215–1223, 2021.

[29] M. Alqahtani, A. Gumaei, H. Mathkour, and M. M. B. Maher
Ben Ismail, “A genetic-based Extreme gradient boosting
model for detecting intrusions in wireless sensor networks,”
Sensors, vol. 19, no. 20, pp. 4383–4420, 2019.

[30] Y. Meidan, M. Bohadana, Y. Mathov et al., “N-BaIoT-Net-
work-Based detection of IoT botnet attacks using deep
autoencoders,” IEEE Pervasive Computing, vol. 17, no. 3,
pp. 12–22, 2018.

[31] C. Tang, N. Luktarhan, and Y. Zhao, “An efficient intrusion
detection method based on LightGBM and autoencoder,”
Symmetry, vol. 12, no. 9, p. 1458, 2020.

[32] B. I. Seraphim and E. Poovammal, “Analysis on intrusion
detection system using machine learning techniques,” in
Computer Networks, Big Data and IoT. Lec. Notes on Data
Engineering and Communications Technologies, A. Pandian,
X. Fernando, and S. M. S. Islam, Eds., vol. 66, pp. 423–441,
Springer, Berlin, Germany, 2021.

[33] X. Lin, X. Zhang, and X. Xu, “Efficient classification of hot
spots and hub protein interfaces by recursive feature elimi-
nation and gradient boosting,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 17, no. 5,
pp. 1525–1534, 2020.

[34] S. Chatterjee and M. K. Hanawal, “Federated Learning for
Intrusion Detection in IoT Security: A Hybrid Ensemble
Approach, Cryptography and Security,” Cornell University,
2021, https://arxiv.org/abs/2106.15349.

[35] G. Giacinto, F. Roli, and L. Didaci, “Fusion of multiple
classifiers for intrusion detection in computer networks,”
Pattern Recognition Letters, vol. 24, no. 12, pp. 1795–1803,
2003.

[36] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious
executables in the wild,” in Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and
data mining, vol. 7, pp. 2721–2744, Washington, DC, USA,
August 2004.

[37] T. Chen and C. Guestrin, “XGBoost,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD, vol. 16, pp. 785–794, ACM,
San Francisco, CA, USA, August 2016.

[38] X. Wang and X. Lu, “A host-based anomaly detection
framework using XGBoost and LSTM for IoT devices,”
Wireless Communications and Mobile Computing, vol. 2020,
Article ID 8838571, 13 pages, 2020.

[39] S. Dhaliwal, A.-A. Nahid, and R. Abbas, “Effective intrusion
detection system using XGBoost,” Information, vol. 9, no. 7,
p. 149, 2018.

[40] A. D. Gavrilov, A. Jordache, M. Vasdani, and J. Deng,
“Preventing model overfitting and underfitting in convolu-
tional neural networks,” International Journal of Software
Science and Computational Intelligence, vol. 10, no. 4,
pp. 19–28, 2018.

[41] X. Ying, “An overview of overfitting and its solutions,” Journal
of Physics: Conference Series, IOP Publishing, vol. 1168,
Article ID 022022, pp. 1–6, 2019.

[42] B. Choudhury and R. M. Jha, “Soft computing techniques,” in
Soft Computing in Electromagnetics: Methods and Applica-
tions, pp. 9–44, Cambridge University Press, Cambridge, UK,
2016.

[43] S.-M. Zhou and J. Q. Gan, “Low-level interpretability and
high-level interpretability: a unified view of data-driven in-
terpretable fuzzy system modelling,” Fuzzy Sets and Systems,
vol. 159, no. 23, pp. 3091–3131, 2008.

[44] J. F. Torres, D. Hadjout, A. Sebaa, F. Mart́ınez-Álvarez, and
A. Troncoso, “Deep learning for time series forecasting: a
survey,” Big Data, vol. 9, no. 1, pp. 3–21, 2021.

[45] J. H. Friedman, “Greedy function approximation: a Gradient
Boosting machine,” Annals of Statistics, vol. 29, no. 5,
pp. 1189–1232, 2001.

[46] Z.-H. Zhou, “Ensemble Methods Foundations and Algo-
rithms,” Chapman & Hall/CRC Machine Learning & Pattern
Recognition Series, pp. 222–234, CRC Press, Boca Raton, FL,
USA, 1st edition, 2012.

[47] P. L. Espinheira, L. C. M. Silva, and F. Cribari-Neto, “Bias and
variance residuals for machine learning nonlinear simplex
regressions,” Expert Systems with Applications, vol. 185, Ar-
ticle ID 115656, 2021.

[48] T. G. Dietterich, “Ensemble methods in machine learning,” in
Multiple Classifier Systems. MCS, vol. 1857, pp. 1–15, Springer,
Berlin, Germany, 2000.

[49] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[50] R. Odegua, “An empirical study of ensemble techniques
(bagging, boosting and stacking),” in Proceedings of the conf.
Deep Learning IndabaX. at: Nigeria, pp. 1–10, Abuja, Nigeria,
March 2019.

[51] B. Efron and R. J. Tibshirani, “An introduction to the
bootstrap,” An Introduction to the Bootstrap, Chapman and
Hall/CRC, London, UK, 1st edition, 1994.

[52] M. Ajdani and H. Ghaffary, “Introduced a new method for
enhancement of intrusion detection with random forest and
PSO algorithm,” Security and Privacy, WILEY, vol. 4, no. 2,
pp. 1–10, 2021.

[53] T.-H. Lee, A. Ullah, and R. Wang, “Bootstrap aggregating and
random forest,” in Macroeconomic Forecasting in the Era of
Big Data Macroeconomic Forecasting in the Era of Big Data,

Computational Intelligence and Neuroscience 15

https://arxiv.org/abs/2106.15349

P. Fuleky, Ed., vol. 52, pp. 389–429, Springer, Berlin,
Germany, 2020.

[54] M. Fern´andez-Delgado, E. Cernadas, S. Barro, and
D. Amorim, “Do we need hundreds of classifiers to solve real
world classification problems?” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 3133–3181, 2014.

[55] R. E. Schapire, “'e boosting approach to machine learning:
an overview,” in Nonlinear Estimation and Classification,
D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, and
B. Yu, Eds., vol. 171, pp. 149–171, Springer, Berlin, Germany,
2003.

[56] Y. Freund and R. E. Schapire, “A short introduction to
boosting,” Journal of Japanese Society for Artificial Intelligence,
vol. 14, no. 5, pp. 771–780, 1999.

[57] Y. Shi, J. Li, and Z. Li, “Gradient boosting with piece-wise
linear regression trees,” in Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence, pp. 3432–
3438, Macao China, August 2019.

[58] X. Zhao and Q. Zhao, “Stock prediction using optimized
LightGBM based on cost awareness,” in Proceedings of the
2021 5th IEEE International Conference on Cybernetics
(CYBCONF), pp. 107–113, Sendai, Japan, June 2021.

[59] D. Upadhyay, J. Manero, M. Zaman, and S. Sampalli, “Gra-
dient boosting feature selection with machine learning clas-
sifiers for intrusion detection on power grids,” IEEE
Transactions on Network and Service Management, vol. 18,
no. 1, pp. 1104–1116, 2021.

[60] C. Zhang, Y. Zhang, X. Shi, G. Almpanidis, G. Fan, and
X. Shen, “On incremental learning for gradient boosting
decision trees,” Neural Processing Letters, vol. 50, no. 1,
pp. 957–987, 2019.

[61] N. Memon, S. B. Patel, and D. P. Patel, “Comparative analysis
of artificial neural network and XGBoost algorithm for Pol-
SAR image classification,” in Pattern Recognition and Ma-
chine Intelligence. PReMI 2019, B. Deka, P. Maji, S. Mitra,
D. Bhattacharyya, P. Bora, and S. Pal, Eds., vol. 11941,
pp. 452–460, Springer, Berlin, Germany, 2019.

[62] J. Brownlee, “A gentle introduction to XGBoost for applied
machine learning, machine learning mastery,” 2021, http://
machinelearningmastery.com/gentle-introduction-xgboost-
appliedmachine-learning/.

[63] D. Jin, Y. Lu, J. Qin, Z. Cheng, and Z. Mao, “SwiftIDS: real-
time intrusion detection system based on LightGBM and
parallel intrusion detection mechanism,” Computers & Se-
curity, vol. 97, no. 10, Article ID 101984, 2020.

[64] A. K. M. Mashuqur Rahman Mazumder, N. Mohammed
Kamruzzaman, N. Akter, N. Arbe, and M. M. Rahman,
“Network intrusion detection using hybrid machine learning
model,” in Proceedings of the 2021 International Conference on
Advances in Electrical, Computing, Communication and
Sustainable Technologies (ICAECT), pp. 1–8, Bhilai, Chhat-
tisgarh, December 2021.

[65] G. Ke, Q. Meng, T. Finely, andW. Chen, “LightGBM: a highly
efficient gradient boosting decision tree,” in Proceedings of the
31st Conference on Neural Information Processing Systems
(NIPS 2017), pp. 3149–3157, Long Beach, CA, USA, December
2017.

[66] A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost: gradient
boosting with categorical features support,” pp. 1–7, 2018,
https://arxiv.org/abs/1810.11363.

[67] V. Kanimozhi and P. Jacob, “Unsw-nb15 dataset feature se-
lection and network intrusion detection using deep learning,
Project: character recognition,” International Journal of Re-
cent Technology and Engineering, vol. 7, no. 5S2, 2019.

[68] M. K. Islam, P. Hridi, M. S. Hossain, and H. S. Narman,
“Network anomaly detection using LightGBM: a gradient
boosting classifier,” in Proceedings of the 30th International
Telecommunication Networks and Applications Conference
(ITNAC), pp. 1–7, Melbourne, Australia, November 2020.

[69] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data
set for network intrusion detection systems (UNSW-NB15
network data set),” in Proceedings of the 2015 Military com-
munications and information systems conference (MilCIS),
pp. 1–6, IEEE, Canberra, Australia, November 2015.

[70] D. G. Mogal, S. R. Ghungrad, and B. B. Bhusare, “NIDS using
machine learning classifiers on UNSW-NB15 and
KDDCUP99 datasets,” International Journal of Advanced
Research in Computer and Communication Engineering
(IJARCCE), vol. 6, no. 4, pp. 533–537, 2017.

[71] S. Hanif, T. Ilyas, andM. Zeeshan, “Intrusion detection in IoT
using artificial neural networks on UNSW-15 dataset,” in
Proceedings of the 2019 IEEE 16th International Conference on
Smart Cities: Improving Quality of Life Using ICT & IoT and
AI (HONET-ICT), pp. 152–156, Charlotte, NC, USA, August
2019.

[72] F. Abramovich, V. Grinshtein, and T. Levy, “Multiclass
classification by sparse multinomial logistic regression,” IEEE
Transactions on Information =eory, vol. 67, no. 7,
pp. 4637–4646, 2021.

[73] G. Nadarajoo, N. F. Ab, Aziz, and N. A. Rahmat, “Impact of
data transformation and preprocessing in supervised learning
algorithm,” Journal of Fundamental and Applied Sciences,
vol. 10, no. 5S, pp. 551–561, 2018.

[74] S. Seth, G. Singh, and K. Kaur Chahal, “A novel time efficient
learning-based approach for smart intrusion detection sys-
tem,” Journal of Big Data, vol. 8, no. 1, 2021.

[75] T. Rawat and V. Khemchandani, “Feature engineering (FE)
tools and techniques for better classification performance,”
International Journal of Innovations in Engineering and
Technology, vol. 8, no. 2, pp. 169–179, 2017.

[76] R. Punmiya and S. Choe, “Energy theft detection using
gradient boosting theft detector with feature engineering-
based preprocessing,” IEEE Transactions on Smart Grid,
vol. 10, no. 2, pp. 2326–2329, 2019.

[77] M. Keshk, N. Moustafa, E. Sitnikova, and G. Creech, “Privacy
preservation intrusion detection technique for SCADA sys-
tems,” in Proceedings of the 2017 Military Communications
and Information Systems Conference (MilCIS), pp. 1–6,
Canberra, Australia, November 2017.

[78] H. Guo and H. L. Viktor, “Learning from imbalanced data sets
with boosting and data generation,” ACM SIGKDD Explo-
rations Newsletter, vol. 6, no. 1, pp. 30–39, 2004.

16 Computational Intelligence and Neuroscience

http://machinelearningmastery.com/gentle-introduction-xgboost-appliedmachine-learning/
http://machinelearningmastery.com/gentle-introduction-xgboost-appliedmachine-learning/
http://machinelearningmastery.com/gentle-introduction-xgboost-appliedmachine-learning/
https://arxiv.org/abs/1810.11363

