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Abstract: The popularity of smokeless tobacco (ST) is growing rapidly and its prevalence 

of use is rising globally. Consumption of Gutkha, an addictive form of ST, is particularly 

common amongst South Asian communities throughout the World. This includes within 

the US, following large-scale immigration into the country. However, there exists a lack of 

knowledge concerning these alternative tobacco products. To this end, a study was carried 

out to determine the toxicity of gutkha, and what role, if any, nicotine contributes to the 

effects. Adult male mice were treated daily for 3-week (5 day/week, once/day), via the oral 

mucosa, with equal volumes (50 μL) of either sterile water (control), a solution of nicotine 

dissolved in water (0.24 mg of nicotine), or a solution of lyophilized guthka dissolved in 

water (21 mg lyophilized gutkha). Serum cotinine, measured weekly, was 36 and 48 ng/mL 

in gutkha- and nicotine-treated mice, respectively. Results demonstrated that exposure to 

nicotine and gutkha reduced heart weight, while exposure to gutkha, but not nicotine, 

decreased liver weight, body weight, and serum testosterone levels (compared to controls). 

These findings suggest that short-term guhtka use adversely impacts growth and circulating 

testosterone levels, and that gutkha toxicity may be driven by components other than 
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nicotine. As use of guthka increases worldwide, future studies are needed to further 

delineate toxicological implications such that appropriate policy decisions can be made. 
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1. Introduction 

It has been estimated that tobacco use will result in the death of one billion people worldwide in this 

century, and while a large majority will be due to use of cigarettes, use of tobacco in other forms also 

contributes to the projected outcome [1]. The use of smokeless tobacco (ST) is growing in popularity 

due to unsupported perception of safety, indoor smoking bans, ability to conceal use, increased social 

acceptance, and reported “positive” physiological effects, such as relaxation, increased concentration, 

heightened alertness, and diminished hunger [1]. Over the last several years, tobacco use and the ST 

marketplace in the United States (US) has changed dramatically with the introduction of new ST products, 

some of which are the result of extensive immigration from South Asia and the Middle East [2]. 

Smokeless tobacco is a broad term that encompasses many different types of tobacco products  

used both orally and nasally. Several forms of ST are linked geographically to countries around the 

world. The two main forms of ST used in the US are chewing tobacco and snuff [3]. Chewing tobacco 

comes as loose leaf, plugs, or twists, while snuff is finely ground tobacco usually placed between the 

gum and cheek. Prevalence of ST use by men in the US varies by state, reaching a peak of 17% in west 

Virginia [4]. Among US high school students, ST continues to be the most prevalent form of tobacco 

usage behind cigarette and cigar smoking, with 7.3% of students reporting current use [5].  

Gutkha, also known as pan masala containing tobacco, is used primarily on the Indian subcontinent 

and in other regions of South Asia [6]. In addition to tobacco, gutkha, which is placed between the gum and 

cheek and sucked or chewed [7], contains a mixture of areca nut (seed of areca palm), slaked lime  

(calcium hydroxide paste), catechu (extract from the wood of the acacia plant), and a number of spices [8].  

Areca nut is a known human carcinogen [9], while little is known about the toxicological implications 

of slaked lime or catechu. Within many regions of South Asia, the prevalence of ST use is growing 

rapidly, with large numbers of children and adolescents using these products [10]. In India,  

he prevalence of ST use is estimated at 33% for men and 18% for women [11]; that in a country with a 

population of over one billion [12]. Use of culturally-specific ST is spreading throughout the world  

via immigration. According to population-based national surveys (i.e., National Survey on Drug  

Use & Health, National Health Interview Survey), the prevalence of tobacco use for south Asians living 

in the US is between 7.0%–12.4% [13], with the majority of tobacco products being smokeless- either 

homemade (paan) or manufactured (paan masala, gutkha) [14].  

In general, ST products contain, among other constituents, nicotine and known carcinogenic chemicals 

such as tobacco-specific N-nitrosamines (TSNA), benzo[a]pyrene, nitrate, cadmium, lead, asenic, 

nickel, and chromium [15]. A number of serious, adverse human health outcomes have been linked to 

ST use [9,16]. These include: periodontitis [17]; oral leukoplakia and submucous fibrosis; gastrointestinal 

abnormalities [18,19]; oropharyngeal, esophageal and pancreatic cancers [20–22]; as well as cancer of 
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the stomach [23]. Other potential adverse health effects of ST may include toxicity of the immune-, 

cardiovascular-, and/or reproductive systems [16].  

The majority of research attention on ST has focused on cancer from an epidemiological or clinical 

standpoint, along with usage [24,25], harm-reduction potential [26–28], and risk perceptions [29,30]. 

Limited studies using animal models have demonstrated that long-term gutkha exposure can result in 

reproductive toxicity including lowered spermatid/sperm count and sperm production in male mice [31]. 

Long-term exposure of mice to gutkha caused decreased antioxidant defense resulting in long-term 

inflammation in the liver and lung [32].  

Short-term exposure studies to different ST forms in animal models are very much lacking, particularly 

those involving gutkha. Given the growing prevalence and global use of culturally-specific tobacco 

products, including gutkha, a murine study was performed to determine the toxicological implications 

of guthka using an exposure route relevant to the human experience.  

2. Materials and Methods 

2.1. Animals  

Upon arrival to NYU, 8-week-old male B6C3F1 mice (Charles River Laboratories, Kingston, NY, 

USA) were housed individually in polycarbonate cages in a temperature- and humidity-regulated room  

(22 °C and 55% relative humidity). Food and water were provided ad libitum and light and dark 

periods were maintained on 12-hour cycles. Mice were allowed to acclimate for two weeks prior to 

treatment and were 10-week-old at the initiation of exposure. All animal procedures were conducted 

under an animal use protocol approved by the New York University Institutional Animal Care and  

Use Committee (IACUC, New York, NY, USA). 

2.2. Preparation and Exposure of Smokeless Tobacco Extract  

An aqueous extract of gutkha was prepared as previously published [32] with slight modifications. 

Commercially available gutkha (RMD Manikchand, Pune, India) was finely powered using a mortar 

and pestle. Twenty grams of the powdered gutkha were dissolved in 50 mL of distilled water and 

incubated at 37 °C for 30 min with thorough shaking. The dissolved contents were filtered through  

125 mm filter paper (Whatman) to remove larger-sized materials, and again through a 0.22 µm filter 

(Corning) to sterilize the recovered products. The recovered sterile solution was immediately frozen at 

−80 °C overnight and lyophilized for 2 days. The lyophilized extract (170 mg) was solublized fresh 

each day in 400 μL distilled water, pH tested, and administered orally by “painting” the buccal cavity  

(i.e., upper and lower pallet and tongue) of each mouse.  

2.3. Experimental Design 

The experimental design used for the study is shown in Figure 1. Twenty-one mice were divided 

randomly into three groups of seven mice each and each mouse was treated (via the oral mucosa) for  

3 week (5 day/week, once/d) in the same manner with either: (1) equal volumes (50 μL) of water 

(control); (2) a solution of nicotine dissolved in water, containing 0.24 mg of nicotine; (3) or the 

gutkha solution as described above. Each mouse was weighed daily prior to treatment. Blood was 
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collected (via tail bleed) weekly from a subset of each treatment group (3 mice/group) approximately  

1 h after exposure and serum cotinine measured using an EIA kit according to the manufacturer’s 

instructions (OraSure Technologies, Inc., Bethlehem, PA, USA). All mice were euthanized 24 h after 

the last exposure by ip injection of pentobarbital (0.2 mL of Sleepaway (Fort Dodge Animal Health, 

Fort Dodge, IA, USA) diluted 1:10 in PBS) and blood collected from the descending aorta. Heart, testes, 

liver and tongue were weighed and the liver quickly frozen in liquid nitrogen and stored at −80 °C for 

later analysis of gene expression.  

Figure 1. Experimental approach used to assess the toxicity of gutkha and nicotine in a 

mouse model. 

 

2.4. RIA of Serum Testosterone  

Serum testosterone was measured by radioimmunoassay (RIA) using an 
125

I assay kit and according 

the manufacturer’s instructions (MP Biomedicals, Costa Mesa, CA, USA). Each sample was measured 

in duplicate using 50 μL of serum per assay tube. 

2.5. RNA Extraction and Real-Time PCR Analyses 

The liver was used to examine mRNA expression of cytochrome P450 2A5 (CYP2A5), a major 

homologue of the human nicotine-metabolizing enzyme CYP2A6, using real-time PCR. Total RNA 

was extracted from a small piece of liver using Trizol (Life Technologies, Grand Island, NY, USA) 

according to the manufacturer’s directions. Following extraction, RNA samples were quantified using a 

NanoDrop (NanoDrop Technologies, Wilmington, DE, USA), treated with DNase I (Turbo DNA-free, 

Ambion, Grand Island, NY, USA) to remove any trace DNA from the sample, and then re-quantified. 

All RNA samples had 260/280 ratios between 1.8 and 2.0. RNA was reverse transcribed in a reaction 

containing 1 mg of RNA and followed the Improm-II Reverse Transcription System (Promega, Madison, 

WI, USA) in a volume of 25 mL, containing 5 mM MgCl2 and 0.5 mL RNasin (Promega),  

80 mM dNTPs, and 4.8 ng/mL random hexamers (Thermo Scientific, Pittsburg, PA, USA). 

Complementary DNAs were used as templates for realtime PCR using Power Sybr Green Master mix 

(Applied Biosystems, Grand Island, NY, USA) in 10 mL reactions containing 1 mL of cDNA and  

25 mM primers (using an Applied Biosystems 7900 HT Fast Realtime PCR system). Relative changes 
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in expression were determined using the DDCt method with 18S rRNA as the housekeeping gene.  

A reference pool (used as a control) was made by combining equal volumes of all cDNAs. Sequences for 

realtime PCR were obtained from PrimerBank and primers for the 18S rRNA housekeeping gene was 

provided by Dr. Jason L. Blum [33].  

2.6. Statistics  

Except for the cotinine time course data, which were analyzed using repeated measures, data were 

analyzed by one-way ANOVA using IBM SPSS Statistics software (IBM, Armonk, NY, USA).  

When appropriate, individual groups were compared by LSD post-hoc testing. Means were considered 

different wherever p < 0.05. In all cases, data are presented as means ± SD. 

3. Results 

3.1. Serum Cotinine 

Serum cotinine, a major metabolite of nicotine, was measured weekly (i.e., three mice/group, 1 h after 

treatment) for mice from each of the three treatment groups. Treatment of mice with either nicotine or 

gutkha yielded elevated serum cotinine levels, averaging ~49 and ~35 ng/mL, respectively, which did 

not change statistically over the 3 week treatment period (p > 0.05, Figure 2).  

Figure 2. Mice treated for 3 week with either nicotine or gutkha had elevated serum 

cotinine levels. Cotinine levels in water-treated control mice were below assay detection 

limits at all time points evaluated. Data represented as means +/− standard deviation, n = 3 

mice/group for each time point. 
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Treatment of mice with nicotine averaged 50.1 (±5.8), 50.5 (±6.5), and 46.3 (±8.1) ng/mL over the 

course of three weeks, while in gutkha-treated mice serum cotinine averaged 38.2 (±7.2), 34.4 (±7.6), 

and 32.9 (±7.6) over the same time frame. Differences in serum cotinine levels between these two groups 

were not statistically significant over the 3 week time period period. Levels of cotinine in water-treated 

control mice were below assay detection limits (i.e., <5 ng/mL).  

3.2. Body and Organ Weights 

All mice were weighed daily before each exposure and then again immediately prior to sacrifice. 

When body weight (BW) on day one of treatment was compared to BW of each mouse from a given 

treatment group 3 weeks later on the day of sacrifice, body weight gain was significantly reduced in 

gutkha treated animals compared with control and the nicotine-treated group (Figure 3). No difference 

was observed between percent BW gain of control- and nicotine-treated group. BW of gutkha-treated 

mice was decreased by 0.1 (±1.3%) following treatment for 3 week, while BW of control and nicotine 

treated mice was increased over time by 5.6 (±1.3%) and 6.5 (±3.0%), respectively.  

Figure 3. Overall body weight change after exposure for 3 week to either water, nicotine or 

gutkha. Body weight decreased in gutkha-exposed mice compared to controls (p < 0.05),  

but not in mice exposed to nicotine alone. n = 7–12 animals/group. 

 
Note: * indicates p < 0.05 compared to control. 

To examine the effects of nicotine and gutkha treatment on relative organ weight (organ weight/BW), 

heart, liver, tongue, and testes were weighed immediately following sacrifice. Relative and absolute 

heart weight was significantly reduced in nicotine and gutkha-treated mice compared to their control 

counterparts (Figure 4a,b). No significant difference was observed in relative and absolute heart weight 

between the nicotine- and gutkha-treated groups. Relative heart weight averaged 5.0 (±0.2) and 4.6 

(±0.3) mg/g in control- and nicotine-treated groups, respectively, while relative heart weight  
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in gutkha-treated mice averaged 4.3 (±0.4) mg/g. Absolute heart weight averaged 0.16 (±0.02),  

0.13 (±0.01), and 0.13 (±0.01) g in control-, nicotine-, and gutkha treated groups, respectively.  

While relative liver weight of nicotine-treated mice was slightly lower than that of control values 

(albeit, not significantly), a significant reduction in relative liver weight was observed in gutkha-treated 

mice when compared to the control or nicotine-treated groups (Figure 5a). No significant differences in 

relative liver weight were observed between control and nicotine-treated mice. Relative liver weight 

averaged 51.5 (±3.4), 49.6 (±2.6), and 47.0 (±3.7) mg/g, respectively, in water-, nicotine- and gutkha-

treated animals. Absolute liver weights were significantly reduced in the nicotine- and gutkha-treated 

groups compared to control (Figure 5b). Absolute liver weights averaged 1.64 ± 0.22, 1.39 ± 0.12,  

and 1.40 ± 0.10 g in the control-, nicotine-, and gutkha-treated groups, respectively. 

Figure 4. Relative (a) and absolute (b) heart weight. Both relative heart weight  

(organ weight/BW) and absolute heart weight was significantly decreased in both nicotine- 

and gutkha-exposed mice compared to controls (p < 0.05). Data represented as means +/− 

standard deviation, n = 7–12 mice/group. 

 
Note: * indicates p < 0.05 compared to control. 

Figure 5. Relative (a) and absolute (b) liver weight. Relative (organ weight/BW) was 

significantly decreased in gutkha-exposed mice (p < 0.05), but not in mice exposed to nicotine 

alone (compared to controls). Absolute heart weight was decreased in both nicotine- and 

gutkha-exposed mice compared to controls (p < 0.05). Data represented as means +/− standard 

deviation, n = 7–12 mice/group. 

 
Note: * indicates p < 0.05 compared to control. 
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Normalized and absolute weights of the tongue and testes were not different between any of the 

groups. Relative tongue weight averaged 3.3 ± 1.3, 2.9 ± 0.48, and 3.1 ± 0.39 mg/g and relative testis 

weight averaged 7.3 ± 1.3, 7.8 ± 0.10, and 7.7 ± 1.3 mg/g, respectively, in water-, nicotine- and gutkha-

treated animals. No morphological changes were observed in the tongue in any of the treatment groups.  

3.3. Serum Testosterone 

Circulating testosterone, measured by RIA, was significantly decreased (compared to control)  

in gutkha-treated mice (Figure 6). In contrast, no significant differences (compared to control) were 

observed in the nicotine-treated group (p > 0.05). Serum testosterone levels averaged 7.61 ± 2.16,  

6.26 ± 2.89, and 1.06 ± 0.47 ng/mL, respectively, in the control, nicotine- and gutkha-treated groups.  

Figure 6. Serum testosterone levels were significantly decreased in gutkha-exposed mice 

(p < 0.05), but not in mice exposed to nicotine alone compared to controls. Data represented 

as means +/− standard deviation, n = 7 mice/group. 

 
Note: * indicates p < 0.05 compared to control. 

3.4. Liver CYP2A5 Expression 

CYP2A5 expression in the liver, measured by real-time PCR, was significantly increased 

(approximately two-fold) in the gutkha-treated group with no effect on expression observed in the 

nicotine-treated mice (compared to control, Figure 7).  

Relative fold change averaged 1.0 (±0.35) and 1.75 (±0.44) in the nicotine- and  

gutkha-treated groups, respectively.  

4. Discussion and Conclusions 

These studies utilized a mouse model and a novel oral mucosal exposure scenario to assess toxicity 

of a globally-used ST product in adult male mice. Results here demonstrated that repeated,  

short-term (three week) oral exposure to gutkha produced a variety of adverse morphological and 

metabolic changes including reduced body weight gain, lowered heart and liver weight, decreased 

circulating testosterone levels, and increased expression of hepatic CYP2A5. Such effects suggest that 

use of gutkha, even for a relatively short time period, produces organ system toxicity and alters critical 
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circulating hormone and enzyme levels. As use of ST products in general is increasing worldwide, 

particularly among adolescents and young adult males [11], these findings have major public  

health implications. 

Figure 7. Relative fold-change in gene expression of CYP2A5 in the liver was 

significantly increased in gutkha-treated mice (p < 0.05), but not in mice exposed to 

nicotine alone compared to controls. Data are represented as means +/− standard deviation, 

n = 7 mice/group. 

 
Note: * indicates p < 0.05 compared to control. 

 

A strength of this study includes the innovative ST oral delivery system. While in vitro studies have 

been performed examining the toxicological implications of a variety of ST products [34–36] and  

in vivo animal systems have examined the effects of ST via food or drinking water [31,37,38],  

oral mucosal absorption of ST, that most closely reflects the human ST experience, has not yet been 

studied. Another strength of this study is the inclusion of nicotine alone into the experimental design 

(at approximately the same circulating cotinine level as that produced by gutkha) that serves to both 

gauge effects of gutkha compared to a known tobacco toxicant and aids in identifying key components 

that may contribute to the observed effects. Although pH of the gutkha solution was higher than that of 

the nicotine solution (8.0 vs. 6.5), and nicotine at an alkaline pH has been shown to be more readily 

absorbed through the mucous membrane than acid/neutral environments [39], cotinine levels were 

similar in both treatment groups, implying that both sets of mice received the same nicotine dose. 

A study by Kumari et al. [31] demonstrated that chronic exposure of mice for six months to 3%  

pan masala with tobacco (a South Asian product similar to gutkha) in the diet produced adverse 

reproductive outcomes including reductions in spermatid count, mature sperm count, and sperm 

production. The investigators also reported testicular damage and abnormal sperm head shape,  

as well as a considerable decline in testicular 17β-hydroxysteroid dehydrogenase (17β-HSD) activity; 

reduced activity of 17β-HSD in the pan masala-treated mice indicates impairment of steroidogenesis. 

Such a change in 17β-HSD activity can lead ultimately to reduced circulating testosterone levels [31]. 

As testosterone is required for the attachment/adherence of different generations of germ cells in 

seminiferous tubules, reduced levels can lead to detachment of germ cells from seminiferous tubule 
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epithelium, potentially leading to infertility [40]. Studies here demonstrate that short-term gutkha 

exposure can lead to decreased testosterone, that could potentially impact male fertility. 

In contrast to that seen in our short-term studies, chronic exposure of mice to pan masala in the diet 

produced a significant decline in testis weight [31,41]. Conflicting data between studies may be due to 

differences in exposure duration, exposure route, and/or overall dose, as mice were exposed here to a 

lower concentration by the oral mucosal route and for a shorter time period. As both testes were 

weighed together for a given animal in our studies, the effect of gutkha on bilateral distribution of the 

testes also could not be accounted for. Few clinical studies have examined semen quality in men who 

use any form of ST. However, a study by Said et al. [42] reported a significant decrease in semen 

quality (i.e., reduced sperm count, motility, viability and altered morphology) associated with high 

(i.e., >6 times per day), moderate (i.e., 3–6 times per day) and mild (i.e., <3 times per day) use of any 

form of ST in men undergoing infertility evaluation. All ST users in this study had a history of use of 

four to ten years. These findings are in contrast to earlier studies by Dikshit et al. [43] who reported no 

significant difference in sperm parameters between ST users (of any form) and non-users. The former 

study included a larger cohort of patients, and also compared patients according to their rate of 

consumption, likely providing greater power for discerning statistical differences. 

It has been reported that both nicotine and its longer-lived metabolite, cotinine, can produce  

dose-dependent inhibition of LH-stimulated testosterone production in isolated mouse Leydig cells [44]. 

However, in studies here, nicotine had no effect on circulating testosterone levels compared to control, 

suggesting that effects of nicotine on testosterone levels are more complex in vivo. Overall, the results 

here suggest that under similar exposure conditions and relatively equivalent internal cotinine levels, 

gutkha acts more dramatically than nicotine alone to adversely affect circulating testosterone levels. 

It is widely accepted that cigarette smoking leads to loss of appetite with subsequent weight  

loss [45–47], and cessation of cigarette smoking usually results in the opposite effect [48–50].  

This effect has also been observed in rats following a 4-week cigarette smoke exposure [51]. Little is 

known, however, about the effect of ST, and in particular gutkha, on body weight changes. In the 

current study body weight gain was significantly suppressed in mice treated with gutkha compared to 

that seen in control mice. Because food intake and feeding patterns were not accounted for, weight loss 

could have been due to a reduction in appetite/food intake. However, treatment with nicotine failed to 

alter body weight gain, suggesting that something other than nicotine was responsible for the  

gutkha-induced change in body weight. 

Relative and absolute liver weight was significantly decreased in mice treated with gutkha  

(compared to their control counterparts), with no relative liver weight changes seen in the  

nicotine-treated groups. Avti et al. [32] noted mild to moderate inflammatory changes in the liver of 

rats following a 32-week exposure to an aqueous extract of gutkha, orally administered by daily 

gavage at a dose of 96 mg/kg BW (in a volume of 300 μL). The same investigators also noted a 

significant decrease in liver antioxidant status, with gutkha causing decreased glutathione (GSH) levels 

and a reduction in the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione 

peroxidase. Such alterations could lead to increased oxidative stress, ultimately resulting in cell 

damage, eventual cell death and in turn to a reduction in liver weight. As with testosterone levels, treatment 

with nicotine alone had less of an effect on liver weight than gutkha exposure, suggesting that hepatic 

effects may be due to gutkha components other than nicotine or those in combination with nicotine.  
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Hepatic CYP2A5 mRNA expression was significantly increased in gutkha-treated mice, but not in 

mice treated with nicotine alone. It is well known that CYP2A5, the mouse homologue for human 

CYP2A6, plays a major role in metabolism and clearance of nicotine in the mouse [52]. In addition to 

nicotine metabolism, CYP2A5 is also responsible for the metabolism of structurally-similar carcinogenic 

nitrosamines [53], many of which are found in ST products, including gutkha [54,55]. One possible 

explanation for the increased expression of CYP2A5 in the gutkha-treated mice could be absorbance of 

additional tobacco-specific nitrosamines, which would not be the case with nicotine treatment alone.  

In addition, testosterone is also a substrate of CYP2A5 demonstrating high affinity for the enzyme [56,57]. 

Gutkha-induced decreases in circulating testosterone levels could thus be explained, in part, by the 

observed increase in CYP2A5 expression. In general, exposure to carcinogenic nitrosamines and 

nicotine in gutkha could have caused increased hepatic expression of CYP2A5, which in-turn 

facilitated a decrease in circulating testosterone levels. 

Taken together, these findings demonstrate that short-term exposure of mice to guhtka leads to 

reduced levels of circulating testosterone and normal body weight gain, as well as reduced liver 

weight. Further investigation is needed to determine the relationship between these outcomes. As the 

same effects were not observed following treatment with nicotine alone, gutkha and (possibly) other 

chemically similar ST products may prove more toxic in some regards. These toxicological studies 

demonstrate that ST products, thought by many to be “safer,” than cigarettes, and lead to a variety of 

long-term adverse health outcomes. Future studies are needed to determine the mechanism(s) that 

underlie the observed effects, as well as to identify particular gutkha component(s) responsible for the 

observed effects in addition to their mode of action following both long term and short term exposure. 
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