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Abstract: The lifestyle adopted by most people in Western societies has an important impact on the
propensity to metabolic disorders (e.g., diabetes, cancer, cardiovascular disease, neurodegenerative
diseases). This is often accompanied by chronic low-grade inflammation, driven by the activation
of various molecular pathways such as STAT3 (signal transducer and activator of transcription 3),
IKK (IκB kinase), MMP9 (matrix metallopeptidase 9), MAPK (mitogen-activated protein kinases),
COX2 (cyclooxigenase 2), and NF-Kβ (nuclear factor kappa-light-chain-enhancer of activated B
cells). Multiple intervention studies have demonstrated that lifestyle changes can lead to reduced
inflammation and improved health. This can be linked to the concept of real-life risk simulation,
since humans are continuously exposed to dietary factors in small doses and complex combinations
(e.g., polyphenols, fibers, polyunsaturated fatty acids, etc.). Inflammation biomarkers improve in
patients who consume a certain amount of fiber per day; some even losing weight. Fasting in
combination with calorie restriction modulates molecular mechanisms such as m-TOR, FOXO, NRF2,
AMPK, and sirtuins, ultimately leads to significantly reduced inflammatory marker levels, as well as
improved metabolic markers. Moving toward healthier dietary habits at the individual level and
in publicly-funded institutions, such as schools or hospitals, could help improving public health,
reducing healthcare costs and improving community resilience to epidemics (such as COVID-19),
which predominantly affects individuals with metabolic diseases.
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1. Introduction

Chronic inflammation is a central process involved in a high number of metabolic disorders
(e.g., obesity, metabolic syndrome, diabetes, dyslipidemia, etc.), including neurodegenerative
(Alzheimer), malignant diseases, and autoimmune diseases. In most if not all chronic inflammatory
conditions, there is an extensively failed resolution of inflammation with high influx of leukocytes,
which in their effort to resolve inflammation stimulate the synthesis of pro-inflammatory molecules
and establish a highly inflammatory micro-environment, leading to extensive fibrosis and tissue
damage [1]. Chronic low-grade inflammation has been shown to either induce or aggravate metabolic
disturbances, including insulin resistance and dyslipidemia, which contributes to the development
of other complications [2]. There is accumulating evidence that, in the case of autoimmune diseases,
when the immune system loses self-tolerance and attacks the body’s cells and tissues, metabolic
disturbances are key contributors to disease progression. Results from the type 1 diabetes mellitus
(T1DM) prediction and prevention studies on T1DM showed that metabolic disturbances preceded the
seroconversion to positive autoantibodies by several months or years in type 1 diabetes mellitus [3,4].

Many chronic inflammatory diseases originate or have their development promoted by an
unbalanced diet. Although the exact mechanism remains unclear, De Rosa et al. suggest that
metabolic pressure, as a result of increased caloric intake, leads to an altered adipose tissue homeostasis.
This results in the synthesis of adipokines and facilitates the overactivation of nutrient-sensing
mechanisms, altering the balance between pro-inflammatory and regulatory T-cells, ultimately
resulting in the loss of immunotolerance [5–7]. In addition, dietary components have the ability
to influence the immune response through the modulation of gut bacteria metabolism, impacting
the risk of developing chronic diseases either directly in the gastrointestinal tract, or in other more
distant organs that impact general metabolism [8–11]. Recent studies have investigated long term
exposure to low doses of chemical mixtures that can be a part of modern lifestyles, such as pesticides,
food additives, or additives contained in food coating materials, proving that different disturbances
appeared from minor biochemical disturbances. These early alterations are generally followed by
oxidative stress induction and organ damage depending on the period of exposure [12–17]. Recently,
it has been shown that long term exposure to stressors might also have a positive association with
increased vulnerability of the population to the microbial and viral infections [18].

Metabolomics are an emerging biological field that allow for the identification and simultaneous
measurement of a large number of small molecules called metabolites in biological matrixes. It has
become the most accurate method to detect metabolic imbalances and is useful for prevention and early
detection of diseases. Moreover, metabolomics have vast applications in clinical practice [19]. Targeted
metabolomic analysis provides insights regarding the normal function of endogenous metabolism,
dietary intake, microbiota, drug metabolism, and nutrient adequacy [20]. The challenge of chronic
inflammatory diseases with respect to early diagnosis can be tackled with metabolomics through the
identification of biomarkers that can discriminate high-risk populations. In a group of autoimmune
patients, it was found that their fatty acid-based metabolic profile and lifestyle factors including physical
activity and alcohol consumption were valuable predictive markers of autoimmune diseases [21].

Humans are exposed to a large number of substances from food, water, cosmetics, air, and so forth,
each at low levels of exposure, and are able to induce cumulative/synergistic effects. Many studies have
focused on the effects induced by administering a single substance at medium-high doses to laboratory
animals. Recently, the concept of real-life risk simulation has emerged, since there is growing evidence
that the effects of chemical mixtures at concentrations for which individual components failed to
elicit have adverse effects when tested individually [14]. The concept of real-life risk simulation can
also incorporate dietary interventions because, in our diets, we expose the human body to myriad
substances in diverse doses [14,22,23].

The discovery of inflammation regulators opened a new window in therapeutics to clear low-grade
chronic inflammation. A large number of physiological processes promote the physiological process of
regulating inflammation. The development of such an approach targets the stimulation of endogenous
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processes that naturally occur during inflammation, which are hampered mainly by the lack of suitable
human models and the heterogeneity of inflammatory disorders. Another limitation includes the lack
of sensitive measurements able to capture the different stages of inflammation and metabolites [24–28].

The present paper aims to evaluate the impact diet might have on immune response, with special
attention as to how lifestyle changes can help mitigate low-grade inflammation. real-life risk simulation
(RLRS) concept. This analysis can be highly relevant in the context of the present viral spread of
SARS-COV-2, since the inflammation is once again in the front line of an acute pathological response.
Identifying strategies to modulate the immune response might prove useful for reducing the virus’s
impact on the respiratory tract and thus diminishing its impact on each patient, as well as on the
general medical system.

2. Food Frequency Questionnaires, Dietary Inflammation Index, and Metabolomics

The majority of studies that assess dietary habits, metabolism, and nutrient intake are based
on food frequency questionnaires. However, food frequency questionnaires (FFQ) have several
limitations, including inconsistent responses on food choices, mostly because answers depend on
responders’ memory. Moreover, FFQ that are filled out by the responder instead of a trained healthcare
professional only provide an overview of the macronutrients’ intake while not fully capturing the
micronutrient status of the person [29]. Micronutrient deficiencies are common in both developing and
affluent countries, affecting two billion people worldwide, according to the World Health Organization
(WHO) [30]. The primary cause of micronutrient deficiencies or “hidden hunger” is poor dietary intake
of micronutrients while other socioeconomic factors play an important role as well [31]. Several diet
and nutrients assessment tools have been developed to evaluate inflammation status. The dietary
inflammation index (DII) is based on literature data and aims to evaluate if a responder follows a pro-
or anti-inflammatory diet. Since its development, there has been an increasing interest in DII, although
other indexes are being developed with similar efficacy [32]. An important limitation of these indexes
is the lack of causality and direct association to a person’s symptoms. Thus, the application of these
indexes in clinical practice is hampered.

A novel empirical, close-ended, and self-administered questionnaire developed by the European
Institute Of Nutritional Medicine provides an inflammation status score that captures the interaction
between the autonomic nervous system and inflammation [33]. There is growing evidence that
imbalances in the autonomic nervous system reflect local or systemic inflammation found in various
diseases and that diet and lifestyle factors can act as regulators of sympathetic and parasympathetic
activity [34–37]. Through a 23-question series, responders provide data on the presence/absence and
status of inflammatory response in different body systems. Overall, the nutritional medicine exam
(Numex) consists of 118 questions and assesses the nutritional deficiencies status in seven categories:
inflammation, nutrition, perceived stress, oxidation, sugar metabolism, amino acids metabolism, and
gut microbiome. Designed by medical doctors and nutritionists, the aim of this empirical test is to
assist the individual and the healthcare professional to evaluate the overall inflammatory status based
on autonomic nervous system changes and track its progression after targeted lifestyle changes. At a
molecular level, metabolomics is the only method that can capture small, time-dependent fluctuations
in the metabolism, thus indicating NCD-related metabolic imbalances [21]. Overall, traditional and
well-established diet and nutrient assessment methods including FFQ and DII have provided valuable
information on the role of specific foods on health and disease, as discussed in the present review.
With the advent of advanced tools, metabolomics is complementary to the standard approach to
provide tailor-made recommendations depending on an individual’s specific needs at a given time.

3. Changing Lifestyle as a Way to Mitigate Inflammation

Recent literature considers BMI cut-off values to not fully depict metabolic disturbances associated
with obesity. The BMI is a mathematical approximation and does not reflect the percentage of total body
fat between body fat and total body muscle or bone mass. As such, BMI does not reflect cardiometabolic



Int. J. Environ. Res. Public Health 2020, 17, 4135 4 of 27

risk. A more comprehensive classification describes four phenotypes for obese individuals: normal
weight obese (NWO), metabolically obese normal weight (MONW), metabolically healthy obese
(MHO), and metabolically unhealthy obese (MUO), or “at risk” obese with MS. This classification
takes into account BMI, fat mass, and waist circumference, but also general biochemical parameters
(e.g., fasting plasma glucose, total cholesterol, LDL, HDL, triglycerides) [38–43]. All four classes are
characterized by impairments of different severity of inflammatory pathways [38,40].

Lifestyle and nutrition are modifiable factors that interact with genetics in regulating chronic
inflammation, leading to aforementioned complications. The changes in nutritional patterns in
Western societies—caused by a high intake of fat and energy-dense, processed foods, as well as
a low intake of fibers, fruits, and vegetables—are associated with a rising prevalence of asthma,
allergies, and autoimmune diseases involving inflammatory mechanisms [44,45]. High fat diets
determine, among other things: intestinal inflammation, favoring lipopolysaccharides (LPS) absorption
from gram-negative gut bacteria, and increasing lipoperoxidation that induces insulin resistance and
inflammation. Saturated fatty acids and LPS activate toll-like receptor 4 (TLR4) signaling pathways
further contribute to promoting systemic inflammation and consequent metabolic disorders [46–52]
(Figure 1).

Figure 1. Impairment of metabolic pathways in lifestyle-associated low-grade chronic inflammation.
STAT3 (signal transducer and activator of transcription 3), IKK (IκB kinase), MMP9 (matrix
metallopeptidase 9), MAPK (mitogen-activated protein kinases), COX2 (cyclooxigenase 2), and NF-Kβ

(nuclear factor kappa-light-chain-enhancer of activated B cells).

Lifestyle- and diet-induced inflammation affects several cellular pathways, which stimulates
the synthesis and secretion of various pro-inflammatory molecules. This ultimately maintains the
low-grade inflammation state.

Interestingly, populations that consume a diet rich in fruits, vegetables, and fibers have lower
incidences of inflammatory diseases compared to Western populations [53,54]. The Mediterranean
diet—based on olive oil, fish, vegetables, and fruits, in addition to incorporating myriad beneficial
phytochemicals—discourages cardiovascular diseases [55–58]. Sourcing food from organic agriculture
could further improve the beneficial health effects of a Mediterranean diet, as suggested in a study
comparing an organic and nonorganic Mediterranean diet on male patients with chronic kidney
disease [59]. This was hypothesized to be due to a decreased exposure to pesticides, since animal
studies have repeatedly found that exposure to pesticide mixtures can be a source of toxicity [16].
However, although most studies have found that organic food consumers are healthier, it is not clear
whether health benefits can be attributed to a decreased exposure to synthetic pesticides [60].

Dietary changes that include specific metabolites can modulate gene expression via epigenetic
modifications, such as DNA methylation or chromatin remodeling (e.g., histone acetylation or
deacetylation). For example, a diet rich in folate and methionine can shape the host epigenome with a
direct impact on molecular pathways associated with obesity-related inflammation. Moreover, global
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DNA hypermethylation in adipocytes derived from obese subjects is correlated with the expression
of genes involved in proinflammatory interactions [61,62]. For example, hypermethylation at 1 kb
upstream of the adiponectin gene’s promoter site was observed in adipocytes of obese mice fed a
high-fat diet, but also in human adipocytes. DNA methyltransferase 1 (DNMT1) expression is correlated
with the methylation of the adiponectin gene, resulting in decreased expression of adiponectin in
obese mice and increased expression in healthy mice. Studies on human adipocytes show a correlation
between DNMT1 expression and BMI, suggesting that obesity is a cause or cofactor of hypermethylation
of adiponectin gene [63,64]. Another factor inducing epigenetic changes is ROS overproduction in
expanded adipose tissue, influencing histone acetylation/deacetylation equilibrium, thus inducing
NFκB activation [65–67].

On the other hand, nutrient restriction decreases AKT (protein kinase B) activity and stimulates
FOXO (a forkhead box O transcription factor) activity, thus stimulating the expression of proteins
involved in cell metabolism, autophagy, and stress-response, contributing to the resolution of
inflammation [61,62]. Fasting regimens are correlated with increased insulin sensitivity, improvement
of blood pressure, and inflammatory status, regardless if they are associated with weight reduction.
For example, 15 days of intermittent fasting induced an increase of glucose uptake rates and a significant
increase of anti-inflammatory adiponectin in lean young men (BMI of 25 kg/m2) without a significant
decrease in body weight. These results were consistent with data from animal studies [68,69].

An important causal factor for low grade inflammation influenced mainly by lifestyle is
the impairment of gut microbiota. Bacteroidetes and firmicutes constitute approximately 90%
of the intestinal population, but the equilibrium is fundamentally changing with ageing and
depending on diet composition. A decline of microbiota diversity occurs during ageing and obese
individuals. Gut dysbiosis has been found in several inflammatory pathologies such as obesity,
diabetes, cardiovascular, and neurodegenerative diseases. This can be connected to the induction of
chronic low-grade inflammation since the gut microbiome is intimately connected to innate immune
responses [70–72]. The relationship between gut microbiome and the host immune system are
influenced by lifestyle interventions. For instance, secretory IgA levels increase after periodic fasting.
This can be linked to changes in gut microbiome composition [14,73], with proteobacteria modulating
the adaptive humoral local response.

Some studies showed that microbiota composition and diversity has a great impact on a
population’s general health status. For example, when comparing the fecal microbiota of European and
rural African children (Burkina Faso), a higher proportion of Prevotella and Xylanibacter (involved in
the digestion of fibers and generation of short chain fatty acids (SCFAs)) was found in the latter group,
which lacked European subjects. These observations could be correlated with the higher prevalence of
inflammatory diseases in European populations compared to rural African ones [74,75].

Chronic exposure to environmental pollutants or food additives could also predispose one to
chronic pathologies, which promotes inflammation [76]. Xenobiotics promotes chronic inflammation,
which is thought to be the generation of lipotoxic conditions, i.e., in the development non-alcoholic
fatty liver disease [77]. This can be mitigated by lifestyle interventions such as periodic fasting [78].
The exposure to xenobiotics such as heavy metals, pesticides, nanoparticles, polycyclic aromatic
hydrocarbons, dioxins, furans, polychlorinated biphenyls, or non-caloric artificial sweeteners can also
promote chronic inflammation by disturbing the gut microbiota [77,79,80].

Decreasing inflammatory burden is more important than ever during the COVID-19 pandemic.
This can be accomplished through everyday actions (e.g., lifestyle, diet, smoking cessation, weight
decrease, sport, etc.). There is a lot of information available in the scientific community regarding the risk
of COVID-19 complications; even the likelihood of death is highly increased by some chronic diseases,
mostly associated with an impaired inflammatory profile (e.g., obesity, type II diabetes, hypertension,
chronic pulmonary disease, etc.) [81,82]. The literature data shows that people without comorbidities
have a much lower risk of severe symptoms as a result of the SARS-COV-2 infection [83]. On the
other hand, increased levels of inflammatory markers cytokines with pro-inflammatory outcomes
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constitute predictors of adverse outcome in COVID-19 patients [84]. Evidence proves that some dietary
elements such as zinc or vitamin D might provide protective effects against viral load [84]. As such,
this reduces the inflammatory burden through a healthy diet, associating (based on RLRS principles)
several protective components (e.g., fiber, polyphenols, PUFAs, vitamins, etc.) that constantly increase
our chance of being better protected against different immune challenges.

4. The Importance of Dietary Fiber for Reducing Inflammation

Fermentable dietary fiber are not enzymatically digested in the small intestine; they pass into the
colon and are transformed by gut bacteria into SCFAs [85,86]. The systemic distribution and generation
of SCFAs—acetate, propionate, and butyrate (the most abundant)—in the distal colon is important to
inhibit inflammatory signals. Germ-free animal models were characterized by inflammatory flairs,
due to the absence of tissue/blood SCFAs [87–89].

Butyrate is a representative member of SCFAs and has a high affinity for different G-protein-coupled
receptors (GPCRs) found throughout the body: GPR41 is found in adipose tissues and immune cells
and GPR43 is found in immune cells. However, GPR109A is present in colonic cells and GPR41 and
GPR43 are activated by butyrate, which favors the production of peptide YY (PYY). This contributes
to gastric emptying and intestinal transit inhibition, which thereby reduces appetite and promotes
glucagon-like peptide 1 (GLP-1). These outcomes indirectly stimulate insulin secretion. GPR109A
activates the inflammation-associated pathway in colonic macrophages and dendritic cells, inducing the
differentiation of IL-10-producing T-cells and release of IL-18 from intestinal epithelial cells [85,90,91].

The presence of fiber in the diet is extremely important (Table 1) as it generates SCFAs and
promotes the proliferation of commensal bacteria, which limits the access of pathogenic bacteria to
the gut epithelium. Moreover, SCFAs favor epithelial mucus secretion that increases the protective
effect on the intestinal surface and the proper maintenance of the barrier function [92,93]. SCFAs
have anti-inflammatory effects that bind to the nuclear transcription factor PPARγ (peroxisome
proliferator-activated receptor γ) and, consequently, inhibit the NF-kB pathway [94,95]. This ultimately
lowers the expression of VCAM-1 (vascular adhesion molecule 1) and ICAM-1 (intracellular adhesion
molecule 1), as well as the synthesis of TNFα, IL-6, and IFN-γ (interferon γ) [96].

The main physiological role of histones is to interact with DNA and stabilize its structure. When
they are acetylated, this loosens the contact between histones and DNA, uncoiling the DNA structure
that thus becomes transcriptionally active. The histone acetylation process is a result of the balance
between the induction of histone acetyl transferases (HATs) and the inhibition of histone deacetylase
(HDACs). The same acetylation process causes DNA to bind to transcription factors, such as STAT3
(signal transducer and activator of transcription 3), NF-Kβ (nuclear factor kappa-light-chain-enhancer
of activated B cells, and FoxP3. Consequently, this regulates gene expression, including inflammation
proteins [97,98]. SCFAs (with butyrate and acetate being the most and least effective, respectively) act
as inhibitors for histone deacetylase (HDACs), thus contributing to the inhibition of the transcription
for inflammatory proteins [99,100].
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Table 1. Clinical studies regarding the effect of high fiber intake on inflammatory markers in obesity and associated pathology.

Design Population Dietary Intervention Outcome Reference

Randomized
cross-over trial

50 Danish subjects
with high risk of
metabolic syndrome

two eight-week dietary intervention periods of
whole grain intake (179 ± 50 g/day) and refined
grain period (maximum 13 ± 10 g/day of whole
grain), separated by a washout period of ≥6 weeks.

↓ body weight, serum inflammatory
markers (IL-6, CRP) [101]

Double-blind,
randomized,
placebo-controlled,
crossover study

45 overweight adults
with metabolic
syndrome risk factors

galactooligosaccharide mixture intervention to
increase dietary fiber content, with a 4-week
wash-out period between interventions

↓ fecal calprotectin, CRP [102]

Randomized
controlled trial

143 individuals with
metabolic syndrome

12 weeks of rye and whole wheat was compared
with a diet containing the equivalent amount of
refined cereal foods

no significant effects on the
expression of inflammatory markers’
genes or insulin sensitivity

[103]

Randomized crossover
study

19 adults with
metabolic syndrome

4-week interventions diet enriched with
arabinoxylan and resistant starch compared to a
low-fiber Western-style diet

↓ fecal calprotectin, IL-23A and
NF-κB [104]

Crossover intervention
study

25
hypercholesterolemic
subjects

5-week intervention using high fiber (HF) and low
fiber (LF) diet, separated by a 3-week washout. ↓ CRP and fibrinogen [105]

Randomized
controlled trial

68 overweight with
prediabetes

12 weeks of 45 g/d of high-amylose maize (RS2)
versus an isocaloric amount of amylopectin
(control)

↓ TNF-α,
no change in insulin sensitivity [106]

Randomized
controlled trial

166 subjects with
features of metabolic
syndrome

4-week using healthy diet (whole-grain products,
berries, fruits and vegetables, rapeseed oil, three
fish meals per week) compared to an average
Nordic diet

Control diet: ↑ IL-1 Ra (versus
healthy diet group) [107]

Crossover study 10 healthy subjects

Subjects received either 910-calorie
high-fat/high-carbohydrate meal or an American
Heart Association (AHA) meal (fruit and fiber)
during the first visit and the other meal during the
second visit

↑ oxidative stress (plasma
concentrations of TBARS, FFA, and
LPS) and proinflammatory markers
(TNFα, and IL-1β)

[108]
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Table 1. Cont.

Design Population Dietary Intervention Outcome Reference

Randomized
controlled trial 28 T2DM patients Subjects received brown rice (n = 14) or white rice

(n = 14) diet for 8 weeks ↓ CRP in brown rice group [109]

Parallel design, dietary
intervention trial

104 subjects with
metabolic syndrome
risk

Subjects received Healthy Diet (n = 44), a
whole-grain-enriched diet (n = 42) or a control (n =
45) diet,

Healthy Diet group: ↓ E-selectin
Healthy Diet and whole grain group:
↓ CRP

[110]

Randomized,
double-blind,
placebo-controlled,
cross-over study

12 overweight and
obese subjects

Subjects received 20 g/day of inulin-propionate
ester, a high-fermentable fiber control (inulin) and
a low-fermentable fiber control (cellulose) for 42
days

IPE: ↓ IL-8 levels (versus cellulose)
Inulin: no effect on the inflammatory
markers

[111]

Crossover clinical
study

18 subjects at
low-to-moderate
cardiometabolic risk

Subjects received breakfast rich in saturated fatty
acids (SFA), the other in unsaturated fatty acids
(unSFA) and fiber for 4 weeks

SFA: ↑ IL-1β
unSFA: ↓ IL-6 [112]

Interventional diet
study

21 overweight/obese
children

Subjects were placed on a regimen of ad libitum,
high-fiber, low-fat diet, and daily exercise regimen
for 2 weeks

↓ IL-6, IL-8, TNFα, PAI-1, resistin,
amylin, leptin, insulin, and IL-1Ra
↑ adiponectin

[113]

Randomized,
placebo-controlled
study

31 hemodialysis
patients

Patients received either resistant starch or placebo
supplementation for 4 weeks ↓ IL-6 and TBARS [114]

Randomized
controlled clinical trial 55 women with T2DM

Subjects received a daily supplement of 10 g
resistant dextrin or a similar amount of
maltodextrin for 8 weeks

↓ IL-6, TNF-α and MDA
↑ Insulin sensitivity [115]

Randomized
cross-over
double-blind
placebo-controlled
trial

17 obese knee
osteoarthritis patients

Patients received freeze-dried strawberries or
placebo for 2 periods of 12 weeks with 2 weeks of
wash-out

↓ TNF-α and 4-HNE [116]

Randomized study 59 T2DM patients
Patients received metformin, acarbose, and either a
high fiber or a low fiber diet intervention for 8
weeks

Low fiber group: ↓ IL-18 [117]
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Table 1. Cont.

Design Population Dietary Intervention Outcome Reference

Crossover study 33 healthy,
middle-aged adults

Patients received either high or low in in
wholegrain intervention for 6-week periods,
separated by a 4-week washout.

Whole grain: a slight decrease of
IL-10 and CRP [118]

Observational study
8 subjects with
impaired fasting
glucose

subjects received (1) high-fiber formula; (2)
high-monounsaturated fatty acid formula or (3)
control formula

High fiber group: ↓ NF-κB in PBMCs [119]

Randomized
controlled clinical trial 60 females with T2DM Patients received 10 g/d resistant starch or placebo

for 8 weeks, respectively ↓TNF-α, no effect on IL-6 or CRP [120]

Crossover clinical trial 80 overweight subjects

Subjects received two isocaloric breakfast
interventions -one rich in saturated fat and one in
unsaturated fatty acids and fibers for 4 weeks with
a 2-weeks washout.

Fiber group: ↓ IF-γ and TNF-α [112]

Observational study 49 T2DM females Patients received either 10 g/day inulin or
maltodextrin/day for 8 weeks Inulin: ↓CRP, TNF-α and LPS [121]

Randomized
controlled clinical trial

52 overweight/obese
women with T2DM

Patients received either 10 g/d of
oligofructose-enriched inulin or maltodextrin
(control) for 8 weeks

oligofructose-enriched-Inulin: ↓ CRP,
TNF-α and LPS [122]

Randomized crossover
clinical trial

44 overweight/obese
girls 8–15 years old

Subjects received either whole-grain or control for
2 periods of 6 weeks with 4-week washout period

Whole grain: ↓ CRP, ICAM-1 and
leptin [123]

IL-6, IL-1β, IL-6, IL-8, IL-18, IL-10—interleukin 6, 1β, 6, 8, 18, 10; IL-1 Ra—interleukin 1 receptor agonist; CRP—C reactive protein; NF-κB—nuclear factor kappa B; TNF-α—tumor necrosis
factor α; TBARS—thiobarbituric acid reactive substances; FFA—free fatty acids; LPS—lipopolysaccharide; MDA—malondialdehyde; 4-HNE—4-hydroxynonenal; IF-γ—interferon γ;
ICAM-1—intercellular adhesion molecule 1.
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5. Anti-Inflammatory Effects of Fasting

Fasting is a process that has been known for thousands of years. It was quite frequent in ancient
times, because access to food was difficult and as a result, individuals were obliged to survive without
food until it was available again [124].

Fasting is a survival mechanism in both animals [125,126] and humans, especially in countries
where food conservation is not widespread [127]. In the rest of the world, fasting has been employed
either due to religious convictions or in wellness centers. Since 1960, one of the methods used to
address morbid obesity and related diseases has been the “zero calorie diet”, thus translating into
clinical practice the scientific data generated by centuries of fasting.

Fasting can be divided into three broad categories:

• Periodic fasting, which lasts from 2 days to a few weeks;
• Intermittent fasting, which lasts from 16 to 20 h and can be done daily or every second day or

twice a week, and
• Fasting-mimicking diet, the diet that mimics fasting to achieve its beneficial effects, in which

restriction of calories and specific foods is necessary (e.g., fat) [128–130].

There is a lot of research that shows the beneficial effects of fasting on health and also on
different pathological conditions. Fasting increased lifespan in prokaryotic organisms such as yeast
S. Cerevisiae and nematode C. Elegans [128,131–134], but also on animal models that performed
fasting for long periods (e.g., the royal penguin) [135]. Other models have shown better brain
function [136,137], increased lifespan and longevity [138–140], and improved maintenance of muscle
mass after fasting [141].

Studies on animal models reveal the beneficial effect fasting has on cancer as a complementary
disease management strategy in concert with drug treatments [142–145]. Studies on animal models
show an improvement in neurodegenerative diseases after fasting, while other studies prove that
intermittent fasting diets boost the levels of antioxidant defense, neurotrophic factors (BDNFS, H-70
and FGF2), proteins involved in adaptive response (HSP-70 and GRP-78), and reduce pro-inflammatory
cytokines levels (TNFa, IL-1β, and IL-6) [146–150].

It has been found that intermittent fasting can prevent and reverse all aspects of metabolic syndrome
in rodents: body fat, inflammation, and blood pressure are reduced; insulin sensitivity is increased;
and the functional capacity of the neuromuscular and cardiovascular systems are improved [151–153].
An intermittent fasting diet has also been found to improve hyper-glycaemia in diabetic rodent
models [154] and in myocardial infarction models, as the heart is protected from ischemic damage
by this type of regimen [155]. Elevated leptin levels usually predict a pre-inflammatory condition,
while adiponectin and ghrelin may suppress inflammation and increase insulin sensitivity [150,156].
Fasting can reverse every major abnormality caused by metabolic syndrome, by increasing insulin and
leptin sensitivity, suppressing inflammation and stimulating autophagy [157,158].

There are several studies that show an increased use of fat and ketone bodies for energy [159,160],
as well as an increase of growth hormone and glucagon secretion [161–163], with a decrease in
blood sugar, insulin, and IGF-1 levels. After intermittent fasting, total fat, abdominal fat, and blood
pressure are decreased, while glucose metabolism is improved in obese individuals [69,164–167].
In addition, periodic fasting significantly changes the composition of the human gut microbiota [73].
Finally, studies of utmost importance show the effect of intermittent fasting mainly in the fight against
cancer as a supplement along with the classic treatment, with promising results [168,169]. Below,
we analyze the effects of the interrelation between fasting and inflammation as well as the relevant
molecular mechanisms.

5.1. Molecular Mechanism of Fasting

Fasting not only results in weight loss but it is a survival mechanism that impacts many metabolic
pathways [128,161,170]. Fasting’s many benefits are related to the regulation of key molecular pathways.
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Initially, during fasting, the downregulation of insulin-like growth-factor-1 (IGF-1) and mammalian
target of rapamycin (mTOR) occur. These pathways are upregulated in the presence of food excess
as they sense nutrients and therefore activate anabolic metabolism. When there is a lack of food for
several hours, catabolic processes are activated.

Aging appears modulated by changes in the insulin-like growth-factor-1 receptor signaling
system, as longevity is enhanced by a decrease in IGF-1 signaling [171–173]. The IGF-1 signal induces
mTOR activation. Reduced mTOR activity is related to extended lifespan in different organisms [174],
as mTOR induces activation of FoxO proteins. FoxO proteins are transported to the nucleus and
activate genes associated with autophagy [175], which emphasizes the link between autophagy and
FoxO proteins.

When the AMP/ATP ratio is high, the AMPK path is activated [176]; this results in increased energy
production and reduced ATP utilization. In addition, the mitochondrial biogenesis and mitophagy
repair and replace damaged mitochondria. As a result, the cells have “younger” and more efficient
mitochondria. In addition to the aforementioned condition, activation of this path has been associated
with increased lifespan in various studies in both C. Elegans and Drosophila melanogaster [177,178].
In mammals, fasting does not appear to affect AMPK activation, but further studies are needed to be
able to draw surer conclusions [179].

Like AMPK, sirtuins are associated with life [180] and autophagy [181]. Some sirtuins are found
in the cytoplasm (SIRT2), some (SIRT1) in the nucleus having DNA repair action, and others in
mitochondria. In general, sirtuins are associated with mitochondrial biogenesis and mitophagy
for damaged mitochondria, thereby enhancing mitochondrial cells without problems and are
thus more efficient in energy production [132,182]. SIRT1 is modulated by NAD+ level and is
increased in energy depletion states (such as fasting or exercise) for which NAD+ is a sensor, which
contributes to the reduction of inflammation through NF-Kβ down-regulation and related transcription
factors [132,182,183].

A study on rats showed that inflammation decreased with fasting [184]. Other work has shown
NF-Kβ inhibition and the modulation of Nrf2, sirtuins, SOD2, and increased lifespan [185–188]. In a
2017 study, intermittent fasting appears to significantly reduce corticosterone (CORT), interleukin 6
(IL-6), and tumor necrosis factor-alpha (TNF-α) levels [189].

Nrf2 plays a key role in oxidative stress and toxicity; the right balance in ROS levels is very
important so that mitochondrial and all other pathways can function properly. The absence of ROS,
however, does not activate Nrf2, which in turn does not activate ARE (antioxidant response). Thus, a
critical amount of ROS (“Hormesis hypothesis”) is necessary for the upregulation of ARE, which allows
cells and mitochondria to be able to deal with oxidative stress and different kinds of toxins [190],
which consequently increases their lifespan [191] (Figure 2).

Figure 2. Molecular mechanisms of fasting. IGF-1, insulin-like growth factor 1; FoxO, forkhead box
Proteins; NF-Kβ, nuclear factor-Kβ; mTOR, mammalian target of rapamycin; SIRT, sirtuins; NRF2,
nuclear factor erythroid 2-related factor 2.
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5.2. Effects of Fasting on Humans

During the last decades, many studies have been conducted on the effect of fasting on several
markers related to metabolism. Most of them determine the effect of fasting on weight. However,
there are several studies that identify changes in lipid and carbohydrate metabolism as well as key
hormones that affect the above (e.g., insulin). Recently, some studies have focused on fasting’s effect
on inflammatory markers such as TNF-α, interleukins, CRP, and BDNF, as well as the hormones
adiponectin and leptin.

The largest study on fasting’s effects is an observational study including 1422 subjects that describes
metabolic changes after a 4- to 21-day fasting period [159,170]. All the participants fasted according to
the Buchinger Wilhelmi fasting guidelines, which include a daily caloric intake of 200–250 kcal together
with a variety of lifestyle changes (e.g., dietary advices, physical exercise). A beneficial modulating
effect of fasting was observed on blood lipids, glucoregulation, and altogether general health-related
blood parameters. Additionally, it was associated with a reduction in weight, abdominal circumference,
and blood pressure. In another study, which used the same fasting guidelines, improved metabolic
markers were observed after periodic fasting, including a decrease in blood glucose levels associated
with changes in gut microbiome composition [73]. In this study, the analysis of the gut microbiome after
10 days of periodic fasting showed that fasting caused a decrease in the abundance of bacteria known
to degrade dietary polysaccharides such as Lachnospiraceae and Ruminococcaceae, concomitant to an
increase in Bacteroidetes and proteobacteria known to use host-derived energy substrates.

A study of eight healthy non-obese men discovered that in 15 days of fasting every other day,
with 20 h fasting on fasting days, adiponectin increased and leptin decreased, while no changes in IL-6
or TNF-α were observed. Protocol allowed them to maintain normal exercise but also to consume food
in order to keep their weight stable [69].

Redman et al., in a two-year study of 34 people who followed a reduced calorie intake diet (15%)
observed a reduction in leptin. These individuals lost an average of 8.7 kg while the control group
gained an average of 1.8 kg in the same period [192].

Another study including eight women and two men, all overweight with asthma, showed that
fasting every other day and reducing calories to less than 20% of their normal intake on the days of
fasting, for eight weeks, resulted in a reduction in TNF-α and BDNF, but no change in CRP. In this
study, patients lost 8% of their initial weight during the study. Asthma symptoms also improved
as well as some indicators of oxidative stress (8-protein carbonyls, isoprostane, nitrotyrosine, and
4-hydroxynonenal adducts) [193].

In 2013, another study [194] found that 12 weeks of reduced calorie intake every other day resulted
in reduced CRP levels, increased adiponectin levels, and reduced leptin levels in 30 adults who were
either overweight or normal weight. On fasting days, they consumed only 25% of the calories they
normally consumed each day. In addition, their weight was significantly reduced by 3.6 ± 0.7 kg and
the coronary heart disease risk was improved as the concentration of TG reduced.

Another study [195] found reduced high sensitivity-C-reactive protein (hs-CRP) of 27 women
with polycystic ovary syndrome (PCOS) during the Ramadan period in Iran and in which participants
aged 18 to 40 years old with an average of age 27.5, followed everyday 16.5 h fasting, isocaloric diet,
for 29 days.

An important study involving 34 men (resistance-trained) who fasted every day 16 h, followed an
isocaloric diet for eight weeks, and consumed 100% of their energy needs in the 8-h eating window,
showed that there was an increase in adiponectin and a reduction of leptin of IL-6 and IL-1β [196].

Faris’ study on 50 healthy volunteers (21 men and 29 women) fasting for 14–15 h each day for
21 days, showed a reduction in IL-6, IL-1β, TNF-α, total leukocytes, granulocytes, lymphocytes, and
monocytes [197].

Another study [198] involving 42 patients aged 20 to 50 years old with nonalcoholic fatty liver
disease, following Ramadan fasting (every day 16-h fasting for 29 days), showed a reduction in IL-6
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and hs-CRP, compared to 41 volunteers who did not fast. These and other studies are presented in
detail in Table 2.

Collectively, an increasing number of studies show that fasting has numerous health benefits
and could be used to prevent or manage the development of cardiometabolic disorders, metabolic
diseases, and immune diseases. Although extended periods of fasting can be challenging without
medical advices, recent studies also showed that time-restricted eating can be practiced safely as a
routine. For instance, a recent study showed that 10 h of time-restricted eating for 12 weeks improved
cardiometabolic health for patients with metabolic syndrome [199].
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Table 2. Recent reports concerning fasting and inflammation.

Intervention Duration and
Type of Fasting Population Comparison Group or

Condition Effects Reference

15 days: alternate day fasting
(20 h fasting intervals)

8 males
non-obese
adults

None ↑ adiponectin, ↓ leptin ↓ glucose, NS insulin, NS
IL-6, NS TNF-α [69]

29 days: every day 16.5 h
fasting, isocaloric diet

27 females, polycystic ovary
syndrome (PCOS) None NS insulin, NS LDL, NS HDL, NS TG, ↓hs-CRP (p

= 0,072), ↑GSH, NS MDA, NS TAC [195]

22 days: no caloric intake every
other day (36 h fasting intervals)

8 females, 8 males, non-obese
adults None NS glucose, ↓ insulin,↓weight [167]

8weeks: every day 16 h fasting,
isocaloric diet 34 resistance-trained males

2 groups time-restricted feeding
(TRF) or normal diet group
(ND).

NS Weight, ↓Fat mass, ↑Adiponectin, ↓ Leptin,
↓IL-6, ↓IL-1β, NS insulin, NS T3, NS Glucose, NS
Cholesterol, NS Cortisol, NS HDL, NS LDL, TG↓,

[196]

1 day: water only (28 h fasting
interval)

20 females, 10 males
Healthy adults None ↓ glucose, ↓ insulin, ↓ weight, ↑ LDL ↑ HDL, ↓ TG,

NS CRP, NS adiponectin [200]

29 days: every day 16 h fasting 83 patients with NAFLD 42 fasted, 41 control,
comparison between groups

↓Weight, ↓BMI, NS BF, ↓Glucose, ↓insulin, ↓IL-6,
↓hs-CRP [198]

20 weeks: 1 day per week fast
OR 5-day consecutive fasts
every 5 weeks (400–600 kcals on
fasting days)

31 females, 23 males
Overweight or obese diabetics 1200–1500 kcal weight loss diet ↓weight, NS glucose, NS insulin, NS LDL, NS

HDL [201]

21 days: every day 14–15 h
fasting

Fifty (21 men and 29 women)
healthy volunteers

7 days before fasting vs. 21 days
after fasting

↓Weight, ↓BMI, ↓BF%, ↓SBP, ↓DPB, ↓IL-6, ↓IL-1β,
↓TNF-α, ↓Total ↓leukocytes, ↓Granulosytes,
↓Lymphocytes, ↓Monocytes

[197]

8 weeks: <20% of usual intake
on alternate days. Ad libitum
diet on non-fasting days.

8 females, 2 males
Overweight adults with asthma None

↓ TNF-α, ↓ BDNF, ↓weight, NS glucose,
NS insulin, NS LDL, ↑ HDL, ↓ TGs,
NS CRP, NS leptin, ↓ Protein Carbonyls,
↓ Nitrotyrosine, ↓ 8-isoprostane

[193]

2 years caloric restriction 34 CR (15%) and 19 control for 2
years comparison between groups ↓Weight, ↓BMI, ↓ BF, ↓ Leptin ns, Insulin NS, ↓

2,3-dinor-iPF(2α)-III [192]
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Table 2. Cont.

Intervention Duration and
Type of Fasting Population Comparison Group or

Condition Effects Reference

8 weeks: weight loss diet with
alternate day modified fasting
(~25% of total energy needs)

12 females, 8 males
Obese adults None ↓weight, ↓ LDL, NS HDL, ↓ TGs [165]

6 months: 25% energy
restriction 2 days per week

107 females
Young, overweight or obese
adults

25% energy restriction 7 days
per week

NS CRP, NS adiponectin, NS leptin NS BDNF NS
glucose, ↓ insulin
NS glucose, ↓ insulin

[166]

12 weeks: 25% of energy needs
alternating with ad libitum
intake

39 females, 2 males
Obese adults Control group ↓ weight, NS CRP, NS glucose NS insulin, NS LDL,

NS HDL, NS TG [202]

6±3 years caloric restriction 18 CR and 18 control comparison between groups
↓Weight, ↓BMI, ↓ BF, ↓ LDL, ↓HDL, ↓TG, ↓
Cholesterol, ↓insulin, ↓glucose, ↓hs-CRP, ↓SBP,
↓DBP

[203]

6 weeks: 25–30% energy needs
on Sat. Mon, Wed; ad libitum
other days

15 females
Overweight or obese None ↓weight, NS LDL, NS HDL, NS TG [204]

12 weeks: 25% energy
restriction 2 consecutive days
per week

37 females
Overweight or obese women

25% energy restriction all days
of week

NS adiponectin, NS leptin, NS IL-6, NS TNF-α,
NS glucose, NS HbA1c, ↓ insulin, NS LDL NS
HDL, NS TG, NS weight

[205]

10 weeks intermittent fasting
(IF)-calorie restriction (CR)
regimen (with or without liquid
meals)

54 were randomized to either
the IFCR-liquid (IFCR-L) or
IFCR-food based (IFCR-F) diet

comparison between 3rd and
10rd week in each group

In IFCR-L: ↓Leptin, ↓IL-6, ↓TNF-α, NS CRP,
↓IGF-1,
In IFCR-F: ↓Leptin, NS IL-6, NS TNF-α, NS CRP,
NS IGF-1,

[206]

12 weeks: weight loss diet with
alternate day modified fasting
(~25% of energy needs)

22 females, 8 males
Normal and overweight adults Control group ↓ CRP, ↑ adiponectin, ↓ leptin

NS LDL, NS HDL, ↓ TG, ↓weight [194]

NS—non-significant; hs-CRP—highly sensitive CRP; LDL—low density lipoproteins; HDL—high density lipoproteins; GSH—glutathione; TAC—total antioxidant capacity;
T3—triiodotironine; TG—triglycerides; BMI—body mass index; BF—body fat; SBP—systolic blood pressure; DBP—diastolic blood pressure; 2,3-dinor-iPF(2α)-III –2,3-dinor-8-iso
Prostaglandin F 2α; HbA1C—glycated hemoglobin; IGF-1—insulin growth factor 1.
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6. Conclusions

Given that a large part of the global population suffers from various metabolic disorders, it is
important to look for non-pharmacological ways to deal with these conditions. Targeted changes in
lifestyle and especially diet can be economical tools to mitigate the development of metabolic disorders
when they are at an early stage. These changes include increased fiber and polyphenol intake compared
to the current western diets, but also well-structured, personalized fasting protocols, which can reduce
the risk of metabolic disorders (Figure 3).

Figure 3. Lifestyle changes can promote healthy aging by mitigating the deleterious effects of stressors.
Exposure to a variety of stressors (processed food, overfeeding, environmental toxicants, infectious
agents, or drugs) during life course can promote chronic inflammation and the development of metabolic
disorders. A large number of real-life risk simulation studies showed that this can be mitigated by
lifestyle interventions.

This could be implemented in various institutions by improving the nutritional quality of foods
served in schools, hospitals, prisons, government buildings, or senior centers. Moving toward healthier
food options in hospitals might ultimately help improve patient health and reduce healthcare costs.

Improving diet can have a positive effect on the immune response as a hallmark of RLRS. Since
inflammation is associated with the acute pathological response to COVID-19 and other infectious
diseases, improvement of the immune response and inflammatory markers may lead to an improved
physiological resilience to disturbances by infectious agents such as viruses and bacteria, and possibly
milder symptoms.
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