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Abstract

Background: Event extraction from the biomedical literature is one of the most actively researched areas in
biomedical text mining and natural language processing. However, most approaches have focused on events within
single sentence boundaries, and have thus paid much less attention to events spanning multiple sentences. The
Bacteria-Biotope event (BB-event) subtask presented in BioNLP Shared Task 2016 is one such example; a significant
amount of relations between bacteria and biotope span more than one sentence, but existing systems have treated
them as false negatives because labeled data is not sufficiently large enough to model a complex reasoning process
using supervised learning frameworks.

Results: We present an unsupervised method for inferring cross-sentence events by propagating intra-sentence
information to adjacent sentences using context trigger expressions that strongly signal the implicit presence of
entities of interest. Such expressions can be collected from a large amount of unlabeled plain text based on simple
syntactic constraints, helping to overcome the limitation of relying only on a small number of training examples
available. The experimental results demonstrate that our unsupervised system extracts cross-sentence events quite
well and outperforms all the state-of-the-art supervised systems when combined with existing methods for
intra-sentence event extraction. Moreover, our system is also found effective at detecting long-distance
intra-sentence events, compared favorably with existing high-dimensional models such as deep neural networks,
without any supervised learning techniques.

Conclusions: Our linguistically motivated inference model is shown to be effective at detecting implicit events that
have not been covered by previous work, without relying on training data or curated knowledge bases. Moreover, it
also helps to boost the performance of existing systems by allowing them to detect additional cross-sentence events.
We believe that the proposed model offers an effective way to infer implicit information beyond sentence boundaries,
especially when human-annotated data is not sufficient enough to train a robust supervised system.

Keywords: Biomedical event extraction, Unsupervised inference, Cross-sentence relations, Bacteria, Biotope, Natural
language processing, Text mining

Background
The rapidly growing volume of biomedical literature
published every year has called for efficient tools to
collect important information of interest from unstruc-
tured text. Biomedical natural language processing has
played an important role in addressing this need, where
researchers have addressed various tasks and applications,
such as named entity recognition, sentence classifica-
tion, uncertainty detection, event or relation extraction,
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and question answering [1, 2]. In particular, extrac-
tion of events and relations about biomedical con-
cepts has recently received much attention through
community challenges and shared tasks on collecting
various types of biomedical information. For example,
researchers have been interested in protein-protein inter-
action [3], disease-related biological processes [4], gene-
related processes [5, 6], drug-drug interaction [7], and
chemical-induced disease relations [8], and chemical-
protein relations [9]. Event/relation information of inter-
est in such tasks is usually expressed and detected on
a sentence level, where a single sentence is assumed to
cover complete pieces of information to be extracted.
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Most benchmark datasets released by organizers of
these challenges contain gold-standard annotations of
sentence-level information. This has promoted subse-
quent studies on using syntactic dependencies among
mentions about biomedical entities, which has been con-
sidered as an important aspect of sentence-level event
extraction [10–14].
More recently, researchers have begun to pay attention

to events that are not clearly signaled by syntactic depen-
dencies. In particular, extracting cross-sentence events,
where relevant entities are found across multiple sen-
tences, is considered challenging because of the lack of
clear linguistic evidence for how entities mentioned in
different sentences are associated to form a single event.
For this reason, few studies have looked into this issue
[15–20].
The Bacteria-Biotope event (BB-event) subtask of the

BioNLP Shared Task 2016 [21] presents an example of
such tasks. The goal is to detect binary relations, called
the Live_In events, between bacteria and their physical
locations, whose mentions are pre-annotated in a given
document by humans. The goal is similar to that of other
event and relation extraction tasks in many ways, but the
challenge is in cross-sentence events, which amount to
27% (237/890) of the entire event instances. Participating
teams employed methods of traditional event extraction,
whose systems are trained to distinguish between posi-
tive and negative events using various machine learning
algorithms such as support vector machine (SVM), neu-
ral networks, or their combination [21]. However, most of
them did not detect cross-sentence events at all, and just
treated them as false negatives, mainly because attempts
to detect them led to worse performance due to loss of
precision without improvement in recall. Team VERSE,
which ranked first in the shared task using support vector
machine and linguistic features, reported that they con-
ducted experiments with various settings but achieved the
best result only when all the cross-sentence events are
ignored (i.e., treated as false negatives) [22]. Task organiz-
ers also considered cross-sentence event extraction as a
major challenge to the overall BB-event task [21]. Some
follow-up studies have been conducted since then, and
updated the state-of-the-art performance with diverse
types of neural networks built over syntactic depen-
dency paths between entities. Examples include bidi-
rectional long-short term memory networks [23], gated
recurrent unit networks [24], and recursive and recur-
rent neural networks [20]. However, they either did not
extract cross-sentence events at all, or achieved the best
results only when cross-sentence events are ignored. This
is probably because labeled examples of cross-sentence
events are much fewer than those of intra-sentence ones,
making it difficult to train a supervised system with
high-dimensional representations. These research results

highlight important challenges to cross-sentence event
extraction in this shared task.
Although recent studies addressed the extraction of

cross-sentence events in other tasks, they are markedly
different from the BB-event task for the following rea-
sons: They either (1) targeted relatively coarse-grained
information such as concept-level (e.g., MeSH ID) or
document-level annotations, as found in Biocreative
V Chemical-Disease Relation (CDR) datasets [8], (2)
used curated knowledge or combinations of different
knowledge bases, such as Comparative Toxicogenomics
Database [15, 16, 25], or (3) relied on relatively large
training data (e.g., 500 documents in the CDR datasets
vs. 61 in the BB-event datasets), further expanded with
curated databases and distant supervision, on which high-
dimensional network or graph-based systems can be
trained [15, 17, 18]. By contrast, the BB-event task targets
fine-grained mention-level relations with minimal train-
ing data, and no task-specific curated knowledge bases
are available. Recent research results suggest that super-
vised systems based on high-dimensional representation
learning would not be very effective at addressing the data
sparsity issue in cross-sentence events in the BB-event
datasets [20, 21, 23, 24].
In this paper, we propose an inference system to detect

cross-sentence events, without relying on supervised
learning on annotated data or any curated knowledge
base. The main idea is to propagate entity information
found in a sentence over its adjacent sentences through
contextual information. More specifically, if an entity is
mentioned in a sentence, we note that it is possible to find
expressions in its adjacent sentences that imply the pres-
ence of that entity. Then, by using these expressions, we
convert cross-sentence relations into intra-sentence rela-
tions. We call these expressions context triggers because
they trigger a contextual window where the presence of an
entity is naturally acknowledged by context, even when it
is not mentioned.
The two consecutive sentences in Example 1 taken

from the BB-event training data demonstrate how con-
text triggers signal the presence of an entity men-
tioned in an adjacent sentence, and how they are
used to extract the cross-sentence event Lives_In

〈
K.

kingae, pharyngeal
〉
. In the example, BACTERIA and

LOCATION refer to bacteria and location mentions,
respectively, pre-annotated by humans and given in the
training data.

Example 1.

• None of the colonized children experienced an
invasive [K. kingae]BACTERIA infection.

• The prevalence of [pharyngeal ]LOCATION carriage
among surgical patients was 8.0%, and ...
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Here, considering the meaning of the second sentence,
carriage involves some bacteria entity mentioned around
the sentence, which, in this case, would be the closest
one, K. kingae, in the preceding (first) sentence. Once we
speculate that carriage is associated with K. kingae, then
the next step is to check whether the intra-sentence rela-
tion between carriage and pharyngeal holds or not. This
would be much easier than to directly determine whether
the relationship between K. kingae and pharyngeal holds
or not. Since carriage and pharyngeal have a syntactically
close relationship (i.e., pharyngeal is a direct modifier of
carriage), we infer the cross-sentence relation between K.
kingae and pharyngeal, using the transitivity K. kingae →
carriage → pharyngeal.
There are a number of expressions of this kind in

the literature which indicate bacteria-related biomedi-
cal actions, responses, or functions that involve physical
locations, such as carriage, transmission, resistance, and
infection. We note that they can be considered as a type
of indirect anaphor for bacteria entities mentioned in a
given document. This means that they can also be used
as contextual clues to cross-sentence inference, as shown
in the example above. We also note that this is simi-
lar to how humans recognize implicit information across
sentences. In order to perform inference of this kind, it
is important to see the kind of expressions that can be
used as context triggers and the way to collect them.
Our intuition is that they are likely to be found in sen-
tences with certain types of syntactic construction and
bacteria mentions. For example, the syntactic construc-
tion “{noun} of BACTERIA in LOCATION” restricts the
semantics of “{noun}” to a bacteria-related process with
respect to a location, such as “antimicrobial resistance of
[Campylobacter]BACTERIA in [UK retail poultry]LOCATION”.
Most important, these expressions can be collected on a
larger scale from unlabeled text than from the given train-
ing data if we have a list of bacteria names and an access
to syntactic dependencies of a given sentence. Note that in
this syntactic construction it is not necessary to recognize
specific location names such as UK retail poultry because
the locational preposition in already implies the existence
of a location (though this preposition can also be used
with non-location entities, such as in 2015). Once context
trigger expressions are identified from a given document,
we can use them for cross-sentence inference in the way
described above. We explain the overall process in detail
with insightful examples throughout the paper.
The experimental results from the official BB-event

evaluation benchmark demonstrate that our unsupervised
inference system outperforms all the shared task partici-
pants including high-dimensional models such as neural
networks. It also outperforms state-of-the-art systems
when combined with one of the existing supervised sys-
tems for intra-sentence event extraction. Our approach

can be used not only in an unsupervised manner, but also
in a supervised setting. More specifically, context triggers
collected from a large amount of unlabeled data can be
used as additional features for high-dimensional models
to overcome the lack of training signals.
The main idea of this work is inspired by Chung et al.

[19] that proposed propagation-based inference of event
locations in news articles. They search adjacent sentences
for expressions referring to the location of a given event
(verb), and use distributional similarities between words
to select spatially related events. In contrast to their
approach that relies on pre-trained general-purpose dis-
tributional similarities for information propagation, we
use context trigger expressions that signal the presence of
biomedical entities, where they can be collected from a
large amount of unlabeled text. We also show the impact
of our approach by testing it on standard benchmark
datasets in which only a small number of cross-sentence
labeled examples are available, and by comparing it with
existing approaches.

Results
In this section, we present experimental data, settings,
and results. The overall architecture of the system and
specific methods including context triggers are detailed in
the “Methods” section.

Data and settings
We evaluated our models on the official BB-event test
data through the online evaluation service provided by
the BioNLP-ST 2016 task organizers, where gold-standard
reference event annotations in the test data are not
accessible to users. The test data consists of 336 bacte-
ria mentions, 757 location mentions, and 340 Lives_In
events, where 92 of the events (27.1%) are cross-sentence
ones [21]. The performance of the proposed models is
assessed by standard evaluation metrics: precision, recall,
and F1. They are computed based on the matching simi-
larities between detected events and reference events. The
matching similarity of a detected (or reference) event is 1
if the corresponding bacteria-location pair is the same (or
equivalent) as any pair in reference (or detected) events.
Otherwise, the matching similarity is 0.
We experimented with two different lists of context trig-

gers, created from different data: the training data and
the large-scale unlabeled data. We applied the frequency
threshold to the triggers collected from the unlabeled
data to select only salient triggers. The threshold was
empirically set as 300, based on our pilot experiments on
the development data. However, for the triggers collected
from the training data, we did not apply any frequency
threshold, considering their very small number of occur-
rences. The size of context window for extracting cross-
sentence events was also empirically set as [−3, +3] based
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on the pilot experiments. This means that only the pre-
ceding and following three sentences are considered as
within a context window to contain cross-sentence events
for a given bacteria mention, provided that the window
does not contain any other bacteria mention in it. We thus
treated as false negatives all the cross-sentence events that
are positioned outside the context window.
We used trigger-based inference as a single method for

extracting cross-sentence events, and compared two dif-
ferent methods for extracting intra-sentence events: (1)
using the output produced by the VERSE system, and (2)
using our syntactic rules and trigger-based inference. As
discussed in the “Methods” section, extraction of cross-
sentence events was performed on top of intra-sentence
extraction. For the VERSE system, we used its updated
interface [26] that contains the original VERSE project
[22]. Since it does not provide a pre-trained model, we
trained a system using its training interface and the same
SVM hyper-parameters proposed in their original paper
[22]. The trained system achieves the same performance
of F1=55.8% as reported in their paper.

Experimental results
Context triggers In the process of collecting context trig-
gers from the PubMed and PMC data, we retrieved a

total of 1,450,843 sentences that contain at least one bac-
teria name, from 106,116 abstracts and 94,682 full-text
articles, with 1,660,875 occurrences of bacteria names.
We identified 418,889 occurrences of candidate trigger
expressions matched by our trigger patterns, and obtained
1250 distinct expressions after lemmatization. By con-
trast, we collected only 23 distinct trigger expressions
from the training data (consisting of 61 abstracts), which
are far fewer than those collected from the unlabeled data.
We filtered out non-trigger expressions from both of the
two collections as explained in the “Methods” section, and
applied the frequency threshold to the triggers collected
from the unlabeled data. This compile process resulted in
15 triggers for the training data and 47 triggers for the
unlabeled data, which we used for the experiments on the
test data.
Table 1 shows examples of context triggers compiled

from each data, with up to 20 most frequent ones sorted
by their frequencies. Not surprisingly, the overall fre-
quency of triggers is much higher in the unlabeled data
than in the training data. We found that the collected
triggers represent various types of biomedical concepts:
event-level concepts such as infection, growth, response,
and survival; entity-level concepts such as strain, bacteria,
bacterium, organism, and microorganism; disease terms

Table 1 Comparison of context triggers compiled from the BB-event training data and the large-scale unlabeled data

No
Compiled from the training data Compiled from the unlabeled data

Context trigger Frequency Context trigger Frequency

1 isolate 8 strain 21256

2 infection 5 infection 12856

3 strain 5 isolate 9555

4 attachment 3 prevalence 3300

5 adhesion 3 growth 2868

6 bacteremia 2 detection 2621

7 enrichment 2 resistance 2479

8 growth 2 bacteria 1812

9 carriage 2 pathogen 1711

10 resistance 2 culture 1412

11 detection 1 response 1358

12 bacteriophage 1 survival 1275

13 surveillance 1 abundance 1196

14 isolation 1 susceptibility 1161

15 elimination 1 colonization 1015

16 isolation 935

17 transmission 853

18 exposure 846

19 disease 818

20 adhesion 791

They are sorted by their occurrence frequencies in the data
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such as disease, bacteremia, pathogen, and enteritis (some
of them are not shown in the table). All of these trig-
gers imply the presence of bacteria with different degrees
in biomedical articles. We also found that all the trig-
gers compiled from the training data are included in the
triggers compiled from thex unlabeled data.

Performance of intra-sentence and cross-sentence
extraction In order to analyze how well each of the
intra-sentence and cross-sentence parts works and how
much the latter contributes to the overall performance,
we evaluate the two parts separately. We also evaluate
the cross-sentence part with complete (i.e., gold-standard)
intra-sentence events to assess its pure quality. Note that
since the test data do not contain gold-standard refer-
ence labels and the evaluation benchmark does not also
provide detailed information about how many reference
events are correctly extracted, it is not possible to conduct
this experiment on the test data. Therefore, we instead use
the development data with gold-standard intra-sentence
events for this experiment.
Table 2 presents the evaluation results on the develop-

ment data for three types of events: intra-sentence events,
cross-sentence events, and all the events. We achieve
F1-scores of 34.7 and 38.1 as the pure cross-sentence
extraction performance when using the gold-standard

and the extracted intra-sentence events, respectively. The
scores themselves seem quite low, but the cross-sentence
extraction still maintains or improves the overall perfor-
mance (i.e., 85.1→85.1 using the gold-standard events,
and 55.8→58.2 using the extracted events). We con-
sider this as a promising result given the difficulties of
extracting cross-sentence events. Note that existing stud-
ies also propose methods for cross-sentence extraction
for this task, but do not adopt them for the final evalu-
ation because they decrease the overall performance on
the test data, according to their papers [20, 22]. In con-
trast, our cross-sentence extraction improves the overall
performance on the test data, to be discussed in the next
subsection.

Overall performance comparison Table 3 shows the
performance of event extraction with the number of
intra-sentence and cross-sentence predictions across the
proposed and existing models. We compare our models
with three top-ranked models of the BB-event shared task
participants, and with three recent state-of-the-art mod-
els. LIMSI [27] uses SVM with simple surface features
such as a bag of tokens in entity mentions. TurkuNLP
[28] employs long short-term memory (LSTM) networks
with word embeddings and linguistic features taken from
shortest dependency paths between entities. VERSE [22]

Table 2 Comparison of intra-sentence and cross-sentence extraction on the development data

Gold intra-sentence events only

Gold Predicted Correct Precision Recall F1

Intra 165 165 165 100.0 100.0 100.0

Cross 58 0 0 0.0 0.0 0.0

All 223 165 165 100.0 74.0 85.1

Gold intra-sentence events + our cross-sentence extraction

Gold Predicted Correct Precision Recall F1

Intra 165 165 165 100.0 100.0 100.0

Cross 58 40 17 42.5 29.3 34.7

All 223 205 182 88.8 81.6 85.0

Our intra-sentence extraction only

Gold Predicted Correct Precision Recall F1

Intra 165 325 153 47.1 92.7 62.4

Cross 58 0 0 0.0 0.0 0.0

All 223 325 153 47.1 68.6 55.8

Our intra-sentence & cross-sentence extraction

Gold Predicted Correct Precision Recall F1

Intra 165 325 153 47.1 92.7 62.4

Cross 58 47 20 42.6 34.5 38.1

All 223 372 173 46.5 77.6 58.2
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Table 3 Comparison of event extraction performance

Existing models F1 Recall Precision

BB-event task participants (2016)

LIMSI 48.5 64.6 38.8

TurkuNLP 52.1 44.8 62.3

VERSE 55.8 61.5 51.0

State-of-the-art systems

Li et al. [23] 58.1 58.0 56.3

Li et al. [24] 57.4 56.8 59.4

Gupta et al. [20] 58.7 65.7 53.0

Proposed models #intra #cross F1 Recall Precision

M1: Intra-clause syntactic patterns 213 0 37.7 30.7 48.8

M2: Intra-clause syntactic patterns + trigger-based inference (train) 246 0 40.4 34.8 48.1

M3: Intra-clause syntactic patterns + trigger-based inference (unlabeled) 417 64 56.7 68.6 48.2

M4: VERSE (2016) + trigger-based inference (unlabeled) 339 54 58.9 63.8 54.9

M5: VERSE (2016) + trigger-based inference (unlabeled) (without linguistic modality detection) 339 63 58.3 63.8 53.6

The numbers in boldface indicate the highest scores for each metric

also utilizes shortest dependency paths but uses them as
features for SVM instead of neural networks, achieving
the top score in the shared task. Li et al. [23] employ
dynamic extended trees of given sentences as input to
bidirectional LSTMs, and use SVM for post-processing.
Li et al. [24] adopt an approach similar to Li et al. [23],
but add attention mechanism to focus more on important
information. Gupta et al. [20] also use an essentially sim-
ilar neural approach based on dependency paths, except
that they deal with cross-sentence events by connecting
augmented paths of multiple sentences, in a way simi-
lar to graph-LSTMs of Song et al. [17]. However, they
achieve the highest performance only when they set sen-
tence range as 0 and use an ensemble of neural and non-
neural linear models (i.e., detecting only intra-sentence
events with the help of non-neural models). This suggests
the inherent limitation of neural models trained on small
data in capturing cross-sentence relations. All the exist-
ing systems employ supervised learning frameworks and
optimize machine learning parameters on the BB-event
training and development data.
The experimental results show the practical impact of

our proposed models. First of all, our purely unsupervised
model achieves an F1-score of 56.7% (M3), outperform-
ing all the supervised models presented by the shared task
participants, and is compared favorably with state-of-the-
art neural models. This implies that it is quite effective to
use a two-step approach, where syntactically close intra-
sentence relations are extracted first by explicit syntactic
patterns, and then cross-sentence relations by inference
on top of intra-sentence extraction. Another finding is
that the use of unlabeled data to collect more diverse
triggers brings considerable benefits, giving a significantly
better F1-score than using only the limited training data

(i.e., M3 vs. M2) through a substantial gain in recall
(34.8%→68.6%). The table shows that limited types of
triggers lead to a very small number of predictions with no
cross-sentence event extracted. This suggests that lever-
aging unlabeled data on a large scale with appropriate syn-
tactic constraints can be potentially effective at addressing
the data sparsity and low coverage issues in fine-grained
event extraction.
Our model is also combined with the VERSE sys-

tem to produce the best performance of F1=58.9% (M4)
with fewer but more precise predictions, outperform-
ing all the three state-of-the-art models. This suggests
that our trigger-based inference can be used not only
to achieve reasonable performance in extracting cross-
sentence events in isolation, but also to significantly ben-
efit existing systems by allowing them to deal additionally
with cross-sentence events. Moreover, since our model
can be easily pipelined with any intra-sentence extraction
models as seen with VERSE, we believe that it is possible
to achieve even better results if our model is combined
with other state-of-the-art systems such as [20].
It is also shown that even a simple approach to lin-

guistic modality detection contributes to the overall
performance, with a 1.3%p gain in precision over the
modality-unaware model (M5), without any loss of recall.
This suggests that it is necessary to carefully inves-
tigate and model modality-related linguistic phenom-
ena to improve fine-grained event extraction, especially
when only minimal training data is available. We believe
that encoding modality information as additional fea-
tures would be potentially beneficial to existing super-
vised systems. More sophisticated methods than simple
keyword-based detection would also further improve the
performance [29].
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Discussion
The experimental results demonstrate the potential of
our linguistically motivated and unsupervised inference
models which perform comparably with the state-of-the-
art models, without any supervised learning methods.
However, we still recognize a variety of challenges that
are not fully addressed by our approach. In this section,
we discuss them in detail with various illustrative exam-
ples to provide useful insights for future research. We
also describe a multi-pass sieve architecture which partly
motivates our approach, and present the intuition behind
its use. The overall architecture of our system and specific
approaches to extraction of BB-events are described in the
“Methods” section.

Multi-pass sieve architecture
The underlying structure of our system can be seen as a
multi-pass sieve architecture, which employs a pipeline of
several smaller models, or sieves. In this architecture, each
of the sieves, which is designed to capture specific types of
information, is applied one by one to a given document in
decreasing order of precision, where earlier sieves inform
later ones by transferring precise information. It was first
proposed for coreference resolution [30] and then applied
to other tasks such as temporal relations and quote attri-
bution [31, 32]. It has also been employed for various tasks
in the biomedical domains, such as entity linking, corefer-
ence resolution, relation extraction, and concept normal-
ization [33–36]. Our system can be seen as consisting of
four sieves that capture different types of information: (1)
context triggers, (2) short-range intra-sentence (i.e., intra-
clause) events, (3) long-range intra-sentence (i.e., cross-
clause) events, and (4) cross-sentence events. We first
extract intra-clause or short-range intra-sentence events
as they involve syntactically close entities whose rela-
tionship is exhibited more clearly than syntactically dis-
tant ones, i.e., long-range intra-sentence or cross-sentence
events. The extracted events in earlier sieves are then
used to select candidate entities for less explicit events,
which affect actual inference in the next steps (sieves). We
note that this multi-pass process is essentially similar to
how humans recognize information cross-sententially in
a given document: They usually understand the relation-
ship between concepts that spread across sentences, by
collecting pieces of information within each sentence and
using them as an underlying context. We believe that, as
in the sieve architecture, it would be necessary to divide a
task into several subtasks and to address each of themwith
specific approaches. This is expected to be particularly
effective when some of the subtasks involve markedly dif-
ferent linguistic phenomena with minimal training data,
such as cross-sentence event extraction in the BB-event
task. It should be noted that most previous work on BB-
event attempting to deal with cross-sentence events in

a similar way to intra-sentence extraction, for example
by concatenating dependency paths of multiple sentences
into one larger path, has failed to extract them successfully
enough to improve the overall performance [20, 22]. We
also believe that it is possible to take advantage of sev-
eral useful features of this architecture to further improve
our approach. For example, one can quickly test ideas
by implementing them as individual sieves and can add,
replace and re-order them properly. This means that it
is also easy to assess the contribution of each sieve to
the overall performance. This is particularly useful when
supervised learning does not work well, as discussed in the
section on related work [30–36].

Task-specific constraints and knowledge As presented
in the “Methods” section, we propagate event relations
of bacteria-location pairs to other pairs through syntactic
relationships of the two pairs between bacteria mentions
or between location mentions. For example, if bacteria-
location pair B-L1 is identified as an event, and at the same
time L1 has a coordinate relation with another location
L2 (e.g., “L1 and L2”), we also consider the B-L2 pair as
an event. Although this method works generally well in
our experiments, it also produces a number of false pos-
itives in some cases, especially in the case of the nesting
and participle-preposition patterns (see Table 6). We note
that some of the errors can be explained by the “relation
transitivity” constraints in the BB annotation guidelines,
which describe for which pair of locations an event rela-
tion is transitive or not. For example, the guidelines state
that if location L1 exists inside geographical location L2
such as “sheep and goats in Europe”, then any event rela-
tion that involves L1 also involves L2. By contrast, the
transitivity relation does not hold between a living organ-
ism and an environment of the living organism. We found
that the patient entities are frequently involved in this
case, as shown in Example 2. In this example, each of
the two sentences appearing in the same document con-
tains two location mentions that are connected via our
propagation pattern (“LOCATION in LOCATION”), but
transitivity does not hold between them. For example,
non-transitivity between L1 and L2 in the first sentence
suggests that even if the bacteria strain (B1) lives in
patients (L1), it does not necessarily live in the facilities
accommodating them (L2). Since our system does not rec-
ognize specific types of location such as living organisms
and environments, it cannot address task-specific transi-
tivity of this kind, and always produces false positives.

Example 2. Location types and relation transitivity (ref-
erence events: B1-L1, B2-L3) [PMID: 10738994]

• . . . for typing methicillin-resistant [Staphylococcus
aureus]B1 strains colonizing [patients]L1in a [nursing
home]L2.
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• Prospective screening culture surveillance for
[MRSA]B2 among [patients]L3 in a [community
SNF]L4.

We found that some cases are not clearly explained
by the constraints stated in the annotation guidelines. In
Example 3, while the transitivity relation holds between
egg products and egg (i.e., L4 and L3), it does not hold
between egg pulp and egg (i.e., L2 and L1).

Example 3. Location types and relation transitivity
(reference events: B1-L2, B2-L3, B2-L4) [PMID:
1016123]

• Of the 104 isolations of [Salmonella]B1 sp. from
[[egg]L1 pulp]L2, . . .

• . . . and subsequent detection of [salmonellae]B2 in
[[egg]L3 products]L4; however, . . .

It is challenging to recognize this subtle difference of
semantic relations between pairs of entities, especially
when they form exactly the same syntactic structure such
as egg pulp and egg products. We believe that this is where
supervised learning could work better, as it can automat-
ically learn whether given mention pairs are considered
positive or not, without having to understand its underly-
ing semantics if there are sufficient training examples. We
leave it as future work.

Highly implicit events
Some cross-sentence events are highly implicitly
described and involve no context triggers. They usually
require multiple steps of inference and are thus difficult
to extract with single pair-wise comparisons between
entities. Example 4 demonstrates this case. There are one
bacteria mention and two location mentions, where only
one pair B1-L2 is a valid event. Our system produced
two errors in this example: It incorrectly identified the
B1-L1 pair as an event (i.e., false positive) by using disease
(underlined) as a trigger for B1, and missed the B1-L2
pair (i.e., false negative) because there is no context
trigger associated with L2. In order to detect the event
correctly in this case, it is necessary to perform a chain of
logical inference, such as how bacteria strains affect the
gene expression of particular DNAs, and how it is related
to the morphogenesis of the organism. It is also challeng-
ing in this example to distinguish a valid cross-sentence
event (B1-L2) from an invalid one (B1-L1) expressed in
the same sentence.

Example 4. Highly implicit cross-sentence event (refer-
ence event: B1-L2) [PMID: 9526514]

• [Agrobacterium rhizogenes]B1 strains of the agropine
type harbor on their Ri-plasmid two T-DNAs, a left
TL-DNA and a right TR-DNA.

• The rolB gene of the TL-DNA is the major factor in
the pathogenesis of the [hairy-root]L1 disease and its
constitutive expression interfere profoundly with
[plant]L2 morphogenesis.

Highly implicit events of this kind are also found
within a sentence. Example 5 shows two intra-sentence
events involving syntactically distant bacteria-location
pairs whose relationship is implicitly described. For the
first cross-clause event B1-L1, it is necessary to find
thatMRSA-contaminated surfaces are part of correctional
facilities (i.e., a meronym relation), which is not clearly
evidenced through any syntactic information in this sen-
tence. For the second event B2-L1, words such as cleaning
and prevention suggest the existence of the MRSA bacte-
ria in the facilities. Although our system recognized two
relevant context triggers contaminated and prevention,
it failed to detect both the two events since the trig-
gers are not connected to L1 via our syntactic rules. This
example highlights the necessity of exploiting word-level
semantics, especially for the relationship between location
entities.

Example 5. Highly implicit intra-sentence events (refer-
ence events: B1-L1, B2-L1) [PMID: 19622846]

• Finding [MRSA]B1-contaminated surfaces on a
variety of environmental surfaces in the absence of an
overt outbreak emphasizes that [correctional
facilities]L1 should have protocols for environmental
cleaning as a component of [MRSA]B2 prevention.

Linguistic modalities
Although we use the syntactic relationship between
modality keywords and entitymentions (or triggers), some
modalities are too implicitly expressed to be detected by a
few keywords, resulting in a number of false positives.
Example 6 shows two consecutive sentences found

in the training data containing two bacteria mentions
B1 and B2 and three location mentions L1, L2, and
L3, where L1 has an event relation with B1 and B2
through an intra-clause syntactic pattern whereas both
L2 and L3 do not have an event relation with any
bacteria mention.

Example 6. False positives in the hypothetical state-
ment (reference events: B1-L1 and B2-L1) [PMID:
25098305]

• Collectively, these data indicate that both [M.
agassizii ]B1 and [M. testudineum]B2 are present in
[Georgia populations of gopher tortoises]L1 and that
clinical disease is apparent in populations where both
pathogens are present.
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• Additional research is needed to better understand
the role of these two pathogens, and other potential
pathogens, in the overall health of [tortoise
populations]L2, especially if future conservation
efforts involve translocation of [tortoises]L3.

Here, our system correctly identified two intra-sentence
events B1-L1 and B2-L1, but incorrectly identified two
(false-positive) cross-sentence events B1-L2 and B2-L2.
This is because our system treated pathogens (underlined)
in the second sentence as a context trigger for both B1
and B2 in the first sentence (which indeed acts as their
anaphora), and associated it with L2 via an intra-sentence
syntactic pattern. However, the second sentence does not
confirm the relationship between the two pathogens and
the tortoise populations, but just emphasizes the necessity
of investigating it in the future, as indicated by “needed
to better understand”. It is thus difficult for our system to
capture implicitly expressed modalities of this kind with
just a few keywords. For L3, our system correctly excluded
it from an event (i.e., true-negative) as it is contained in
the if-clause.
Another important implication of this example is

that such linguistic modalities are usually signaled by
keywords or phrases outside the shortest dependency
path between given entities. This means that infor-
mation obtained from the shortest dependency path
might not be sufficient enough to distinguish between
various linguistic modalities. For example, the short-
est dependency path from pathogens to tortoise popu-
lations (i.e., “pathogens → of → role → in → health
→ populations”) does not include any word of “needed
to better understand” which is key to modality detec-
tion in this example. This could be an important issue
because most of the recent supervised systems rely only
on the information available on the shortest depen-
dency path, discarding all the information outside it
in order to improve generalization. We also encounter
this issue in extracting intra-sentence events as shown
in Example 7.

Example 7. False positive in the research goal statement
(no reference event) [PMID: 20073421]

• To evaluate the growth potential of [F. tularensis
LVS]B1 strain in [macrophage-like cell line J774]L1
modulated by . . .

Here, although B1 is syntactically close to L1, they do
not form an event. This is because the sentence just
describes a research goal, and does not present any evi-
dence or confirmation for their relationship, as indicated
by the phrase “To evaluate” in the beginning of the sen-
tence. However, this phrase is accessible only outside the
shortest dependency path between B1 and L1, suggesting

that it is necessary to check all the information in the sen-
tence, even when extracting intra-sentence events. Our
system correctly classified this case as a non-event (i.e.,
true-negative) using the keyword evaluate and its syntac-
tic relationship with B1 and L1.
Aside from these hypothesis and research goal state-

ments, there are also various forms of negation that
affect the decision on event relations. Example 8 shows
three sentences containing negated expressions and sin-
gle bacteria-location pairs. While the first two sentences
contain no event annotation, the third still contains a valid
event relation despite the explicitly expressed negation.

Example 8. Three different forms of negation that affect
event relations [PMID: 10658649, 2696427, 8532424]

• The interaction between [Streptococcus
pyogenes]BACTERIA and the [host cell ]LOCATION
surface is not completely understood.

• No [V. salmonicida]BACTERIA could be detected in
[sediments]LOCATION . . .

• None of the [colonized children]LOCATION
experienced an invasive [K. kingae]BACTERIA infection.

Note that all the three sentences exhibit different lev-
els of difficulties in determining how the negation affects
event relations. In the first sentence, while the negation
must be considered for correctly classifying the pair as a
non-event, it can be captured only outside the shortest
dependency path between the two entities. The second
sentence is a rather straightforward case: The use of the
determiner No, which directly modifies the bacteria men-
tion, indicates that no event relation holds between the
pair. By contrast, the third one requires a more careful
analysis: Even though the negation expression None of
modifies the location mention in a similar way to the sec-
ond sentence, the pair is still annotated as a valid event
in the training data. This is because the sentence means
that the event relation does not hold just for the “invasive”
K. kingae bacteria, but is still valid for general types of
the K. kingae bacteria. Our system does not perform such
sophisticated logical analysis, producing a false-positive
result for this sentence.
Some bacteria-location pairs are also expressed with

a loose causal relationship, making it difficult to judge
how strongly they are related, even by humans. In
Example 9, our system made erroneous decisions by
identifying B1-L1 as an event through their syntactic
relationship, and propagating it to L2 via the participle-
preposition pattern (i.e., known as) and to L3 via the
apposition pattern. This produces a cascade of errors.
The fact that this example has no reference event anno-
tation implies that even if those who are infected with
bacteria have “a history of consumption” of organ-
isms, it does not necessarily mean the existence of
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the bacteria in the organisms. A more careful analysis
would be needed to deal with such a loosely established
causal relationship.

Example 9. Unconfirmed causal relationship between
bacteria and locations (no reference event) [PMID:
6107735]

• All but 1 of the 12 people with [V. cholerae O:1]B1
infection gave a history of recent consumption of
[marine bivalves]L1 known locally as [arselle]L2
([pelecypods]L3).

Coreference and anaphora resolution
In order to use context triggers as indirect anaphors of
bacteria mentions, our system relies on a simple strategy,
associating each trigger to the bacteria mention closest
to it. We found that this generally works well, but in
some cases it is necessary to apply a more sophisticated
mapping, especially based on coreference or anaphora res-
olution. Example 10 shows how anaphora resolution can
be potentially useful in creating a correct mapping.

Example 10. Anaphora resolution for cross-sentence
inference (reference event: B1-L2) [PMID: 8347510]

• Although [A. aquaeolei ]B1 is most closely related to
[purple sulfur bacteria]B2 (the genera
[Ectothiorhodospira]B3 and [Chromatium]B4), it is
not a [phototrophic microorganism]L1, which is
consistent with its isolation from a [subterranean
environment]L2.

Here, our system recognizes isolation (underlined) as a
context trigger, and associates it with the closest bacte-
ria mention B4. Since this trigger is connected to L2 via
one of our intra-clause syntactic rules, our system consid-
ered the B4-L2 pair as an event by transitivity, making an
erroneous decision (i.e., false-positive). The correct bac-
teria mention that must be mapped to isolation is B1, and
the B1-L2 pair is the only correct event in this example.
Here, anaphora resolution can be helpful as it is used to
determine which bacteria mention is involved in isolation,
by identifying the antecedent of the possessive pronoun
its. Although the BB-event annotations contain corefer-
ence relations, they are limited to only a few explicit cases
such as appositives and abbreviations, and do not cover
pronouns at all, as seen in the previous edition of the
BB-event tasks [37].
Example 11 also shows the necessity of domain-specific

coreference resolution to correctly associate context trig-
gers to bacteria mentions.

Example 11. Coreference resolution for cross-sentence
inference (reference events: B1-L1, B1-L2) [PMID:
8347510]

• We present the real-time monitoring of hydrogen
cyanide (HCN) production from [Pseudomonas
aeruginosa]B1 (P. aeruginosa) strains in vitro, using
laser-based photoacoustic spectroscopy.

• Both reference strains and [clinical ]L1 isolates of
[patients with CF]L2 were studied, and compared to
other pathogens commonly present in [lungs/airways
of CF patients]L3.

The two sentences in this example appear in a single
document and contain two cross-sentence events B1-L1
and B1-L2. Our system correctly identified these two
events by associating the trigger isolates (underlined in
the second sentence) with B1 (which is closest to isolates)
and by finding the intra-sentence relations the trigger has
with L1 and L2. However, our system incorrectly iden-
tified (i.e., as false positive) B1-L3 as an event because
it considered pathogens (underlined in the second sen-
tence) as a trigger for B1 (which is closest to pathogens)
and linked it to L3 via an intra-sentence rule. Here, the
modifier other suggests that pathogens do not refer to
any specific bacteria mentioned in the example. Hence,
it must not be used as a medium for inference. We
believe that it is necessary and interesting future work
to study how biomedical coreference resolution can be
used to establish a correct mapping between context trig-
gers and bacteria mentions and how it benefits implicit
event extraction.

Generic vs. specific entities
We note that the level of specificity of entities affects how
they are related with other entities. For example, we found
that generic entities tend not to have an event relation
with specific entities, as shown in Example 12.

Example 12. Different levels of specificity of entities
(reference events: B1-L1, B2-L4, B2-L2) [PMID:
10738994]

• Prospective screening culture surveillance for
[MRSA]B1 among [patients]L1 in a community SNF
. . .

• [Nares and stool swab cultures]L2 were obtained
from newly admitted [patients]L3 . . .

• [MRSA]B2 were isolated by [oxacillin screening
agar]L4.

The example shows three consecutive sentences found
in a single document from the training data, contain-
ing annotations of three events: two intra-sentence events
B1-L1 and B2-L4, and one cross-sentence event B2-
L2. However, no event relation holds for the B1-L2
pair, despite exactly the same surface form of B1 and
B2 (i.e., MRSA). The difference comes from the speci-
ficity of entities: B1 refers to a generic type of entity,
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whereas B2 and L2 more specific ones. This specificity
is exhibited on a sentence level. The second and third
sentences together describe a single specific experimen-
tal process, and hence the annotated mentions in these
two sentences also refer to entities realized in a spe-
cific environment. By contrast, the first sentence is just
used to introduce an experimental design prior to the
specific experimental process and result, which explains
why B1 does not have any event relation with the enti-
ties in the second and third sentences. This example
highlights the necessity of identifying this subtle differ-
ence between entities, especially for fine-grained event
extraction.
While it is challenging to determine the degree of speci-

ficity of this kind, we notice that ’paragraph headers’ can
be useful information for this; our analysis of the origi-
nal articles of the BB-event datasets reveals that a single
biomedical abstract is usually divided into several seg-
ments (or paragraphs) where each of them starts with
headers that indicate for what purpose it is described,
such as Design, Methods, and Results. These headers are
good indicators of whether a given sentence describes
specific experiments/results or not. However, they are
missing in the official BB-event data, even when they are
found in the original articles. Figure 1 shows the original
abstract text for Example 12 found in the PubMedwebsite,
indicating that the first sentence in Example 12 corre-
sponds to Design, whereas the second and third sentences
Methods.

Applicability to other types of events and relations
Our method for context trigger identification has the
potential to deal with a variety of events and relations
across tasks. More specifically, we can use intra-sentence
extraction rules to collect context triggers for other types
of events and relations. For example, in the case of
chemical-disease relations in the BioCreative V Chemical
Disease Relation (CDR) Task [8], one of the syntactic pat-
terns that strongly signal valid relations would be “{noun}
of CHEMICAL {verbs} DISEASE”. In this pattern, expres-
sions matched by “{noun}” would be considered as a
context trigger, in a way similar to our proposed method
for the BB-event task (Table 4). In order to examine the
feasibility of this idea, we performed a pilot study, where
we collected sentences from PubMed and PMC using
this syntactic pattern together with the ten most frequent
chemical entities taken from the CDR training data, such
as cocaine, dopamine, morphine, and nicotine. We also
used three verbs generally indicative of causal relationship
for the trigger pattern: cause, lead, and show. We then fil-
tered out sentences that do not mention any of the disease
entities in the CDR training data. As a result, we were able
to collect from the remaining sentences several promis-
ing disease-related context triggers for chemical entities
such as administration, injection, concentration, ingestion,
toxicity, discontinuation, withdrawal, and cessation. The
following examples show four collected sentences sharing
the same chemical entitymorphine but different potential
context triggers (underlined).

Fig. 1 Screenshot of the PubMed original abstract text for the BB-event document (PMID: 10738994). The BB-event datasets do not contain headers
such as OBJECTIVES, DESIGN, and METHODS
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Table 4 Syntactic patterns for collecting context triggers

Trigger patterns Examples

1 {noun} of [bacteria] loc_prep [location] • elimination of [Helicobacter pylori]B in the [antrum]L

• attachment of [Escherichia coli O157:H7]B to [apple
surfaces]L

2 [bacteria] {n/v/p} loc_prep [location] • Heat-killed [C. burnetii]B purified with [normal yolk
sacs]L

• [Non-O1 Vibrio cholerae]B bacteremia in [patients
with cirrhosis]L

3 [location] {n/v/p} prep [bacteria] • [Respiratory]L carriage of [Kingella kingae]B

• Twenty-eight [blood culture]L isolates of [non-O1 V.
cholera]B

Underlined expressions are context triggers to be collected. [bacteria] and [location] are bacteria and location mentions annotated in BB-event training data, respectively.
prep and loc_prep are a general preposition and a locational preposition, respectively. {n/v/p} is either a noun, a verb, or a participle. Examples on the right show actual
snippets from the BB-event training data matched by syntactic patterns on the left. B and L in boldface refer to bacteria and location entities, respectively

Example 13. Sentences collected from PubMed and
PMC using the trigger patterns and chemical entities

• we have now shown that equimolar concentrations of
[morphine]CHEMICAL, methadone, and buprenorphine
show similar, [neurotoxic]DISEASE interactions with
Tat. [PMCID: PMC4475822]

• the intravenous (IV) acute injection of
[morphine]CHEMICAL in rabbits caused
[hypertension]DISEASE, bradycardia, and
hyperglycemia. [PMCID: PMC3347855]

• intrathecal administration of sufentanil, fentanyl, and
[morphine]CHEMICAL to dogs led to no histological
signs of [neurotoxicity]DISEASE after 28 days of daily
exposure. [PMCID: PMC4565585]

• Abrupt cessation of [morphine]CHEMICAL leads to
withdrawal signs and [cognitive deficits]DISEASE.
[PMID: 24459477]

These context triggers can be directly used for cross-
sentence relation extraction in the CDR task. For instance,
the following example of two consecutive sentences taken
from the CDR abstract text shows that the cross-sentence
relation between Midazolam hydrochloride (chemical)
and respiratory and cardiovascular depression (disease)
can be inferred via the context trigger administration
(underlined in the second sentence) as this trigger natu-
rally implies the medical use ofMidazolam hydrochloride
mentioned in the first sentence.

Example 14. Use of a context trigger for cross-sentence
chemical-disease relations [PMID: 2375138]

• [Midazolam hydrochloride]CHEMICAL is commonly
used for dental or endoscopic procedures.

• Although generally consisted safe when given
intramuscularly, intravenous administration is known

to cause [respiratory and cardiovascular
depression]DISEASE.

Note that this process is very similar to how we col-
lect and use context triggers to extract cross-sentence
bacteria-location relations. Although a more detailed
analysis would be needed for future work, this example
suggests that our context trigger identification is broadly
applicable to other types of event/relation extraction.

Conclusions
In this paper, we address implicit event extraction for the
bacteria-location relationships, with a particular focus on
cross-sentence events that most existing work has treated
as false positives due to limited training examples. We
adopt an unsupervised approach based on context trig-
gers. They signal the presence of bacteria entities that
are likely to be mentioned in adjacent sentences in a way
similar to anaphora, and thus provide important informa-
tion for cross-sentence inference. We propose a method
for collecting salient and diverse trigger expressions from
large-scale unlabeled text using linguistically motivated
syntactic constraints, without any external knowledge and
curated databases. Our trigger-based inference model sig-
nificantly outperforms all the shared task participants,
and is compared favorably with state-of-the-art neu-
ral models when combined with the existing supervised
intra-sentence extraction system. We expect that our
method can be used to achieve further improvement by
combining with more advanced models for intra-sentence
extraction and by using context triggers as features for
supervised learning of cross-sentence events. We also
believe that it would be interesting future work to inves-
tigate how well our method for collecting context triggers
is applicable to other types of cross-sentence events or
relations across various domains.
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Methods
Overview
The overall workflow of the proposed approach is illus-
trated in Fig. 2. It consists of three steps, as follows. First,
we collect context triggers to be used for cross-sentence
inference, from large-scale plain texts. For this process,
we use a list of bacteria names compiled from official

BB-event annotated datasets and linguistically motivated
syntactic patterns to be compared against the output of
a dependency parser. Second, we extract intra-sentence
events, where bacteria and location entities are men-
tioned in the same sentence (K. kingae → colonized
children), using either syntactic rules or existing intra-
sentence event extraction systems. Third, we detect all

Fig. 2 Overview of the proposed model
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the occurrences of context triggers from a given BB-event
document (where events are to be extracted) using the
list of triggers compiled in the first step (e.g., carriage).
We then create the mapping from bacteria mentions into
the context triggers in adjacent sentences (e.g., K. kingae
→ carriage), and infer cross-sentence events by detect-
ing intra-sentence relations between context triggers and
location mentions (e.g., carriage → pharyngeal). Note
that creating a list of context triggers from unlabeled texts
is performed only once (the first step), and the same list is
re-used for event extraction across all the BB-event docu-
ments (the second and third steps). In the remaining part
of this section, we describe each part and our intuition
behind it in detail.

Collecting context triggers
As described in the “Background” section, the key idea
of our approach is to use context triggers for cross-
sentence inference that act as an indirect anaphor for
bacteria entities mentioned around them. Our intu-
ition behind collecting such triggers is two-fold. First,
certain types of syntactic constructions provide infor-
mation about how bacteria are involved in a location.
Second, these constructions are likely to contain expres-
sions that play an important role in triggering such spa-
tial context of bacteria. More important, these expres-
sions frequently appear without bacteria mentions in a
sentence but still imply the presence of bacteria, mak-
ing it possible to use them for cross-sentence inference.
We use three types of linguistically motivated syntactic
patterns that trigger spatial context of bacteria as shown
in Table 4, with blue underlined expressions to be col-
lected as context triggers. Each pattern is paired with its
underlying syntactic dependency structure, as exemplified
in Fig. 3.
In Table 4, the examples on the right show that the rec-

ognized (underlined and in blue) context triggers such
as elimination and attachment refer to a bacteria-related
process involving a physical location. Figure 3 also shows

an example of collecting context triggers using these trig-
ger patterns; for every possible intra-sentence pair of
bacteria and location mentions annotated in the train-
ing data (e.g., Non-O1 Vibrio cholerae and patients with
cirrhosis in Fig. 3), we first process the corresponding sen-
tence using the Stanford dependency parser [38] to obtain
its syntactic dependency structure. We then check if the
syntactic dependency between the bacteria-location pair
is compatible with one of the trigger patterns in Table 4. If
so, we identify and collect a context trigger from the cor-
responding matched pattern (e.g., bacteremia in Fig. 3).
For loc_prep in the first two patterns, we use only loca-
tional prepositions such as in, on, to, from, and at in order
to further limit the semantics of [location] to actual loca-
tional entities for bacteria, and all prepositions for the last
pattern.
One limitation of collecting context triggers in the way

above is that only a few sentences are matched by the
trigger patterns due to the limited size of training data,
ending up with only a small number of triggers col-
lected. They would not be sufficient enough to generalize
to unseen data, given that the test data is larger than
the training data in the BB-event task (e.g., 327 and 340
events in the training and test data, respectively). We
address this issue by applying the trigger patterns to a
large amount of unlabeled plain text to collect much
more diverse context triggers. The problem is that this
may result in collecting noisy and useless expressions
due to the lack of bacteria and location annotations in
plain text that help to select candidate sentences to be
matched with the trigger patterns. We note, however,
that the number of unique bacteria expressions found
in the literature is usually limited and that our purpose
is to extract context triggers from sentences containing
bacteria mentions, but not to extract bacteria mentions
themselves. We thus chose to use a pre-defined set of
bacteria names rather than trying to recognize unseen
names from plain text. For this purpose, we compiled a list
of bacteria names by collecting all the bacteria mentions

Fig. 3 Using a trigger pattern to collect a context trigger from training data
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annotated in the official BB-event training, development,
and test datasets, obtaining 317 distinct bacteria names.
We then used them to select initial candidate sentences
from plain text. For location expressions, we did not use
this type of pre-compiled list and allowed any expres-
sions to be positioned at [location] in the patterns. This
is based on the assumption that locational prepositions
such as in and from can properly control the semantics of
those expressions.
As shown in Fig. 2, we used the PubMed and PMC

search engines to extract sentences from biomedical liter-
ature abstracts and full-text articles that contain at least
one of the bacteria names in our compiled list and at
least one preposition. We use the longest match as some
bacteria names are nested in others, such as campylobac-
ter and campylobacter jejuni. Once sentences mention-
ing bacteria are identified from plain text, we compared
themwith the trigger patterns and collected matched trig-
ger expressions in the same way as in Fig. 3. Here, we
did not try to match the [location] slot in the trigger
patterns, as explained above. Expressions whose fre-
quency is lower than empirical thresholds (to be detailed
in the “Results” section) are excluded. All the remaining
triggers are lemmatized and nominalized by the WordNet
lemmatizer available in the Natural Language Toolkit [39].
Although the proposed patterns can be used to col-

lect context triggers from plain text, they also result in a
number of expressions that are unlikely to act as context
triggers. This is because these patterns actually cover a
wide range of expressions irrelevant to specific biomed-
ical concepts, and because the syntactic parser some-
times produces incorrect dependency graphs, matching
many unintended ones. Hence, we manually analyzed and
filtered out such non-trigger expressions to enable pre-
cise inference. Our analysis revealed that there are espe-
cially two types, among others, of such expressions as
shown below.

1. Research purpose or methods, such as analysis,
study, examination, evaluation, inspection,
assessment, and investigation

• e.g., An evaluation of [selective broths]BACTERIA
based on the bi-selenite ion and on hypertonic
strontium chloride in [Salmonellae]LOCATION
detection

2. A certain amount, change of the amount, or class of
bacteria, such as any, some, part, number, amount,
frequency, type, pattern, class, group, range, change,
increase, and decrease

• e.g., A range of [Chlamydia
trachomatis]BACTERIA strains in
[cycloheximide-treated McCoy cells]LOCATION

Note that there could be other types of non-trigger
expressions and that there is still much room for improve-
ment on how to filter them out. More sophisticated and
automated tools can be adopted for this. One example is
information retrieval techniques [40, 41] that assess how
likely they are to occur with bacteria and location men-
tions in text. Another example is domain-specific contin-
uous representations of words (i.e., word vectors) [42, 43]
that determine their distributional relevance to biomedi-
cal entities and processes. We leave this as future work.
Details about the collected context triggers are presented
in the “Results” section.
Once the list of context triggers is compiled through the

process above, we can identify all the occurrences of con-
text triggers appearing in the given BB-event document
from which events are to be extracted, such as carriage in
Fig. 2, and then use them for cross-sentence inference. We
consider all the nouns, verbs, and adjectives as candidate
triggers and compare them with the ones in the trigger
list based on stemming, so that verb and adjective triggers
can also be matched with noun triggers. For example, if
the verb persist appears in a given document, we treat it as
a valid trigger because it matches with persistence in our
trigger list via stemming-based comparison. We used the
Porter stemmer available in the Natural Language Toolkit
[39], by which we could unambiguously identify all the
valid verb/adjective triggers.

Intra-sentence event extraction
We use two approaches to intra-sentence event extraction
: (1) the use of systems proposed by other researchers and
(2) our rule-based extraction with context triggers. The
first approach is motivated by the availability of super-
vised systems for extracting intra-sentence events. Since
our method for cross-sentence extraction can be easily
pipelined with such systems, we first extract as many
intra-sentence events as possible using such an exist-
ing system, and then extract cross-sentence events from
the remaining candidate bacteria-location pairs using our
trigger-based inference. We use the VERSE system [22]
as it is the only publicly available one at the time of writ-
ing. It is a supervised binary classification system trained
with SVM and linguistic features such as surface tokens,
part-of-speech tags, and syntactic dependency paths. It
achieved the highest F1-score in the BB-event shared task.
The second rule-based approach is motivated by the

possibility of using context triggers to detect long-range
intra-sentence events in a way similar to cross-sentence
inference. Our intuition behind it is that both long-range
intra-sentence and cross-sentence events pose essen-
tially the same challenge; while most state-of-the-art
systems consider shortest dependency paths between
involved entities as a prerequisite for generating under-
lying text representations [20, 23, 24, 28], such syntactic
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dependencies are less effective at modeling long-distance
entity pairs in text. We test how well our unsupervised
trigger-based inference extracts them by comparing it
with state-of-the-art supervised models. The remainder
of this section is focused on describing our trigger-based
approach to both long-range intra-sentence and cross-
sentence events.
We divide intra-sentence events into two classes: intra-

clause (short-range) events and cross-clause (long-range)
events. Note that cross-clause events involve bacteria and
location entities that are positioned in different clauses,
and that are thus likely to be distant from each other with
respect to syntactic dependencies.

Intra-clause event extraction We first extract only the
syntactically close (i.e., intra-clause) bacteria-location
pairs using linguistically motivated syntactic rules that
intuitively signal the presence of an event. We use two
sets of rules. First, we re-use all the trigger patterns
in Table 4, as they also cover syntactically close valid
relations between bacteria and locations. If a candidate
bacteria-location pair is matched with one of the trig-
ger patterns, we consider it as a valid intra-clause event.
Second, we also employ additional three syntactic rules
to extract more tightly connected intra-clause events as
shown in Table 5. Our analysis showed that such syntacti-
cally close relations capture a strong semantic association
between bacteria and locations, and that they can thus
be used to extract intra-sentence events with a higher
precision.

Cross-clause event extraction Once intra-clause events
are extracted, we infer cross-clause events using context
triggers. The process is essentially similar to that for cross-
sentence events: If a single sentence contains bacteria B,
location L, and trigger T for B (i.e., T is already associated

with B), with T and L in the same clause, we check if T can
be associated with L using the syntactic rules (Table 5) to
form an intra-clause event. If so, by transitivity we con-
sider the pair of B and L as an intra-sentence event in a
way similar to cross-sentence inference. Figure 4 shows
how long-range (i.e., cross-clause) intra-sentence events
are extracted from a single sentence, through a three-step
process of trigger-based inference as follows.

1. Identify all the occurrences of context triggers:
pathogen, organism, and prevalence.

2. Link each trigger with a bacteria mention, i.e.,
creating indirect coreference relations between them.
In this example, as Kingella kingae is the only
annotated bacteria mention, we link all the triggers to
it (dashed arrows).

3. Extract all the possible intra-clause events using the
syntactic rules (Tables 1 & 2), where each trigger is
treated as a bacteria mention. In this example, there
are three extracted events between triggers and
locations (solid arrows):

〈
pathogen, young children

〉
,〈

organism, respiratory tract
〉
, and

〈
prevalence,

children
〉
.

Note that as sentences may include more than one bac-
teria mention, it is necessary to create an appropriate
mapping between bacteria mentions and context triggers.
We adopt a simple strategy for this: For each bacteria
mention, we calculate how close it is to each trigger sim-
ply by counting the number of words between them and
choose the closest one. This is to make sure that each
bacteria mention is mapped only to one trigger clos-
est to it. Although we found that this simple mapping
works reasonably well, there would be more sophisticated
strategies, such as using syntactic dependencies or linguis-
tic rules used in anaphora resolution. We leave them as
future work.

Table 5 Syntactic patterns for extracting additional intra-clause events

Intra-clause syntactic patterns Examples

1 {[bacteria] [location]}NP or
{[location] [bacteria]}NP
i.e., bacteria and location mentions are
nested in a longer noun phrase

• Presence of the [fish]L pathogen [Vibrio salmonicida]B

• Prevention and treatment of [Staphylococcus]B
[biofilms]L .

2 [bacteria [location]] or
[location [bacteria]]
i.e., a bacteria mention is nested within a
location mention or vice versa.

• [[Mtb]B-infected human bloodmonocyte]L

• All but 1 of the 12 [people with [V. cholerae O:1]B
infection]L

3 [bacteria]prep [location] or
[location]prep [bacteria]

• an emergingmechanism of resistance in [S. enterica]B
in the two [studied hospitals]L

B and L in boldface refer to bacteria and location entities, respectively
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Fig. 4 Example of extracting long-range intra-sentence events

Intra-sentence event propagation In order to compen-
sate for the potentially low recall due to using direct
syntactic dependencies of bacteria-location (or trigger-
location) pairs, we employ another set of linguistically
motivated syntactic rules to detect additional events based
on the events extracted so far. More specifically, if we
extract event B1-L1 using the proposed intra-clause rules,
and at the same time another location L2 has a particular
syntactic relationship with L1, we also consider the B1-L2
pair as another event. Likewise, if another bacteria B2 has
such a relationship with B1, new event B2-L1 is extracted.
For example, if pair B1-L1 is found to be an event, and L1
forms a coordinate clause with another location L2, such
as “L1 and L2” in a sentence, we consider the B1-L2 pair
as another valid event. This can be seen as propagating

event label B1-L1 to another candidate pair B1-L2. We use
five types of syntactic relations between bacteria/trigger
mentions or between location mentions as propagation
conditions, as shown in Table 6. All these patterns are
easily captured by the dependency parser. Figure 5 also
illustrates how event labels are propagated through nest-
ing and coordination. Note that these rules are applied
repeatedly to all of the remaining bacteria-location (or
trigger-location) pairs in each sentence wherever possible,
until no more pairs are identified as an event by propa-
gation. This repeated process is to deal with cases where
multiple patterns are found in a row such as coordination
of several mentions, or are embedded in other patterns
such as coordination of mentions that nest another men-
tion in them (i.e., nesting is embedded in coordination).

Table 6 Syntactic patterns for propagating event labels to other candidate bacteria-location (or trigger-location) pairs, with examples
where B, B1 and B2 are bacteria annotations, and L1 and L2 are location annotations

Propagation
patterns

Descriptions and examples

1 Nesting Given the phrase “apple and lettuce surfaces” with its four nested location annotations:
apple surfaces, lettuce surfaces, apple, and lettuce, if bacteria B is found to be located in
“apple and lettuce surfaces”, we identify four events by associating B with each of the
four location mentions, as illustrated in Fig. 4.

2 Coordination Given the two coordinated location mentions “tryptic soy broth” and “nutrient broth”,
if bacteria B is found to be located in “tryptic soy broth”, we also identify the pair of B
and “nutrient broth” as an event, as illustrated in Fig. 4.

3 Apposition In the example “[methicillin-resistant Staphylococcus aureus]B1 ([MRSA]B2) coloniza-
tion in a [skilled nursing facility]L1 ([SNF]L2)”, we first identify the intra-clause event
B1-L1 using a trigger pattern, and then propagate it to additional three events B2-
L1, B2-L2, and B1-L2, based on the apposition relations between B1 and B2 and
between L1 and L2, as captured by their syntactic dependencies.

4 Location
hierarchy

Two geographical location mentions are sometimes connected via a comma when
they have a clear hierarchical relationship, such as “in [Georgia]L1 , [USA]L2” and “res-
idents of [Olmsted Country]L3 , [Minnesota]L4”. In this case, we propagate an event
relation for a smaller region to that for a larger one.

5 Participle-
preposition

In the example “[Israeli travelers]L1 returning from [Nepal]L2 were diagnosed with [S.
Paratyphi A]B1 bacteremia”, we first identify the intra-clause event B1-L1 using a
trigger pattern, and then propagate it to B1-L2 through the participle-preposition
relation between L1 and L2. This pattern can also be applied to two locations con-
nected by a single preposition such as “in the [Hospital S. Camillo De Lellis]L1 of
[Roma]L2”.

Note that these patterns are applied to entity pairs of the same type, i.e., bacteria-bacteria or location-location pairs. B, B1, and B2 in boldface refer to bacteria entities. L, L1,
L2, L3, and L4 in boldface refer to location entities
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Fig. 5 Example of propagating event labels to other pairs of bacteria and locations

Cross-sentence event extraction
Extraction of cross-sentence events is essentially similar
to trigger-based intra-sentence extraction: Creating the
cross-sentence mapping from bacteria mentions into con-
text triggers, and then detecting intra-sentence relations
between context triggers and location mentions using
linguistic rules. Aside from this, there is also another
important issue: Which pairs of entities in a document are
considered as candidates for cross-sentence events. This
issue depends heavily on the task characteristics and thus
must be addressed in a task-specific manner. In particular,
we found that whether or not an entity is involved in cross-
sentence events depends on whether or not it is already
involved in intra-sentence events. For example, previous
work on finding event locations (verb-location links) from
a document [19] restricts each verb to be linked with only
one (i.e., best-fit) location, whether or not the link is cre-
ated within the sentence boundary. This means that if a
verb already has an intra-sentence link with any location,
it can never be linked with locations in other sentences.
By contrast, the BB-event task allows bacteria mentions to
be associated with more than one location, either intra-
sententially or cross-sententially. This difference suggests
that it is necessary to select candidate mentions for cross-
sentence events in a task-specific manner, especially by
examining how they are involved in intra-sentence events.
From our analysis of cross-sentence events annotated in

the BB-event training and development data, we make the
following three observations that lead to appropriate cri-
teria for selecting candidate entitymentions to be involved
in cross-sentence events:

1. If a bacteria mention has an intra-sentence relation
with any location mention, it is more likely to be
involved in cross-sentence events than those that
have no relation with any location mention existing
in the same sentence. We conjecture that this is
because the literature frequently describes a situation
where one bacteria is involved in several different
biological processes. This involvement is annotated
in the form of multiple links from one bacteria
mention to multiple location mentions across more
than one sentence. This is different from [19], whose

goal is to find only the single most appropriate
location for each event (verb).

2. If a bacteria entity is mentioned but no location
mention exists in a sentence, it is likely to have an
event relation with another location in adjacent
sentences. We observe that this happens when a
single relation between bacteria and location entities
is expressed across two sentences, without any other
entities mentioned between them.

3. If a location mention already has an intra-sentence
relation with any bacteria mention, it never has a
cross-sentence relation with any other bacteria
mention. We found that two different bacteria
entities mentioned in different sentences are rarely
associated with one location mention at the same
time, especially if one of them lies in the same
sentence as the location mention. Even if two
bacteria mentions are coreferential, only one of them
can be involved in an event because the BB-event
datasets annotate only one event for coreferential
entities. This suggests that a single location mention
is unlikely to be involved both in the intra-sentence
and cross-sentence events at the same time.

Based on these observations, we select candidate men-
tions for cross-sentence events as follows. For a given
bacteria mention, we select it as a candidate only if (1) it
is found in a sentence that contains no location mention
at all, or (2) it already has at least one intra-sentence rela-
tion with any location. In other words, we select it as long
as it has a relation with any location mention that exists
in the same sentence. For a given location mention, we
select it unless it already has an event relation with any
bacteria mention in the same sentence. This means that
we extract cross-sentence events based on the results of
intra-sentence extraction.
Once candidate mentions are selected based on these

criteria, we start with bacteria mentions one by one, from
top to bottom, searching for location mentions around
them to form cross-sentence events. More specifically,
for each candidate bacteria mention, we examine can-
didate location mentions one by one within the slid-
ing context window of a fixed size. For each candidate
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location mention, we check whether it can have a cross-
sentence relation with the given bacteria mention based
on trigger-based inference in a way similar to long-range
intra-sentence extraction. In this process, each context
trigger is linked to only one bacteria mention closest
to it (in terms of the number of words and sentences
between them). Note that aside from using the context
window of a fixed size, we also make sure that it does
not include other previous or following bacteria men-
tions appearing in a document, but includes the only
bacteria mention within it, in order to maintain precision
in cross-sentence inference. Thus, our system does not
attempt to find cross-sentence events for bacteria men-
tions that occur with other bacteria mentions in the same
sentence.
Figure 6 illustrates how context windows are estab-

lished for each bacteria mention and how cross-sentence
events are extracted based on the intra-sentence rela-
tions between context triggers and location mentions. For
example, the cross-sentence relation between K. kinage
(B3) in sentence 5 and pharyngeal in sentence 6 is
extracted based on the mapping between carriage (the
trigger) and B3, and the intra-sentence relation between
carriage and pharyngeal. Note that the context window
of each bacteria mention is created in such a way that it

does not contain other bacteria mentions. For example,
the context window of K. kinage (B1) contains only one
sentence (i.e., sentence 1) because there is another bacte-
ria mentionK. kinage (B2) in the subsequent sentence (i.e.,
sentence 2).

Dealing with hypothesis, negation, and research goals
The BB-event annotation guidelines state that the corpus
does not annotate any working hypothesis as an event.
However, the corpus does not explicitly mark such infor-
mation, and the annotation guidelines do not specifically
describe how to identify working hypotheses. This com-
plicates the overall task further because it is challeng-
ing to determine which part of statements is hypothet-
ical or not, even by humans. Our analysis reveals that
diverse types of relevant linguistic modality are reflected
in the event annotations, such as negation and specu-
lation, which significantly affect the automatic identifi-
cation of events. This type of linguistic information has
not been investigated in detail in previous work on the
BB-event task for two reasons. First, sophisticated detec-
tion of such information (e.g., identifying the scope of
negation) requires another line of extensive research. Sec-
ond, supervised learning models are generally assumed
to capture such information using surface tokens and

Fig. 6 Example of the mapping between context triggers and bacteria mentions, and of linking each trigger to location mentions. Blue-shaded
words such as cultures and prevalence are context triggers. Dashed curved arrows are the mappings between context triggers and bacteria
mentions within the context window of each bacteria mention. Solid curved arrows connecting context triggers to location mentions are
intra-sentence relations between them. Solid vertical arrows on the right indicate the sliding context window (i.e., sentence range) of each of the
three bacteria mentions (B1, B2, and B3)
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part-of-speech information. We do not fully address this
issue in this paper as it is considered beyond the scope
of this work. Nonetheless, we found that a simple analy-
sis of the syntactic relationship between entity mentions
and keywords that indicate linguistic modalities such as
a working hypothesis significantly improves the perfor-
mance of event extraction. In particular, we see that when
entity mentions (including context triggers) are syntacti-
cally dominated by modality keywords, those entities are
unlikely to form an event. The two consecutive sentences
in Example 15 demonstrate an example of this case. They
contain one bacteria mention, three location mentions,
and four occurrences of context triggers underlined (mat-
uration, adhesion, and infection). Here, bacteria mention
S. marcescens MG1 is annotated to have event relations
with two occurrences of location mention biofilm (one for
intra-sentence and the other for cross-sentence). How-
ever, it does not have an event relation with the third
location mention abiotic and biotic surfaces, despite the
same trigger (adhesion) repeatedly used for both the sec-
ond and the third location mentions. Again, we see that
this is because the second occurrence of adhesion lies in
the scope of a working hypothesis, created by “determine
whether”. Our analysis revealed that some verbs and their
nominalized form, such as determine and determination,
are used to create the scope of linguistic modalities that
impact event extraction, as shown in this example.

Example 15. Linguistic modality and event relation
[PMID: 17237163]

• In previous studies of [S. marcescens MG1]BACTERIA,
we showed that [biofilm]LOCATION maturation . . .

• Because of the importance of adhesion in initiating
[biofilm]LOCATION formation and infection, the
primary goal of this study was to determine whether
QS is important in adhesion to both [abiotic and
biotic surfaces]LOCATION . . .

We employ the following three methods for detecting
such linguistic modalities to filter out given entities (or
triggers), thus preventing them from being involved in
events. Although this is a simple and limited approach,
it is found to boost the overall performance by rais-
ing precision without loss of recall, as detailed in the
“Results” section.

1. In order to detect the hypothetical statements, we
use the same list of keywords as used to filter out
non-trigger expressions in the trigger collection
process, such as study, analysis, examination, and
determination, together with their verb forms, such
as analyze, examine, and determine. When these
modality keywords are found in a given sentence, we
examine its dependency structure produced by the

dependency parser and filter out entities and triggers
that are syntactic descendants of the keywords (e.g.,
the trigger adhesion is a syntactic descendant of
determine in the second sentence of Example 15).

2. We filter out entities and triggers if they are within
if -clauses or whether-clauses.

3. In order to deal with negations, we filter out all the
entities and triggers that are directly modified by any
of the three negation expressions not, no and none
of, such as “None of BACTERIA is isolated from
LOCATION”. We also filter out entities and triggers
if they are modified by any predicates (verbs and
adjectives) that are negated via not, such as
“BACTERIA is not isolated from LOCATION”.

We evaluated the proposed methods with the official
BB-event evaluation benchmark. Experimental data, set-
tings, and results are detailed in the “Results” section.
Error analyses and remaining issues are presented in the
“Discussion” section.

Abbreviations
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