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Abstract

Liriomyza trifolii is a highly-invasive leafmining insect that causes significant damage to veg-

etables and horticultural crops worldwide. Relatively few studies have quantified gene

expression in L. trifolii using real-time quantitative PCR (RT-qPCR), which is a reliable and

sensitive technique for measuring gene expression. RT-qPCR requires the selection of ref-

erence genes to normalize gene expression data and control for internal differences

between samples. In this study, nine housekeeping genes from L. trifolii were selected for

their suitability in normalizing gene expression using geNorm, Normfinder, BestKeeper, the

ΔCt method and RefFinder. HSP21.7, which encodes heat shock protein 21.7, was used as

a target gene to validate the expression of candidate reference genes. Results indicated

that ACTIN and 18S were optimal for developmental stage and low temperature, TUB and

18S showed the most stable expression for sex, and GAPDH and ACTIN were the best ref-

erence genes for monitoring gene expression at high temperature. Selection and validation

of appropriate reference genes are critical steps in normalizing gene expression levels,

which improve the accuracy and quality of expression data. Results of this study provide

vital information on reference genes and is valuable in developing a standardized RT-qPCR

protocol for functional genomics research in L. trifolii.

Introduction

Liriomyza (Diptera: Agromyzidae) is a phyletic genus exhibiting replacement that continues to

spread throughout the world [1–3]. L. trifolii Burgess is an invasive pest in China that has
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caused great losses in agricultural and horticultural crops [2–5]. In mainland China, it was ini-

tially discovered in Guangdong Province in 2005 [6–7] and has now been reported in more

than ten provinces [8–10]. Both the larval and adult stages of L. trifolii damage crop plants.

The larvae feed and damage the foliage, and female adults puncture plant tissue during ovipo-

sition. Both activities can reduce photosynthesis, increase defoliation, and result in yield loss

[11–12].

Due to the rampant use of pesticides and onset of insecticide resistance, the development of

more environmentally favorable pest management strategies is imperative. For example, strat-

egies employing RNA interference (RNAi) or gene knockout approaches have been success-

fully developed for many pests [13–15]. Genetic approaches show great promise in pest

management but require functional studies to identify suitable target genes and expression

profiles in insects [16–19]. To successfully implement genetic strategies for control of L. trifolii,
the use of standardized, real-time quantitative PCR (RT-qPCR) protocols using MIQE guide-

lines (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) is

critical [20]. RT-qPCR is widely used to analyze gene expression because of its accuracy, sensi-

tivity, reproducibility and quantitative ability [21–22]. To accurately calculate gene expression

using RT-qPCR, it is vital to use appropriate reference genes to normalize the data.

The expression of ideal reference genes should be constant in different tissues and experi-

mental conditions. However, recent research has indicated that widely-used reference genes

were differentially expressed and only stable during specific conditions [23]. ACTIN was one

of the most stable reference genes that has been used for different developmental stages in Cal-

liphoridae [24], but in Frankliniella occidentalis and Sesamia inferens, that gene was ranked as

an unstable reference gene for certain developmental stages [17, 25]. The suitable reference

genes for sex in Coleomegilla maculate were 16S, HSP70 and RPS18, while 18S and ACTIN were

relatively unstable genes [18]. For temperature treatments, ACTIN has been used as a stable

reference gene for heat shock stress in Drosophila melanogaster [26], but in Nilaparvata lugens
and Bemisia tabaci, ACTIN was ranked as one of the unstable reference genes [27–28]. There-

fore, many traditional housekeeping genes are no longer valid reference genes for RT-qPCR.

To our knowledge, this is the first study to evaluate the expression stability of different candi-

date reference genes for qRT-PCR in leaf-mining flies. Previous gene expression studies of Lir-
iomyza species used ACTIN as the reference gene to normalize gene expression and reference

genes were not selected and validated reference genes under different experimental conditions

[29–32], athough the expression of ACTIN was monitored at different developmental stages in

L. sativae [29]. It is critical, however, to validate the expression stability of reference genes

under different experimental conditions before using them for normalization.

The aim of this study was to identify a suite of reference genes with stable expression in L.

trifolii under different experimental conditions. Nine candidate reference genes including 18S

ribosomal RNA (18S), β-actin (ACTIN), arginine kinase (AK), elongation factor 1α (EF-1),

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone 3 (H3), ribosomal protein L32

(RPL32), tubulin α-1 chain (TUB) and carbamoyl phosphate synthase (CAD) were evaluated

for suitability in the normalization of gene expression under different experimental conditions

(developmental stage, sex, and temperature). The stability and performance of the candidate

reference genes was examined using geNorm [33], NormFinder [34], BestKeeper [35], the ΔCt

method [36] and RefFinder [37]. The expression profile of HSP21.7, which encodes heat shock

protein 21.7, was used to evaluate the suitability of different combinations of reference genes

and various experimental conditions. The results provide insight regarding the selection of

appropriate reference genes for functional genomic studies in L. trifolii.
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Materials and methods

Insect cultures

Populations of L. trifolii were collected from celery (Apium graveolens), which was cultivated in a

vegetable greenhouse located in Yangzhou (32.39˚N, 119.42˚E). The insect populations were

maintained and reared in the laboratory for ten or more generations at 25 ± 1˚C with a 16:8 h

(light: dark) photoperiod as described by Chen and Kang [38]. No specific permission was

required for these activities, and the field studies did not involve endangered or protected species.

Temperature treatments

Groups of two-day-old pupae were subdivided into four repetitions (n = 30), placed in glass

tubes, and exposed to heat (35˚C, 37.5˚C, 40˚C, 42.5˚C, 45˚C) or cold stress (0˚C, -2.5˚C, -5˚C,

-7.5˚C, -10˚C) for 1 h in a constant temperature controller (DC-3010, Ningbo, China). A set of

pupae maintained at 25˚C was regarded as a control group. After temperature treatment, the

pupae were allowed to recover at 25˚C for 1 h, frozen in liquid nitrogen, and stored at -70˚C.

Developmental stage and sex

Treated stages included third-instar larvae, prepupae, two-day-old pupae, ten-day-old pupae,

and adults including male and female. Each treatment (n = 30) was repeated four times.

Candidate reference genes and primer design

Nine candidate reference genes (ACTIN, AK, EF-1, H3, RPL32, 18S, CAD, GAPDH, and TUB)

and the target gene HSP21.7 were amplified from L. trifolii based on homologies with dipteran

insects deposited in the NCBI database (http://www.ncbi.nlm.nih.gov). Primer Premier 5 was

used for primer design using the parameters outlined by Zheng et al. [17]. Protocols for PCR,

procedures for cloning in pGEM-T easy, and sequence analysis were conducted as previously

described [39]. Sequences were submitted to GenBank, and the accession numbers are shown

in Table 1.

RNA isolation

Total RNA was extracted from L. trifolii using the SV Total RNA Isolation system (Promega,

WI, USA). The integrity of RNA was verified by comparing RNA bands in gels stained with

Table 1. Sequence information of the candidate reference genes.

Gene name Abbreviation Amplicon length (bp) Accession number

Beta-actin ACTIN 322 KY231150

Arginine kinase AK 426 KY563322

Elongation factor 1 alpha EF-1 850 KY558636

Histone 3 H3 299 KY558638

Ribosomal protein L32 RPL32 139 KY558639

18S ribosomal RNA 18S 994 KY563323

Carbamoyl phosphate synthase CAD 600 KY558635

Glyceraldehyde-3-phosphate

dehydrogenase

GAPDH 996 KY558637

Tubulin alpha-1 chain TUB 1350 KY558640

Heat shock protein 21.7 HSP21.7 837 KY558641

https://doi.org/10.1371/journal.pone.0181862.t001
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ethidium bromide. Total RNA quantity and purity was determined by spectrophotometry

(Eppendorf Bio Photometer plus, Hamburg, Germany).

Expression analyses by real-time quantitative PCR

RNA (0.5 μg) was reverse-transcribed into first-strand cDNA using the Bio-Rad iScript™
cDNA Synthesis Kit (Bio-Rad, CA, USA). Real-time PCR reactions were performed in a 20 μl

reaction volume comprised of 10 μl Bio-Rad iTaq™ Universal SYBR1 Green super mix (2×),

1 μl of each gene-specific primer (10 μM) (Table 2), 2 μl of cDNA template, and 6 μl of ddH2O.

Reactions were carried out using a CFX-96 real-time PCR system (Bio-Rad Laboratories,

Berkeley, USA) under the following conditions: 3 min at 95˚C, 40 cycles of denaturation at

95˚C for 30 s, and annealing at the Tm of primer pairs (Table 2) for 30 s. Each treatment con-

tained four replications, and each reaction was run in triplicate.

Data analysis

The stability of the nine candidate reference genes was evaluated using geNorm, NormFinder,

BestKeeper, the ΔCt method and RefFinder, which is a comprehensive software platform inte-

grating all four algorithms. Pairwise variation (V), which is determined by geNorm, was used

to determine the optimal number of reference genes for accurate RT-qPCR normalization. Vn/

Vn+1 indicated the pairwise variation between two sequential normalization factors, and a cut-

off threshold of Vn/Vn+1 = 0.15 was used for valid normalization [33]. Lower scores denote

greater transcriptional stability and better suitability as a reference gene for each of the evalu-

ated programs. RefFinder was used to select the best reference genes based on the final results

of the four different programs.

Evaluation of target gene expression

HSP21.7 is a member of the heat shock protein superfamily, which contains molecular chaper-

ones that increase heat tolerance and protect organisms from thermal injury [29, 40]. HSP21.7
was used as a target gene to evaluate the candidate reference genes. Relative expression was cal-

culated using the 2-ΔΔCt method [41]. Geometric means of the reference genes were used to

normalize expression under the different experimental conditions. Statistical significance

between treatments was analyzed by one-way ANOVA and further evaluated using Tukey’s

multiple comparison (P<0.05) in SPSS v. 16.0 software (SPSS, Chicago, IL, USA).

Results

Amplification efficiency of candidate reference genes

For each primer pair, specific amplification was confirmed by a single peak in melting-curve

analysis. A standard curve was generated for each gene and the regression correlation coeffi-

cient (R2) and PCR efficiency (E) for each standard curve were detailed in Table 2. All ten

genes showed E values between 90.2–108.6% and R2 values greater than 0.988.

Expression profile of candidate reference genes

The Ct values generated from the nine candidate reference genes were used to estimate the sta-

bility of gene expression across different experimental treatments. The mean Ct values of the

nine reference genes varied from 10.91 to 28.27 for 18S and CAD, respectively. With the excep-

tion of 18S and CAD, seven of the nine candidate reference genes displayed a narrow range of

mean Ct values in all experimental samples and all the standard deviation (SD) values of those

reference genes were < 2.0 (Fig 1).
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Analysis of gene expression stability

The geNorm program uses mean expression stability values (M-values) to determine the best

set of reference genes. Lower M-values indicate greater stability. geNorm ranked ACTIN and

18S as the most stable genes in different insect developmental stages, and AK and 18S were the

most stable genes for adults of either sex (Table 3). ACTIN and GAPDH co-ranked as the most

stable genes in response to low and high temperature treatments. The overall ranking of the

nine reference genes is shown in Table 3. geNorm analysis revealed that the pairwise variation

values were below the proposed 0.15 threshold value. The first V-value < 0.15 emerged at V2/

3 (Fig 2), suggesting that two reference genes are reliable for normalization in the four experi-

mental conditions (developmental stage, sex, low and high temperature).

The NormFinder algorithm ranks each gene independently, and a lower stability value (SV)

indicates higher expression stability. NormFinder ranked ACTIN and CAD as the most stable

Table 2. Primers used to analyze gene expression stability in Liriomyza trifolii.

Gene Primers (5’to3’) Length (bp) Efficiency (%) R2 Tm (˚C)

Sense Antisense

ACTIN TTGTATTGGACTCTGGTGACGG GATAGCGTGAGGCAAAGCATAA 73 108.6 0.988 59.2

AK CTTGGGTGAAGTCTACCGTCGT GTCATCGTGAGAGAATGGCAAA 75 107.3 0.991 60.1

EF-1 ACTCGTCCAACTGAGAAGCCA CACACCAGTTTCCACACGACC 98 94.5 0.998 61.0

H3 CCTGTAATGCCATAACTGCTGAAC CAAAAGAGTACGGAGTTGCTGATA 117 91.09 0.998 59.5

RPL32 AGCACTTCATCCGCCATCAAT ACTGACCCTTGAAACGACGAC 104 106.3 0.990 59.0

18S GAAGCAGTTTGGGGGCATTA TTGGCAAATGCTTTCGCTTA 88 100.3 0.992 55.8

CAD CGATAAGTGCTATTTCTTGCCCT GTCCACCAAAAGTCAACAAAACG 94 103.2 0.994 60.0

GAPDH AGGCTGTTGGCAAAGTGATTC CTTTTCCCAAACGCACAGTCA 110 90.2 0.999 59.1

TUB TCCTTGTTGATGGAGCGATTG GGTTGATACTTGAGGTGCGGG 86 94.9 0.994 59.6

HSP21.7 CAACAGTTTGCTCCCAATGAAG GAGGTAGCGTCTGGAGAAGTGA 125 97.5 0.994 57.5

https://doi.org/10.1371/journal.pone.0181862.t002

Fig 1. Expression profiles of the nine candidate reference genes in different samples. The black dot

indicates the mean Ct value of duplicate samples, and the bars indicate the standard deviation (SD) of the

mean.

https://doi.org/10.1371/journal.pone.0181862.g001
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genes for developmental stages and sex, respectively (Table 3). 18S was the most stable gene in

response to low temperatures, whereas AK was best for the high temperature treatments

(Table 3).

The stability of a gene is inversely proportional to the SD and coefficient variation (CV) as

computed by BestKeeper. ACTIN was the most stable gene for developmental stages and insect

sex when BestKeeper was used, whereas 18S and GAPDH were the most stable genes for low

and high temperature treatments, respectively (Table 3).

The ΔCt method uses raw Ct values, and the mean SD of each gene is inversely proportional

to its stability. The ΔCt method indicated that TUB was the most stable reference gene for

Table 3. Ranking order of the candidate reference genes under different experimental conditions.

Experimental conditions Rank geNorm NormFinder BestKeeper Delta Ct

Reference gene Stability Reference gene Stability Reference gene Stability Reference gene Stability

Developmental stage 1 ACTIN/

18S

0.3592 ACTIN 0.1245 ACTIN 0.7500 TUB 0.7771

2 TUB 0.1535 18S 0.7916 18S 0.8308

3 TUB 0.4349 18S 0.2324 CAD 1.0002 ACTIN 0.8809

4 AK 0.6060 EF-1 0.4711 TUB 1.0978 EF-1 0.9161

5 EF-1 0.6759 AK 0.6379 RPL32 1.2943 AK 0.9956

6 RPL32 0.7419 RPL32 0.7271 EF-1 1.3081 RPL32 1.0142

7 GAPDH 0.7923 GAPDH 0.7818 AK 1.3150 GAPDH 1.1202

8 CAD 1.1011 CAD 1.0971 GAPDH 1.4981 CAD 1.3885

9 H3 1.4729 H3 1.8734 H3 1.5164 H3 2.117

Sex 1 AK/

18S

0.0048 CAD 0.0604 ACTIN 0.7710 TUB 0.4484

2 TUB 0.1120 18S 0.7833 CAD 0.4770

3 ACTIN 0.0148 RPL32 0.1924 AK 0.7867 GAPDH 0.4932

4 GAPDH 0.0324 GAPDH 0.4238 GAPDH 0.8157 RPL32 0.5017

5 TUB 0.2373 AK 0.4587 TUB 1.1742 AK 0.5041

6 CAD 0.4111 18S 0.4628 CAD 1.4027 18S 0.5062

7 RPL32 0.5009 ACTIN 0.4774 RPL32 1.4686 ACTIN 0.5170

8 EF-1 0.6370 EF-1 0.5691 EF-1 1.7679 EF-1 0.6888

9 H3 0.8045 H3 0.9544 H3 2.1046 H3 0.9833

Low temperature 1 ACTIN/

GAPDH

0.1750 18S 0.1215 18S 0.2743 ACTIN 0.2444

2 AK 0.1518 TUB 0.3725 AK 0.2779

3 RPL32 0.2032 ACTIN 0.1534 AK 0.4417 EF-1 0.2791

4 AK 0.2166 EF-1 0.2027 ACTIN 0.4460 GAPDH 0.2832

5 EF-1 0.2539 RPL32 0.2076 EF-1 0.4485 18S 0.2849

6 18S 0.3031 GAPDH 0.2466 RPL32 0.4514 RPL32 0.3175

7 CAD 0.3587 CAD 0.2469 CAD 0.4955 CAD 0.3401

8 TUB 0.4025 TUB 0.2883 GAPDH 0.5509 TUB 0.3769

9 H3 0.4595 H3 0.4212 H3 0.6086 H3 0.3819

High temperature 1 ACTIN/

GAPDH

0.0856 AK 0.0714 GAPDH 0.1843 AK 0.2216

2 GAPDH 0.0728 ACTIN 0.1988 GAPDH 0.2328

3 AK 0.1644 ACTIN 0.1130 AK 0.2262 ACTIN 0.2592

4 TUB 0.2331 TUB 0.1635 RPL32 0.2411 TUB 0.2770

5 CAD 0.2652 EF-1 0.1955 EF-1 0.2724 EF-1 0.2950

6 H3 0.2971 RPL32 0.2324 TUB 0.2981 CAD 0.3141

7 EF-1 0.3288 CAD 0.2383 CAD 0.3180 RPL32 0.3257

8 RPL32 0.3549 H3 0.2610 18S 0.3406 H3 0.3442

9 18S 0.3793 18S 0.2832 H3 0.4757 18S 0.4042

https://doi.org/10.1371/journal.pone.0181862.t003
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developmental stages and sex, whereas ACTIN and AK were the most stable genes for low and

high temperatures, respectively (Table 3).

RefFinder is a comprehensive program that integrates the results obtained from geNorm,

Normfinder, BestKeeper, and the ΔCt method and ranks candidate reference genes based on

their stability. The following rankings are listed in order of decreasing stability. For insect

developmental stages, the comprehensive ranking obtained with RefFinder was ACTIN, 18S,

TUB, AK, EF-1, CAD, RPL32, GAPDH, and H3 (Fig 3A). The stability ranking for insect sex

Fig 2. Optimal number of reference genes for normalization in Liriomyza trifolii. The pairwise variation

(Vn/Vn+1) was analyzed between normalization factors NFn and NFn+1 by geNorm program to determine the

optimal number of reference genes. Values < 0.15 indicate that additional genes are not required for the

normalization of gene expression.

https://doi.org/10.1371/journal.pone.0181862.g002

Fig 3. Expression stability of candidate reference genes under different treatments. A lower Geomean

value indicates more stable expression according to RefFinder. (A) different developmental stages of

Liriomyza trifolii; (B) sex for L. trifolii; (C) low temperature treatments for L. trifolii; (D) high temperature

treatments for L. trifolii.

https://doi.org/10.1371/journal.pone.0181862.g003
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was TUB, 18S, CAD, AK, ACTIN, GAPDH, RPL32, EF-1, and H3 (Fig 3B). The stability ranking

in L. trifolii exposed to low temperatures was ACTIN, 18S, AK, GAPDH, RPL32, EF-1, TUB,

CAD, and H3 (Fig 3C), whereas the ranking for high temperatures was GAPDH, ACTIN, AK,

TUB, EF-1, RPL32, CAD, H3, and 18S (Fig 3D). The ideal reference genes in response to differ-

ent experimental conditions are as demonstrated by RefFinder all showed in Table 4. The opti-

mal number of reference genes was based on geNorm.

Validation of reference gene selection

The relative expression of HSP21.7 was used to assess the validity of selected reference genes.

The expression level of HSP21.7 was compared using the two most stable reference genes

(ACTIN and 18S) and the most unstable gene (H3), which is generally recommended for nor-

malization by RefFinder. When H3 was used to normalize hsp21.7 expression levels in L. trifolii
exposed to low temperatures, no significant differences were observed among the different

temperatures (F5,18 = 2.714, P = 0.054). However, when the two most stable reference genes,

ACTIN and 18S, were used to normalize the data, relative expression was significantly higher

at -10˚C (F5,18 = 7.892, P<0.05; F5,18 = 6.609, P<0.05) (Fig 4A). When HSP21.7 expression was

evaluated in response to high temperatures, expression at 40˚C and 42.5˚C was significantly

higher than it was at the other temperatures, regardless of the gene used for normalization (Fig

4B). Interestingly, when hsp21.7 expression was normalized using the least stable gene (18S),

the relative expression at 40˚C and 42.5˚C was significantly different (F5,18 = 31.399, P<0.05).

However, expression at these two temperatures was not significantly different when the most

stable genes, GAPDH and ACTIN, were used to normalize the data (F5,18 = 8.633, P<0.05; F5,18

= 21.489, P<0.05).

The relative expression of hsp21.7 was also estimated for different insect developmental

stages and sex, and gene expression was normalized using ACTIN and 18S (the two most stable

genes) and H3 (the most unstable gene). When ACTIN and 18S were used for normalization,

expression of hsp21.7 was highest at the prepupae and two-day-old pupae stages (F5,17 =

12.568, P<0.05; F5,17 = 18.381, P<0.05) and significant differences were observed between the

other developmental stages and sexes (Fig 4C). However, hsp21.7 expression was highest at the

third-instar larval stage when H3 was used as a reference gene (F5,17 = 12.572, P<0.05), and

there were huge differences in hsp21.7 expression using the stable and unstable reference genes

(Fig 4C).

Discussion

Biological samples often show great differences in the quality of RNA and the efficiency of

reverse transcription. Consequently, the selection of appropriate reference genes is imperative

in reducing error [42]. It is now apparent that a stable, constant level of expression does not

exist for housekeeping genes in different insect species or within the same species subjected to

different experimental conditions. Although RT-qPCR is widely used in gene expression stud-

ies because of its speed, accuracy and sensitivity [43–44], our results demonstrate that the cor-

rect choice of stable reference genes is required to ensure the reliability of the results.

Several studies on reference gene validation have emphasized that multiple internal genes

must be evaluated to improve the accuracy of qRT-PCR analysis and the interpretation of gene

expression [28, 45–46]. In this study, nine genes were analyzed for their suitability as reference

genes for qRT-PCR in L. trifolii that differed in developmental stage, sex and temperature

stress. The computational programs geNorm, NormFinder, BestKeeper and the ΔCt method

were used to generate stability rankings for the nine genes. These varied slightly between the

four methods (Table 3). It is worth mentioning that, in addition to ranking function, the
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geNorm also has the function of selected optimal number of reference genes [33]. More and

more researchers have realized that only a single reference gene with high expression stability

may be not enough for normalization of gene expression under some experimental conditions,

so in most experimental conditions two or more reference genes were required for accurate

and reliable results. The comprehensive tool RefFinder was utilized to evaluate the rankings of

the four programs and to generate a final ranking for the different experimental conditions

(Fig 3).

RefFinder analysis indicated that ACTIN and 18S were the most stable reference genes for

L. trifolii at different developmental stages, whereas TUB and 18S were the most stable genes

when comparing male and female adults. GAPDH and ACTIN were optimal reference genes at

high temperatures, whereas ACTIN and 18S exhibited the most stable expression at low tem-

peratures. Consistent with the reference genes validated for other insect organisms [26–27,

47–49], our study recommended ACTIN, 18S, TUB and GAPDH were the better genes for nor-

malizing expression in L. trifolii exposed to different experimental treatments. It is noteworthy

that previous reference gene validation studies combined high and low temperature treat-

ments, collectively referring to them as temperature treatment [26–27, 50]. Interestingly, we

discovered that the reference gene stability rankings for high and low temperatures were differ-

ent and often contrasted. In this study, 18S was ranked as a stable reference gene for low tem-

perature, but was the least stable reference gene for high temperatures. These results are likely

relevant in the expression of HSPs in leafminer species. For example, hsp60 in Liriomyza spp.

responded to cold but not heat stress [30]. Consequently, the use of reference genes selected

from combined heat/cold temperature stress could cause inaccuracies in the normalization of

HSP60 expression. Thus, the stability of reference gene expression in L. trifolii needs to be care-

fully examined for experimental conditions and should be considered in the context of insect

biology and physiology whenever possible.

Heat shock proteins (HSPs) play important roles in the environmental adaptation of vari-

ous organisms. HSP21.7 is a member of the small HSPs family. It along with a number of other

small HSPs play a role in temperature tolerance and development in insects [29, 40]. For exam-

ple, HSP21.7 was significantly induced by temperature stress and developmental processes in

L. sativae [29]. In our study, the expression of hsp21.7 was investigated to validate the ranking

of reference genes by RefFinder. When the two most stable genes were used for normalization

under different experimental treatments, the HSP21.7 expression pattern was consistent with

L. sativae. However, when the least stable gene was used, the normalized expression was signif-

icantly different. Therefore, the selection of optimal reference genes for normalization is criti-

cal, especially when differences in expression levels are subtle. In order to generate reliable

Table 4. Recommended reference genes for various experimental conditions.

Experimental conditions* Optimal number of reference genes Recommended Reference Genes

Developmental stage 2 ACTIN, 18S

(L, PP, P, OP, M, FM)

Sex 2 TUB, 18S

(M, FM)

Low temperature 2 ACTIN, 18S

(0˚C, -2.5˚C, -5˚C, -7.5˚C, -10˚C)

High temperature 2 GAPDH, ACTIN

(35˚C, 37.5˚C, 40˚C, 42.5˚C, 45˚C)

* L: third-instar larvae; PP: prepupae; P: two-day-old pupae; OP: ten-day-old pupae; M: male adult; FM: female adult.

https://doi.org/10.1371/journal.pone.0181862.t004
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expression results with a given target gene, the reference gene(s) must be stably expressed

under the specific experimental conditions. If the appropriate reference genes are not selected,

expression of the target gene may be biased and show significant differences that lead to incor-

rect conclusions [51–52].

Fig 4. Validation of reference gene selection. (A) Relative expression levels of HSP21.7 in low

temperature treatments; (B) Relative expression levels of HSP21.7 in high temperature treatments; (C)

Relative expression levels of HSP21.7 in developmental stage/sex treatments. Abbreviations: FM: female

adult; M: male adult; L: third-instar larvae; PP: prepupae; P: two-day-old pupae; OP: ten-day-old pupae.

https://doi.org/10.1371/journal.pone.0181862.g004
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The emerging availability of genomic sequencing, gene chips, and databases provide new

approaches to more accurately select reference genes [53–55]. Former housekeeping genes

with unstable expression will be gradually replaced by new reference genes that have been eval-

uated under experimental conditions. This study validated several reference genes for L. trifolii
and provides an approach that should be considered when screening reference genes in other

species.
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