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Abstract: Anthocyanins are an important group of phenolic compounds responsible for pigmentation
in several plants. For humans, a regular intake is associated with a reduced risk of several diseases.
However, molecular instability reduces the absorption and bioavailability of these compounds.
Anthocyanins are degraded by external factors such as the presence of light, oxygen, temperature,
and changes in pH ranges. In addition, the digestion process contributes to chemical degradation,
mainly through the action of intestinal microbiota. The intestinal microbiota has a fundamental
role in the biotransformation and metabolization of several dietary compounds, thus modifying
the chemical structure, including anthocyanins. This biotransformation leads to low absorption of
intact anthocyanins, and consequently, low bioavailability of these antioxidant compounds. Several
studies have been conducted to seek alternatives to improve stability and protect against intestinal
microbiota degradation. This comprehensive review aims to discuss the existing knowledge about
the structure of anthocyanins while discussing human absorption, distribution, metabolism, and
bioavailability after the oral consumption of anthocyanins. This review will highlight the use of
nanotechnology systems to overcome anthocyanin biotransformation by the intestinal microbiota,
pointing out the safety and effectiveness of nanostructures to maintain molecular stability.

Keywords: anthocyanins; antioxidant activity; biotransformation; controlled delivery; intestinal
bacteria; metabolism; nanoencapsulation; phenolic compounds; oxidative stress; polysaccharide-
based; protein-based; lipid-based

1. Introduction

In recent years, nanotechnology has been considered an important tool for the smart
delivery of bioactive compounds in the human body. Nanoencapsulation can be an al-
ternative for the accurate release of phenolic compounds, such as anthocyanins, in the
human intestine, thus preserving some biological beneficial effects. Nanoencapsulated
anthocyanins can be protected from several factors related to human digestion, mainly
biotransformation caused by intestinal microbiota while improving absorption [1,2].

Anthocyanins are of great interest because of their many biological activities. An-
thocyanins are soluble vegetable pigments from the class of flavonoids [3,4]. The strict
connection between anthocyanin and intestinal microbiota has been studied for many years.
Regular consumption of anthocyanins can promote intestinal homeostasis, stimulating
the growth of beneficial bacteria, thus improving human health [5,6]. On the other hand,
intestinal bacteria have a fundamental role in the metabolization of anthocyanins, leading to
structural degradation and biotransformation [5,7,8] and also to the production of bioactive
metabolites in a reciprocal interaction [9]. The change in anthocyanin molecular structure
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reduces the absorption and the possible beneficial effects of intact molecules [9,10], but
anthocyanins’ metabolites can also be beneficial to humans.

To minimize the extensive degradation of the aromatic ring structures of anthocyanins
by microbiota and protect from other factors responsible for biotransformation in the
gastrointestinal tract, researchers have been developed viable alternatives to overcome
this massive loss [11–13]. Polysaccharides, proteins, and lipids are indicated as potential
nanocarriers for anthocyanin-loaded systems [14–17]. Nanoencapsulated anthocyanins
can be protected and have controlled release, increasing the absorption of compounds
in their integral form with an improvement in bioavailability and antioxidant activity in
specific target tissues [18–20]. Therefore, this comprehensive review provides knowledge
about the role of intestinal microbiota in extensive metabolization and the relation with
other diverse health benefits of anthocyanins. Furthermore, the review contains a wide
discussion on the possible use of nanotechnology to minimize the effects of microbiota
action on anthocyanins and to improve controlled intestinal delivery.

2. Anthocyanins and Human Health: Regular Consumption and Associated Benefits

Epidemiological, clinical, and nutritional studies support the evidence of the relation-
ship between the intake of determined classes of food and human health. Studies point
to ingestion benefits of fruits and vegetables, since the consumption of these classes of
foods has been associated with a reduction in the risk of developing noncommunicable
diseases [20–22]. In addition, the benefits for human health are related to the ingestion
of polyphenolic compounds, such as anthocyanins, as well as some other plant-derived
compounds [23–27].

Anthocyanins are water-soluble compounds that are responsible for pigmentation
in several plants. Anthocyanins are one of the major subclasses of flavonoids, a class of
polyphenols [28]. These phenolic compounds are derived from secondary plant metabolism,
mainly distributed in the vacuoles that are inside cell walls (leaves, flowers, and fruits)
providing a wide spectrum of colors, such as blue, red, and purple [29]. The color spectrum
is directly affected by changes in pH. In acidic conditions anthocyanins have a red color,
and when the pH increases, they turn into blue color. Food sources with high anthocyanin
content are blackberries, blueberries, strawberries, grapes, and some tropical fruits [30].

It is widely described in the literature that the consumption of anthocyanin-rich foods
is associated with various positive effects on human health [6,20,31]. The functional dietary
properties are associated with the inhibition of oxidative stress due to potent antioxidant
activity and some other metabolic regulations. Thus, when these compounds are ingested
regularly, they can contribute to a reduction in the risk of several diseases whose genesis is
oxidative stress with further metabolic impairments [24,27].

The main biological effect observed for anthocyanins is the effective antioxidant ca-
pacity [3,28–30]. They can easily donate protons to highly reactive free radicals, preventing
propagation and further radical formation. These compounds are considered excellent
antioxidants due to several characteristics. They have a positive charge, aromatic hydroxyl
groups in ideal numbers and organization, a fair degree of structural conjugation, and
the presence of electron-donor and electron-withdrawn substituents in the ring structure.
All these features break the cycle of the generation of new radicals due to electron defi-
ciency [32–35]. The main mechanisms involved in the biological activity of anthocyanins
are related to the free-radical-neutralization pathway, the cyclooxygenase pathway, the
protein-kinase pathway, and the signaling of inflammatory cytokines. Anthocyanins can
interrupt lipid-oxidation reactions through radical scavenging or as metal chelators to con-
vert metal hydroperoxides or pro-oxidants to stable compounds [32,33]. The outstanding
antioxidant capacity of anthocyanins is observed in several in vitro studies. Anthocyanins
can neutralize free radicals by donating an electron or hydrogen atom to an extensive
range of reactive oxygen species (ROS), such as superoxide (O2

−), singlet oxygen (1O2),
peroxide (RCOO•), hydrogen peroxide (H2O2), hydroxyl radical (OH·), hypochlorous acid
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(HOCl−), peroxynitric acid (ONOOH−), and reactive nitrogen species in a terminator
reaction [36–40].

The neutralization of radicals by anthocyanins protects cells from oxidative damage,
decreasing the risks of aging and various diseases. In this context, many in vitro and
in vivo studies confirmed the health benefits attributed to anthocyanins, such as their an-
tioxidant role [30,37–44], anti-inflammatory action [45], neuroprotection [46–49], anticancer
effects [20,46–56], antiobesity effects [21,57–64], cardiovascular protection [65–67], antidia-
betic effects [68–73], visual protection [74–76], and antimicrobial properties [72,73,77,78].
A recent systematic review of 44 randomized controlled trials and 15 prospective stud-
ies relating to cardiovascular diseases and ingestion of anthocyanin-rich foods or pure
anthocyanins showed strong evidence of their effect on improving the blood lipid pro-
file and decreasing circulating proinflammatory cytokines, justifying their inclusion in a
cardioprotective diet [73].

Particularly important is the potential effect of anthocyanins on brain health. They
have shown neuro-anti-inflammatory properties and promising protection against neu-
rodegeneration diseases associated with aging [79]. In this respect, particularly challenging
is the passage of the blood–brain barrier and delivering these compounds to the brain.
Some anthocyanins can cross the barrier while others cannot, and in this case, their effect is
not in loco but indirect and due to improvement of local circulation [80].

Recently, the antioxidant and anti-inflammatory activities of anthocyanins from
Lycium ruthenicum Murray were evaluated in animal models after long-term ingestion.
The analyzed results indicate that the antioxidant status in the liver was increased and the
inflammatory status in the colon was decreased, with a beneficial modulation of intestinal
microbiota. Moreover, researchers noticed an increase in short-chain fatty acids in the cecal
content and feces. These results are important to prove the long-term effects of anthocyanin
intake and support the idea that enriching foods with anthocyanins is effective in mod-
ulating intestinal microbiota [24]. The modulation of microbiota is especially relevant to
aging [81].

Another important application of anthocyanins is in the food industry. Due to its
coloring capacity and water solubility, it allows for easy incorporation into aqueous food
systems [82]. Anthocyanin-rich extracts are becoming increasingly attractive for use as
a natural substitute for synthetic dyes in the food and pharmaceutical industries, which
is an excellent ecologically sustainable alternative [38]. The use of anthocyanins can
benefit the sensory quality of food products. Furthermore, the outstanding antioxidant
capacity (decrease lipid and protein oxidation) of these flavonoids stimulates several
approaches to enable wide technological applicability in the food industry [83–87]. Despite
the relationship between health and anthocyanin consumption being evident, and their
use in the food industry increasing as natural colorants or even as dietary supplements,
the biological characteristics of anthocyanins are directly related to the preservation of
molecular stability [33,77].

3. Anthocyanin: Chemical Structure and Molecular Stability

Structurally, anthocyanins are in glycosylated form, the basic structure is constituted
by an anthocyanidin nucleus linked to sugars and organic acids [75,78]. Anthocyanins
possess two benzene rings linked by a linear three-carbon chain. Anthocyanins are soluble
in polar solvents (methanol, ethanol, and water). Acidified methanol (stabilization of the
flavylium cation) is widely used for extraction [87–89].

More than 635 anthocyanins (six common aglycones and various types of glycosylation
and acylation forms) have been identified in nature [29]. Because free anthocyanins are
unstable, they are mostly found in glycoside form (galactose, rhamnose, arabinose, xylose,
and glucuronic acid are the most common) [89]. In addition, some organic acids can be
found attached to the hydroxyl groups on the nucleus and/or to the glycosyl units of
anthocyanins [90]. Six major glycoside compounds are found in nature, based on the
variation of hydroxylation and methoxylation on aromatic rings and also based on the
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number and positions of the substituents: pelargonidin, delphinidin, cyanidin, peonidin,
petunidin, and malvidin [91]. Cyanidin-3-O-glucoside and Malvidin-3-O-glucoside are
the predominant anthocyanins in plants, especially in fruits. They has a positive charge
on the C-ring oxygen atom of the basic flavonoid structure [87]. These compounds have
structural variations, such as the position and number of hydroxyl in the molecule, the
degree of methylation, and the nature and number of the linked sugar molecule [79,83].
Figure 1 shows the molecular structure of anthocyanidins (aglycone form).
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Figure 1. Molecular structure of anthocyanidins (Cyanidin, Delphinidin, Pelargonidin, Peonidin,
Malvidin, and Petunidin). The figure was created with Mind the Graph (https://mindthegraph.com
(accessed on 10 February 2022)).

However, the color and molecular stability of these pigments are influenced by various
factors, such as molecular structure, pH changes, exposure to light, proteins and metallic
ions, enzymatic action, and intestinal microbiota [92]. The chemical structure of these
compounds, mainly the number and position of the hydroxyl group (-OH) and methoxy
groups (-OCH3), influences the molecular stability [25,84]. Furthermore, the pH has a
significant influence on the structure and color of the anthocyanins. The variations in pH
result in different molecular balances, in which at low pH (acidic) the anthocyanins are
particularly red and predominantly in the form of flavylium cation; at slightly acidic pH
the structure is colorless hemiketal; and hemiketal chalcone is converted in chalcone by a
ring-opening with a yellowish coloration, which at basic pH predominates the quinoidal
structure and purple/blue coloration (Figure 2) [93]. The presence of glycosides increases
water solubility; on the other hand, acetylation provides higher stability to the anthocyanin
molecule [94]. Other factors such as high temperature, processing, storage, and the presence
of oxygen also affect stability [95].

https://mindthegraph.com
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Isolated anthocyanins are highly unstable and susceptible to chemical degradation [96];
thus, the measure of human bioavailability and the incorporation into food products are
significant challenges [97]. Moreover, molecular instability restricts the use of natural
colorants in food systems for processing, formulation, and storage conditions [98]. Thus,
due to coloring properties and the numerous health benefits, researchers are involved
in exploring the natural potential of anthocyanins. They are interested in developing
approaches to maintain molecular structure during food processing and storage through
identifying viable alternatives to protect the molecule during digestion, mainly to mitigate
the action of the intestinal microbiota.

4. Anthocyanin Biotransformation by Human Intestinal Microbiota

In recent decades, research has been directed towards elucidating the complex rela-
tionship between anthocyanin consumption and the role of intestinal microbiota. Evidence
indicates that long-term consumption of anthocyanins can positively influence human
health through positive modulation of intestinal microbiota [23,91]. In addition, microbiota
interferes in fundamental biological functions such as absorptive events. The intestinal
microbiota is made up of more than a trillion microorganisms established in symbiosis
with the host. The systemic effects of the microbiota include immune defense, maintenance
of the intestinal barrier, and decreased colonization of potentially pathogenic microorgan-
isms [99–101]. Intestinal dysbiosis can impair the bioavailability of numerous essential and
nonessential food components. A balanced microbiota provides an increase in intestinal
villi and may reduce the risk of developing diseases such as cancer [7,94,95].

Anthocyanins when consumed regularly in foods or supplements can modify the
composition of intestinal microbiota, mainly bacteria. In vitro and in vivo studies indicate
that certain bacteria with pathogenic potential can have their growth inhibited. On the
other hand, the metabolization of anthocyanins by the microbiota can benefit the growth of
beneficial bacteria [57,96–98]. The main effects of anthocyanins on the intestinal microbiota
are related to changes in the composition of bacteria, favoring the specific improvement of
the intestinal microbiota population, such as an increase in Bacteroidetes and a decrease
in Firmicutes [4]. The imbalance in the bacterial population was observed in animal
models induced to obesity (fat diet) but supplemented with high doses of anthocyanins.

https://mindthegraph.com
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A reduction in the proportion between the number of Firmicutes and fecal Bacteroidetes
was observed, indicating that supplementation with anthocyanins could modulate the
animal’s microbiota, thus favoring the reversal of obesity [99,100]. Some factors influence
the metabolism of anthocyanins by the intestinal microbiota. The daily ingested dose, the
structure of anthocyanin, and interindividual differences have direct interference in the
composition of the microbiota [101,102].

The metabolism of anthocyanins by intestinal bacteria involves a sequence of chem-
ical cleavages, initially the glycosidic bonds and then the breaking of the anthocyanidin
heterocycle and the degradation to phloroglucinol derivatives and benzoic acids [103–108].
Absorption of intact anthocyanins is limited [94], and they are degraded by the action of
α-rhamnosidase and β-glycosidase, which are needed to catalyze the reaction, releasing
sugar moieties from the anthocyanin structure and transforming it into aglycone form (an-
thocyanidin) [109–113]. Several intestinal bacteria can metabolize anthocyanins, including
Bifidobacterium spp. and Lactobacillus spp., and the consequent metabolites can stimulate
the growth of other specific bacteria, thus providing further modulation of the intestinal
microbiota [7,10,113–116].

Other important factors resulting from the metabolism of anthocyanins by the micro-
biota are related to short-chain fatty-acid production. Acetate, propionate, and butyrate
can serve as a substrate for intestinal epithelial-cell growth (favoring nutrient absorption),
can decrease the intestinal pH, and also inhibit the growth of pathogenic bacteria [6,7,106].
Furthermore, anthocyanin supplementation can stimulate an increased number of goblet
cells and tight junction proteins and improve villi in the intestine [6].

For the metabolites (low molecular weight) derived from the metabolization of an-
thocyanins, beneficial effects on the health of the host are attributed [23,107,108], such
as the formation of protocatechuic and gallic acids that inhibit the growth of pathogenic
bacteria [109,110]. Furthermore, a study using Wistar rats supplemented for a long period
with high doses of cyanidin-3-O-glucoside evaluated the effects on the microbiota after
exposure to 3-chloro-1,2-propanediol. The study suggests that anthocyanins contributed
to the maintenance of a balanced intestinal microbiota in rats. The evaluated anthocyanin
proved to be effective in protecting the intestinal mucosa against damage and in stimu-
lating the growth of beneficial bacteria, restricting intestinal dysbiosis [8]. In this sense,
some studies using animal models with oral supplementation of anthocyanins (extracted
from different sources and with different concentrations) showed that these compounds
influenced the composition of intestinal bacteria in a beneficial way [117–123]. Thus, the
health-promoting effects attributed to anthocyanins are associated with the modulation of
the intestinal microbiota [7]. However, despite the several positive effects of anthocyanins
described in the literature, there is no consensus on doses and time of ingestion because of
intestinal-microbiota variability between humans. This knowledge gap indicates the need
for more studies related to the establishment of tolerable upper-intake levels and other
dietary guidelines for the consumption and supplementation of anthocyanins [39].

In the elderly, the composition of microbiota changes and may lead to a reduction
in concentration and diversity of beneficial bacteria, leading to dysbiosis. Interaction of
anthocyanins with microbiota that generates health effects is particularly important for the
prevention of diseases in the aging population, with minimal side effects that may occur
with drugs [9,81].

Absorption and Metabolism of Anthocyanins

The metabolism of anthocyanins is a complex process that involves various organs and
tissues. In the human host, anthocyanins (from different food sources) undergo successive
degradation steps by the action of enzymes and intestinal bacteria, as already described.
In addition, the intestinal pH could account for the molecular instability of anthocyanins
but could also favor the intestinal biotransformation. Within enterocytes, colonocytes, and
in the liver, anthocyanins are metabolized in phase I (less frequently) and phase II [124].
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The metabolites generated by the breakdown of the anthocyanin structure and endogenous
chemical modifications are excreted via biliary secretion, feces, and urine [118].

Anthocyanins can cross the stomach (pH 1.5 to 2) in their intact form. In vitro digestion
simulation studies have found that anthocyanins are generally stable during incubation
with gastric fluids [125–132]. In addition, some studies suggest that there is also absorption
in the stomach mucosa, due to the rapid detection of anthocyanin absorption markers in
the bloodstream after ingestion of food rich in this compound [104,121,122]. However,
most of the absorption occurs in the intestine. In the small intestine (pH 7.4–8), mainly in
the jejunum, the absorption of glycosylated forms occurs. Anthocyanidins are passively
absorbed after the action of hydrolytic enzymes (changing anthocyanins to the aglycone
form) and/or the absorption of glycosylated forms occurs through glucose transporters
(SGLT1 and GLUT2) [123,124]. Moreover, the integrity of the intestinal villi is critical for ab-
sorption [133]. In enterocytes, anthocyanins undergo phase 2 reactions of metabolism, such
as methylation, glucuronidation, and sulfation, catalyzed by UDP-glucuronosyltransferase,
sulfotransferases, and catechol-O-methyltransferases, respectively [10,125]. Figure 3 illus-
trates the process of anthocyanin metabolism in the human body from the stomach to the
excretion of metabolites.
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Unabsorbed anthocyanins reach the colon and are metabolized by the colonic micro-
biota. Most of the absorption of metabolites occurs in the large intestine (pH 7.4–8) [5].
A portion of unabsorbed metabolites and unabsorbed anthocyanins are excreted in feces.

https://mindthegraph.com
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A study conducted with patients with ileostomies indicated that most of the anthocyanins
arrive in the large intestine intact to be degraded by the microbiota [134]. Additionally, the
hydrolysis, reductions, dihydroxylation, demethylation, decarboxylation, and ring fission
reactions occur in the colon [127,128]. Bacterial metabolism occurs initially by cleavage
of glycosidic bonds, breaking the anthocyanidin heterocycle (C-ring), and degradation to
phloroglucinol derivatives (A-ring) and benzoic acids (B-ring) [111]. Figure 4 demonstrates
the metabolism of anthocyanins (cyanidin-O-glucoside) in the presence of human intestinal
bacteria. The degradation process is the result of some conversion steps that are catalyzed
by bacterial enzymes in the host. Intestinal bacteria initiate this process by deglycosylation,
and then other compounds are formed, such as cyanidin (aglycone), petunidin (a methy-
lation product), and low-molecular-weight catabolites, such as phenolic acids and other
phenols. The phenolic acids can then be absorbed by active or passive absorption in the
colon and undergo phase 2 enzymatic metabolism [135–137].
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If absorbed, anthocyanidins and their microbial catabolites are transported through the
portal vein and in the liver are distributed to hepatocytes, where they are again metabolized
(phases I and II). The products of hepatic metabolism are distributed throughout the tissues
and subsequently transported to the enteric system by the bile pathway (an important
vehicle for transport) and removed via urinary and/or fecal excretion [35,128].

The absorption of anthocyanins isolated in mixtures or in nanostructured systems is
considered a complex mechanism and is not fully elucidated. Anthocyanins may interact
differently at diverse absorption sites along the gastrointestinal tract. Advanced techniques
are being applied to understand the absorption of these compounds with greater precision,
to relate the structure of anthocyanins (isolated or encapsulated) with the absorption and
the effect on certain groups of bacteria in the intestinal microbiota. In situ matrix-assisted
laser desorption/ionization mass spectrometry imaging can be useful to know the specific
sites of absorption and to release anthocyanins (and their metabolites) in different target
tissues [138–141].

The major human metabolites identified in the bloodstream were gallic, vanillic,
protocatechuic, 3,4-dihydroxybenzoic, syringic, p-cumaric, vanillic, 2,4-dihydroxybenzoic,
2,4,6-trihydroxy benzoic, and 2,4,6-trihydroxy benzoic acids [4,128]. The aglycone form can

https://mindthegraph.com
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also be metabolized by intestinal bacteria as a carbon source, decomposing into organic
acids such as 3,4-dihydroxyphenylacetic, m-hydroxyphenyl acetic, and m-homovanilic
acids [131]. However, after ingestion of the anthocyanin source, a limited quantity of intact
anthocyanins was detected in the systemic circulation [84,130].

5. Biotransformation of Anthocyanins and the Consequent Effect on Bioavailability
and Antioxidant Capacity

The metabolism of anthocyanins is complex, and the intense degradation of these
compounds limits the bioavailability and the systemic effect. The bioavailability of antho-
cyanins refers to the amount that are absorbed, reach circulation, suffer metabolization,
and are distributed to target tissues [142]. The bioavailability of anthocyanins is very low
compared to other flavonoids. In addition to limited absorption and inefficient transport
to circulation and distribution, these compounds have high excretion [143]. The biotrans-
formation of anthocyanins by the action of the microbiota leads to less absorption, low
biological use, and influences the antioxidant capacity and biological action in specific
tissues (39). Inefficient absorption has been reported in some studies, which report that
less than 1% of ingested anthocyanins reach the intestine intact and are internalized by
enterocytes. Most reports are related to the absorption of metabolites resulting from the
degradation of these compounds [102,132,144,145]. Therefore, the low absorption and
limited bioavailability of free anthocyanins are due to their susceptibility to high chemical
and microbial degradation and excretion rates [133].

The interaction between anthocyanins and the microbiota, and the consequent low
bioavailability, has been described in several studies [4,112,113,145,146]. An in vitro
study using rat feces evaluated the impact of intestinal bacteria on the degradation of
cyanidin-O-3-glucoside. The results indicated that anthocyanins were rapidly degraded,
which confirms the impact of bacterial action on molecular stability [124]. Some in vivo
studies have shown maximum plasma levels of total anthocyanins being 1–100 nM after
ingestion of doses at 7–1618 mmol [86,134,135]. After 4 h of ingesting a natural source of
anthocyanins, the estimated loss is 60 to 90% that are not detectable in the gastrointestinal
tract [94]. In this sense, many in vivo studies have already identified a low absorption and
high degradation of anthocyanins by animals and humans [115,147–149], probably due to
inherent chemical structure but also involving other factors such as food matrix, interaction
with nutrients, food processing, and individual factors (genetic and physiological) among
other factors [7].

Thus, all mechanisms involved in anthocyanin degradation are still being elucidated.
However, the biological activity of the intestinal microbiota is considered an important
factor [4–6]. Despite the increasing number of studies indicating the possible physiological
role of anthocyanin metabolites, greater absorption of anthocyanins (integral form) could
increase the antioxidant capacity in specific tissues. In this regard, many researchers are
seeking to identify ways to mitigate the effect of microbiota on the biotransformation of
anthocyanins [2,11,138,139].

6. Nanotechnology Overcoming the Metabolization of Anthocyanins: Biopolymers
Delivering Strategies

One of the viable and effective alternatives to minimize the effects of microbiota in the
extensive metabolization of anthocyanins is the use of nanotechnology. Nanotechnology
is defined as the design, use, and manipulation of materials in systems at the nanomet-
ric scale (<1000 µm) [150–152]. Nanocarriers can protect anthocyanin from unfavorable
environmental conditions, e.g., pH, temperature, enzyme action, and microbiota degra-
dation [2]. Resistant materials are used to coat the nanostructures, which in addition to
protecting anthocyanins during digestion can release them in a controlled manner in the
intestine and/or in target cells [11,13]. Furthermore, the anthocyanins encapsulated in the
nanostructure could have less interaction with other compounds in the diet, improving
bioavailability [2].
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A study demonstrated that nanoencapsulated anthocyanin had a greater tolerance to
the increase in pH range, the presence of metal ions, and the increase in temperature, thus
maintaining the intrinsic capacity of scavenging free radicals [153]. The use of encapsulated
anthocyanins, mainly for the formation of biopolyelectrolyte complexes, has shown to
maintain stability, overcome chemical degradation, and mitigate the loss of color, thus
preserving the bioactivity and enabling their application in foods as natural dyes [154].
The possibility, steps, and strategies were clearly shown in a recent example related to
the microencapsulation of polyphenols from Sambucus nigra L. [155]. Targeting the intes-
tine is important to control local inflammatory diseases, and recent research designated
gut-delivery polyphenols encapsulated with marine polysaccharides as multifunctional
nanocarriers [156].

One of the specific chemical properties of anthocyanins refers to their ability to non-
covalently interact with some macromolecules to form stable nanostructures [157]. The
application of nanocarrier systems for anthocyanin loading can make use of natural poly-
mers, such as polysaccharides, proteins, and lipids [151]. They are pointed out as promising
for use as a wall material because they have wide sources of extraction in nature and show
excellent biodegradability and biocompatibility [18]. Anthocyanins within the nanos-
tructure are protected from the excessive degradation that happens within the intestinal
microbiota. The nanostructures with encapsulated anthocyanins can represent greater
absorption of intact molecules by the intestinal mucosa than when free anthocyanins are
administered, providing a probable better systemic activity when compared to isolated
ingestion [158].

Nanostructures based on polysaccharides can protect and release the encapsulated
compounds according to specific physiological stimulation and environment. The physical
and chemical properties and functional performance of polysaccharides confer numerous
advantages for anthocyanin encapsulation. The complexity of polysaccharide structures is
suitable for the construction of nanocarriers. Polysaccharides such as chitosan, cellulose
and derivatives, and pectin are widely used for this purpose, protecting and control-
ling the release of encapsulated bioactive compounds, including anthocyanins [143,144].
Polysaccharide-based nanomaterials are designed for enhancing the responsive delivery
that depends on pH, protecting the encapsulated from the intestine environment, and deliv-
ering specifically to lower portions of the human intestine. The controlled intestinal release
of nanostructures containing anthocyanins can favor absorption, especially in its integral
form [153,159–161]. The absorption of anthocyanins within polysaccharide nanostructures
can occur by recognition of the glycosidic portions of pectin by intestinal epithelial cells in
the nanostructures, internalized by the plasma membrane through endosomes, and then
the anthocyanins being released in the cell cytoplasm [147,148].

Different types of carbohydrates—natural or modified polysaccharides—are used
alone or in combination with other macromolecules to create nanocarriers for anthocyanins
delivery [162–172]. Polysaccharide-based nanoencapsulation is suitable for protection, sta-
bility, and bioavailability in nanoencapsulation. Over the years, many studies demonstrated
the success in the utilization of various polysaccharides for encapsulation of anthocyanins
(extract from different sources), such as pectin [164–166], chitosan [145,146,152–157], and
cellulose [173].

The interaction between anthocyanins (cyanidin-3-O-glucoside) and citrus pectin with
different esterification patterns was investigated using thoroughly explored analytical
techniques (isothermal titration calorimetry, nuclear magnetic resonance, and UV-Visible
spectrophotometry). The study showed interactions between anthocyanin and pectin,
depending on the degree of polysaccharide esterification. It was also reported that a
combination of these two compounds had an impact on color maintenance and anthocyanin
stability [174]. Furthermore, polysaccharides can form gels when hydrated, have the
highest swelling ability, and are ionizable in certain pH ranges, which favors the controlled
release and the ability to adhere to animal mucus which improves the delivery to certain
organs/tissues [160,161]. In addition, some polysaccharides can be slowly fermented by
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human intestinal bacteria to an energetic substrate, which will release the encapsulated
anthocyanin gradually, thus mitigating molecular degradation that occurs in the intestinal
environment [172,175–178]. Polysaccharides can also interact with proteins forming stable
nanostructures at variable pH, therefore protecting encapsulated anthocyanins [162,163].

Proteins are biopolymers extensively used to fabricate nanostructures for the encap-
sulation of bioactive molecules. Proteins (animal or plant origin) alone or in combination
with polysaccharides or other protein molecules can be efficiently used for anthocyanin
nanoencapsulation. The protein (natural or denatured form) disposed in the nanostructure
provides greater stability to the whole nanocomplex [179]. Examples of proteins used for
nanoencapsulation of bioactive compounds are β-Lactoglobulin [1], lysozyme [164], and
whey protein [166]. The interaction between anthocyanins at different concentrations (from
black rice) and isolated soybean protein was analyzed using three-dimensional fluores-
cence and Fourier transform infrared spectroscopy. It was observed that anthocyanins are
linked by covalent and noncovalent interactions to proteins, with the anthocyanin-protein
nanocomplex formed showing a promising use in food formulations [180]. Additionally,
the effect of proteins on the stability and bioaccessibility of anthocyanins was recently
evaluated. Bovine serum albumin at different concentrations was added to anthocyanins
extracted from blueberries in a simulated digestion system and simulated different food
processing and storage. The stability and antioxidant capacity of anthocyanins were main-
tained with the addition of protein, specifically at 0.15 mg/mL. This fact indicated that there
was a possible inhibition of anthocyanin degradation by added proteins, thus maintaining
the antioxidant capacity [181].

Lipids are also considered suitable as nanocarriers for anthocyanin encapsulation.
Lipid-based nanoencapsulation can provide high encapsulation efficiency, controlled re-
lease in the intestine, low toxicity, and the excellent possibility of production on an industrial
scale. Lipid-based nanoencapsulation can be formed by bilayer structures (usually spheri-
cal) with specific polar lipids dispersed in aqueous phases [166,167]. Lipid-based carriers
include nanoemulsions, nanoliposomes, solid-lipid nanoparticles, and novel generation of
an encapsulation system, namely the nanostructured lipid carrier [182–186]. Some studies
using lipids as nanocarriers were successful in maintaining the stability of anthocyanins
and preserving the anthocyanin’s chemical structures in a diverse environment [169,170].

In general, biopolymers (polysaccharides, proteins, and lipids) can be applied to the
optimization of encapsulation systems. They can be modified or used in their natural form,
combined or isolated, and built by different techniques to create smart delivery systems.
Biopolymers have potential advantages, such as excellent physicochemical properties,
capacity, and functionalities for anthocyanin stabilization techniques [171,172]. However,
the nanoencapsulation techniques and the derived nanocompounds should be thoroughly
studied by in vitro and in vivo approaches. This is because nanoencapsulated anthocyanins
could not perform an ideal antioxidant capacity as the nonencapsulated compounds or
could even be degraded if overheated during fabrication; they may even not be released in
the target tissue [166]. In this way, researchers must explore the simulated digestion and
anthocyanin release in distinct biological systems. Nanoencapsulated anthocyanins may
also decrease the effect of food matrices on their absorption [97]. Therefore, incorporating
anthocyanins into different food systems is challenging, and nanoencapsulation can be
a viable and effective option. It is possible to add them to foods, supplements, and dietetics
products [97,187,188]. This could also be a form of increasing the use of underexploited
regional fruits and residues from the food industry to develop new products with added
economical value, and to explore the existing biodiversity sustainably. Various techniques
have been reported in designing nanocarriers based on polysaccharides, proteins, and lipids
applied in nanoencapsulation anthocyanins; some of these studies are shown in Table 1.

In addition, microencapsulation can also be used to stabilize anthocyanins. This en-
capsulation technology is widely studied to provide greater molecular stability, preserve
the antioxidant activity, improve bioaccessibility, and confer controlled-release properties
to anthocyanins. Microencapsulation is a process in which the bioactive compound is



Antioxidants 2022, 11, 506 12 of 22

coated with a specific material to protect against adverse environmental conditions—such
as food storage—and intrinsic factors of human digestion [189–193]. In general, microen-
capsulation refers to the elaboration of a particle with a diameter from 1–1000 µm. There
are several types of materials used to microencapsulate anthocyanins, as well as a wide
variety of methods for microencapsulation, depending on the purpose of the application,
the availability of equipment, and other factors [151,155,189,193].

The methods for elaborating microencapsulated systems can be physical (lyophiliza-
tion, spray drying, freeze drying, electrospinning/electrospraying), chemical (inclusion
complexes), or a combination of both (emulsification, liposomal systems, ionic gelation,
and coacervation) [193]. The main biopolymers that can be used as encapsulants are
polysaccharides, such as starch, chitosan, pectin, natural gums, mucilage, cellulose, and its
derivatives [194–196]. Proteins such as whey, caseinate, gelatin, and soy protein are widely
used [151,193,197]. The microencapsulation of anthocyanins can be an effective method for
the stability, maintenance of color, and antioxidant activity, and has potential for industrial
application in foods [151,193,198].
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Table 1. In vitro studies of nanoencapsulation of anthocyanins (polysaccharides, proteins, and lipid-based) for different purposes.

Source Nanoencapsulant Nanoencapsulation Technique Average Size (nm) Purpose Reference

Commercial anthocyanin-rich extract Whey Protein Isolate and Pectin Thermal processing
and electrostatic complexation 200 Increase antioxidant capacity [166]

Red cabbage Palmitic acid and surfactants Emulsion 455 Stability and antioxidant capacity [199]

Black rice bran Chitosan and Alginate Ionic pre-gelation
and polyelectrolyte complex 219.53 Stability [170]

Blueberry Carboxymethyl Chitosan Self-assembly 219.53 Protection and stability [171]

Açai berry Eudragit® L100
Modified double-emulsion solvent

extraction/evaporation 570–620 Safety [173]

Blueberry Chitosan Hydrochloride,
Carboxymethyl Chitosan Electrostatic interaction 178.1 Stability and bioavailability [169]

Blueberry Whey Protein, Polyglycerol Polyricinoleate Nanoemulsion <400 Protection and stability [185]
Natural Source

Plant Lecithin and Cholesterol Nanoliposomal 53.01 Stability and bioavailability [186]

Blueberry Chitosan Hydrochloride, Carboxymethyl
Chitosan, and β-Lactoglobulin Electrostatic interaction 91.71 Stability and bioavailability [168]

Black rice Chitosan/Chondroitin sulfate Self-assembly 350.1 Antioxidant capacity [200]
Red raspberry pomace β-Lactoglobulin Desolvation 129.13–351.85 Stability and bioavailability [1]

Bilberry Chitosan and Pectin Self-assembly 100–300 Stability and bioavailability [172]
Black carrot Chitosan Ionic gelation 274 Increase antioxidant capacity [201]
Blackberry

Commercial anthocyanin-rich extract
Pectin and Lysozyme

Casein and Carboxymethyl Cellulose
Self-assembly
Self-assembly

198.5
209.9

Protection and stability
Stability

[164]
[202]
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7. Conclusions and Future Trends

Anthocyanins have a wide spectrum of biological activities, such as antioxidant, anti-
inflammatory, or chemopreventive features, which support human health, although their
low bioavailability and extensive biotransformation interfere with these advantages. Stud-
ies point to the promising application of nanotechnology tools to encapsulate anthocyanins,
thus representing a beneficial alternative to maintain molecular stability. Although the
studies were successful in the nanoencapsulation of anthocyanins, in vivo studies (animal
and human) are still an unexplored field of research. Several studies indicate the promising
application of nanoencapsulation anthocyanins in foods, favoring stability during food
processing and storage, preservation of sensory characteristics, resistance to environmental
conditions, and digestion factors. Future research could focus on the development of forti-
fied foods and nutritional supplements with nanoencapsulated anthocyanins, increasing
the supply of food products beneficial to human health. Although all evidence supports the
biological beneficial effects of anthocyanin nanoencapsulation, further studies are needed
to determine values limits for safe intake. Natural biopolymers demonstrated adequate
biocompatibility, biodegradability, and efficiency for anthocyanin delivery and increased
bioavailability. Nanoencapsulation based on polysaccharides, proteins, and lipids can pro-
tect anthocyanins through the gastrointestinal tract, releasing them in a controlled manner.
The use of nanotechnology for smart protection, controlled delivery, and tissue-specific
delivery can minimize the effects of microbiota on the biotransformation of anthocyanins,
which represents more effective absorption of intact forms and preservation of biological
effects, such as antioxidant activity and some other metabolic modulations.
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