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Neuropathic pain is among the most debilitating forms of chronic pain. Studies have

suggested that chronic pain pathogenesis involves neuroimmune interactions and

blood–spinal cord barrier (BSCB) disruption. However, the underlying mechanisms are

poorly understood. Wemodeled neuropathic pain in rats by inducing chronic constriction

injury (CCI) of the sciatic nerve and analyzed the effects on C-X-C motif chemokine

10 (CXCL10)/CXCR3 activation, BSCB permeability, and immune cell migration from

the circulation into the spinal cord. We detected CXCR3 expression in spinal neurons

and observed that CCI induced CXCL10/CXCR3 activation, BSCB disruption, and

mechanical hyperalgesia. CCI-induced BSCB disruption enabled circulating T cells

to migrate into the spinal parenchyma. Intrathecal administration of an anti-CXCL10

antibody not only attenuated CCI-induced hyperalgesia, but also reduced BSCB

permeability, suggesting that CXCL10 acts as a key regulator of BSCB integrity.

Moreover, T cell migrationmay play a critical role in the neuroimmune interactions involved

in the pathogenesis of CCI-induced neuropathic pain. Our results highlight CXCL10 as a

new potential drug target for the treatment of nerve injury–induced neuropathic pain.

Keywords: neuropathic pain, chronic constriction injury, blood–spinal cord barrier, neuroinflammation, behavior,

C-X-C motif chemokine 10

INTRODUCTION

Neuropathic pain is caused by primary lesions or dysfunction in the nervous system, and it is
among the most debilitating forms of chronic pain (1). Its etiology is poorly understood, and this
hinders the development of therapeutic and preventative strategies (2–4). One thing that is clear
is that peripheral nerve injury leads to neuropathic pain by triggering radical changes that affect
multiple components of the pain signaling pathway (5, 6).

Over the past decade, inflammatory responses after nerve injury have become an important
topic in neuropathic pain research, and recent evidence suggests that neuroimmune interactions
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are involved in the pathogenesis of chronic pain states (7–9).
Accumulating evidence indicates that multiple proinflammatory
mediators are released from injured nerve fibers and adjacent
immune cells after nerve injury and that these mediators in turn
promote central sensitization and behavioral hyperalgesia (5, 10).
Furthermore, animal studies have shown that peripheral nerve
injury induces circulating immune cells to enter the spinal cord
parenchyma, a phenomenon that may contribute to pain-related
behaviors during the development of neuropathic pain (11–13).

Because the blood–spinal cord barrier (BSCB) is the main
structure regulating interactions between the immune system
and the central nervous system (CNS), it is reasonable to
speculate that BSCB dysfunction may play a critical role in the
migration of circulating immune cells into the spinal cord (14).
However, little is known about the functional states of the BSCB
in the context of peripheral nerve injury–induced neuropathic
pain. Researchers do not know how, or even whether, a remote
injury can affect BSCB integrity. The potential consequences of
compromised BSCB integrity in terms of spinal cord homeostasis
and the development of pathological pain are also unclear.

This matter may be illuminated through research into
chemokines, a family of small cytokines (i.e., signaling proteins)
that are upregulated by primary proinflammatory mediators and
tumor necrosis factors (15, 16). In the CNS, chemokines regulate
myriad functions including neuronal development, synaptic
transmission, and neuroinflammation (17–20). Recent studies
have shown that the C-X-Cmotif chemokine receptor 3 (CXCR3)
and its ligand C-X-Cmotif chemokine 10 (CXCL10) are involved
in the pathophysiology of allergic itches and neuropathic pain
(21–23). However, the mechanism by which CXCL10/CXCR3
signaling mediates neuropathic pain remains poorly understood.

Past studies have reported that CXCL10 promotes the entry
of peripheral immune cells into the spinal cord (24, 25). On the
other hand, some studies and our recent report have shown that
T cell infiltration of the dorsal horn may contribute to the onset
of neuropathic and inflammatory hyperalgesia (11, 12, 26, 27).
However, it is unknown whether these processes contribute to
hyperalgesia following peripheral nerve injury.

In this study, we examined the integrity of the BSCB and
the migration of circulating immune cells into the spinal cord
after chronic constriction injury (CCI) of the sciatic nerve, which
induces neuropathic pain. We also examined the activation of
the CXCL10/CXCR3 signaling pathway after CCI. We aimed to
elucidate the pathophysiology underlying nerve injury-induced
neuropathic pain and to identify potential drug targets for the
treatment of neuropathic pain.

MATERIALS AND METHODS

Ethics
All animal experiments were conducted in accordance with the
ARRIVE guidelines (28) and all relevant Chinese laws. The
experimental protocol was approved by the Research Ethics
Committee of the First Affiliated Hospital at Zhejiang University.
All measures were taken to minimize the animals’ suffering and
to reduce the number of animals used.

Animals
Adult male Sprague–Dawley rats (87 rats in total, 8 weeks at
arrival) weighing 200–300 g were obtained from the Animal
Center of the Chinese Academy of Sciences. They were housed
in groups (4 rats/cage) in a temperature-controlled room (22 ±

2◦C) with a 12-/12-h light/dark cycle and ad libitum access to
food and water.

CCI Induction
The rats were randomly divided into the sham surgery and CCI
groups (n= 5–6 per group for the behavioral test; n= 3–4 for the
others). After the baseline was determined, the rats underwent
the corresponding procedures on experimental day 0. CCI was
surgically induced as described in our previous publication (29)
and another study (30). In brief, the rats were anesthetized with
intraperitoneal pentobarbital injections (60 mg/kg), and the left
sciatic nerve was exposed and isolated. Three ligations were
placed around the nerve with 4–0 chromic gut sutures (Pudong
Jinghuan Co. Ltd., Shanghai, China). A hindpaw twitch indicated
successful nerve constriction. The muscles and skin overlying the
sciatic nerve were then closed with sutures. The sham surgery
was identical except for the omission of sciatic nerve ligation. All
animals received hypodermic penicillin injections (0.5 mL/rat; 96
mg/mL) to reduce the risk of infection. To reduce variability, all
surgeries were performed by a single proficient investigator.

Immunohistochemistry
The rats were anesthetized with an intraperitoneal injection
of pentobarbital (60 mg/kg) and perfused with normal saline
(NS), followed by 4% ice-cold paraformaldehyde in phosphate
buffer. The lumbar 4–5 segments were removed, post-fixed,
and dehydrated in 30% sucrose at 4◦C. Next, 30-µm free-
floating transverse cutting was performed using a freezing
microtome at −20◦C. After blocking with 10% goat serum
for 2 h at room temperature to reduce non-specific binding,
the sections were incubated for 48–72 h with the following
primary antibodies: mouse anti-CXCR3 (1:100 dilution, Santa
Cruz Biotechnology, Dallas, TX, USA), rabbit anti-Iba1 (1:400;
Abcam, Cambridge, UK), rabbit anti-GFAP (1:500; Proteintech,
Rosemont, IL, USA), and rabbit anti-NeuN (1:400, Cell Signaling
Technology, Danvers, MA, USA). Subsequently, the sections
were incubated with an appropriate secondary antibody (FITC-
conjugated goat anti-rabbit or Cy3-conjugated goat anti-mouse,
both 1:200 dilution; Beyotime, Shanghai, China) for 2 h at room
temperature in the dark. Fluorescence signals were observed
using a fluorescence microscope with appropriate filters.

Western Blotting
After the intraperitoneal injection of an overdose of
pentobarbital, the spinal dorsal horn segments (lumbar 4–
5) were dissected rapidly and stored in liquid nitrogen. Frozen
samples were homogenized in lysis buffer containing PMSF
(Beyotime). After centrifugation at 10,600 rpm and 4◦C for
15min, the supernatants were collected as protein samples.
Sample aliquots containing equal amounts of protein were
separated via SDS-PAGE and transferred onto polyvinylidene
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difluoride membranes. The membranes were blocked in 5% non-
fat milk for 1 h at room temperature, and incubated overnight
at 4◦C with rabbit anti-CXCR3 (1:500 dilution; Abcam), rabbit
anti-CXCL10 (1:1,000; GeneTex, Irvine, CA, USA), or mouse
anti-GAPDH (1:10,000; Proteintech). The membranes were then
washed with TBST buffer and incubated with an appropriate
secondary antibody (horseradish peroxidase-conjugated goat
anti-mouse or goat anti-rabbit, 1:2,000; Beyotime) for 2 h at room
temperature. After extensive washing, the densities of labeled
protein bands on the blots were detected using an enhanced
chemiluminescence reagent (Thermo Fisher, Waltham, MA,
USA) and captured using a ChemiDoc MP System (Bio-Rad,
Hercules, CA, USA).

Anti-CXCL10 Antibody Administration and
Timeline of the Experiments
To investigate the role of CXCL10/CXCR3 signaling in CCI-
induced neuropathic pain, rats were randomly divided into the
sham surgery (n = 5–6) and CCI groups. Subgroups of rats
that underwent CCI were selected to receive intrathecal antibody
or saline injections (n = 5). Intrathecal administration was
performed by lumbar puncture, as described in a previous study
(31). The rats were anesthetized with isoflurane (0.3 mL/rat,
Baxter International Inc.; Shanghai, China) in a home-made
anesthesia box and placed on a plexiglass tube to broaden
the intervertebral spaces. A 20-µL volume of normal saline or
a solution containing an anti-CXCL10 antibody (200 ng/rat,
Proteintech) was injected into the subarachnoid space between
the L5 and L6 vertebrae with a 30-gauge needle. An instantaneous
and rapid tail-flick indicated a successful puncture.

To determine the effect of CXCL10/CXCR3 signaling on the
development of hyperalgesia, the first injection of anti-CXCL10
antibody was administered on experimental day 1 after CCI.
Daily follow-up injections were performed until day 14 (for the
behavioral experiment), unless the rats were sacrificed earlier
for a BSCB permeability evaluation or flow cytometry assay. To
determine the effect on established hyperalgesia, the injections
were administered on experimental days 5–7 after CCI. Rats that
received normal saline injections are herein referred to as the CCI
+ NS group, while those that received anti-CXCL10 antibody
injections are herein referred to as the CCI + anti-CXCL10
antibody group.

Von Frey Test for Hypersensitivity to
Mechanical Stimulation
Hyperalgesia was assessed based on paw withdrawal responses
to a calibrated series of von Frey filaments (Stoelting; Wood
Dale, IL, USA) as described in one of our earlier publications
(32). In brief, the rats were individually placed in a chamber
(20 cm × 10 cm × 20 cm) in which the floor was a customized
platform consisting of a grid of iron wires with 10-mm spacings
between wires. The rats were allowed to acclimate to the chamber
for ≥30min before the experiment began. A series of von
Frey filaments with ascending buckling forces were applied
to the midplantar surface of the hindpaw ipsilateral to the
site of the CCI or sham surgery (herein referred to as the

ipsilateral hindpaw) and the hindpaw contralateral to the surgical
site (herein referred to as the contralateral hindpaw). Each
von Frey filament was held for 2 s, and the interval between
filament applications was 15 s. A brisk withdrawal or flinching
of the hindpaw upon filament application was regarded as a
positive response, and the filament applications continued until
a filament produced positive responses in at least three out
of five consecutive applications. The paw withdrawal threshold
(PWT) was defined as the buckling force (in grams) of that
particular filament.

PWT testing was performed by an investigator who was
blinded to the rats’ group assignments. Daily PWT testing began
on experimental day 0 (baseline) and continued until day 14 after
CCI or sham surgery.

BSCB Permeability Evaluations
BSCB permeability was assessed with the micromolecular tracer
dye sodium fluorescein (NaFlu; molecular weight, 376 g/mol;
Sigma-Aldrich; St. Louis, MO, USA) according to a modified
version of a published procedure (33). In brief, subgroups of rats
that underwent sham or CCI surgeries were selected to receive
intravenous injections of a 10% NaFlu solution (2 µL per gram
of bodyweight) on experimental day 3. After an intraperitoneal
injection of pentobarbital (60 mg/kg), NaFlu was allowed to
circulate for 30min, and the rats’ bodies were then intracardially
perfused with cold saline to remove intravascular NaFlu. The
L4 and L5 spinal cord segments were removed and used for
subsequent analyses aimed at quantifying the amount of NaFlu
extravasated from circulation.

After being weighed, the spinal cord samples were
homogenized in 1mL of phosphate-buffered saline (PBS),
and a volume of 60% trichloroacetic acid equal to that of
the resulting solution was added to precipitate proteins.
After being vortexed for 2min, the samples were cooled
for 30min and centrifuged at 14,000 × g for 10min. The
NaFlu concentration in the supernatant was measured with
a spectrophotofluorometer (excitation wavelength, 440 nm;
emission wavelength, 525 nm). A calibration curve was created
by assaying solutions with controlled NaFlu concentrations
under identical assay conditions. All experimental measurements
were within the detection range established with the calibration
curve, which had an R2-value of 0.85–0.90. NaFlu levels were
calculated as micrograms per gram of spinal cord tissue.

Flow Cytometry
To assess T cell entry into the spinal cord after CCI,
flow cytometry was used to measure CD3-positivity levels in
mononuclear cells extracted from the dorsal horn, as CD3 is
a well-known T cell marker (34). On day 3 of CCI, after an
overdose intraperitoneal injection of urethane (2 g/kg), the rats’
lumbar spinal cord segments were harvested. The dorsal horn
tissues ipsilateral to the site of CCI or sham surgery were
isolated, placed in 0.01-M PBS, and homogenized into single-cell
suspensions with a cell strainer. Homogenates were washed with
0.01-M PBS, suspended in a 30%/70% discontinuous-gradient
Percoll solution (Sigma-Aldrich), and centrifuged at 390 × g for
30 min.
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Mononuclear cells were collected, washed with 0.01-M
PBS, and resuspended in a fluorescence-activated cell sorting
buffer solution for 30min at 4◦C. The cells were labeled
with fluorescein isothiocyanate–conjugated mouse anti-CD3
antibodies (1:100 dilution; eBioscience, San Diego, CA, USA)
for 20min at room temperature, and ≥10,000-cell samples
were analyzed with the FACSCalibur platform running with
CellQuest software (Becton Dickinson; Franklin Lakes, NJ,
USA) to determine the percentage of mononuclear cells that
were CD3-positive.

Statistical Analyses
Statistical analyses were performed with Prism 5.0 software
(GraphPad Software; La Jolla, CA, USA). Data were
expressed as means ± standard errors. Behavioral data
were analyzed with two-way repeated-measures analysis
of variance (ANOVA) followed by Bonferroni post-hoc
testing. BSCB permeability evaluation and flow cytometry
data were analyzed with the independent t-test. Mann–
Whitney U-test was used if equal-variance assumptions
were not made. Statistical significance was defined as
p < 0.05.

RESULTS

Colocalization of CXCR3 With Spinal
Neurons
We initially performed immunohistochemistry for specific cell
markers to determine the profile of CXCR3 expression in the
spinal cord. The results revealed that CXCR3 is expressed
abundantly in the spinal cord, where it colocalized with NeuN
(neuron marker), but not with GFAP (astrocyte marker) or Iba1
(microglia marker; Figure 1).

Effects of CCI on PWTs and BSCB
Permeability
Relative to the sham surgery group rats, the CCI group
rats had decreased ipsilateral hindpaw PWTs on experimental
days 3, 5, 7, 10, and 14 (p < 0.001; n = 6, ANOVA,
Figure 2A), indicating CCI-induced mechanical hyperalgesia.
No significant between-group differences were observed for
contralateral hindpaw PWTs (Figure 2A). The CCI group
rats also had dramatically elevated lumbar spinal cord NaFlu
concentrations on experimental day 3 (p = 0.029; n = 6, Mann–
Whitney U-test, Figure 2B), which suggests that CCI increased
BSCB permeability.

Effects of CCI on CXCL10/CXCR3
Signaling Activation
Compared to the sham surgery group, we observed
increased CXCL10 expression in the ipsilateral spinal cord
after CCI injury (p = 0.003; n = 3, independent t-test,
Figure 3A). The immunohistochemical results revealed that
CCI induced CXCR3 activation, as shown in Figure 3B.
This was further confirmed by western blotting, which
demonstrated that the CXCR3 protein level was increased

from 3 to 7 days after CCI (p < 0.01; n = 3, ANOVA,
Figure 3C).

Effects of CXCL10/CXCR3 Signaling
Blockade on CCI-Induced Hyperalgesia
Relative to the rats treated with CCI + saline group, rats in
the CCI + anti-CXCL10 antibody group exhibited a marked
increase in PWTs from experimental day 1 to day 14 or
from day 5 to 7 (p < 0.05, n = 5, ANOVA, Figures 4A,B).
This indicates that the anti-CXCL10 antibody attenuated CCI-
induced mechanical hyperalgesia in both the developmental
and established stages. On the other hand, anti-CXCL10
antibody dramatically reduced NaFlu concentrations in the
lumbar spinal cord on experimental day 3 (p = 0.0049; n
= 6, independent t-test, Figure 4C). These results suggest
that the CXCL10/CXCR3 signaling pathway is involved in
the pathophysiology of CCI-induced hypernociception and
increased BSCB permeability.

T Cell Entry Into the Spinal Cord After CCI
The percentage of ipsilateral dorsal horn mononuclear cells that
were CD3-positive was more than two times higher in the CCI
group rats than in the sham surgery group rats (p < 0.0014; n
= 3–4, independent t-test, Figures 5A,B) and was lower in the
CCI+ anti-CXCL10 antibodies group rats than in the CCI+ NS
group rats (p < 0.0264; n= 3, independent t-test, Figures 5B,C).
These results suggest that CCI promotes T cell entry into the
spinal cord, and that blocking the CXCL10/CXCR3 signaling
pathway counteracts this effect, which provides further evidence
for the CXCL10/CXCR3 signaling pathway being involved in the
pathophysiology of CCI-induced BSCB disruption (Figure 5D).

DISCUSSION

In this study, we investigated the putative link between
CXCL10/CXCR3 signaling-mediated BSCB disruption
and neuropathic pain. As in our previous studies, CCI
group rats exhibited robust post-operative behavioral
hypersensitivity to mechanical stimuli, and this hypersensitivity
persisted throughout the experimental period (29, 32).
We also determined that CCI induced CXCL10/CXCR3
signaling, increased BSCB permeability, and promoted T cell
migration into the spinal dorsal horn. Moreover, intrathecal
administration of anti-CXCL10 antibodies attenuated the
rats’ behavioral hyperalgesia and reduced the CCI-induced
increases in BSCB permeability and T cell infiltration
into the dorsal horn. To the best of our knowledge, it is
the first study to report that blocking CXCL10/CXCR3
signaling attenuates the increases in BSCB permeability and
T cell infiltration of the spinal cord induced by peripheral
nerve injury.

Researchers have attempted to unravel the mechanisms
underlying CCI-induced inflammatory reactions in the spinal
cord, and have made considerable progress (35, 36). Myriad
inflammatory mediators in the spinal cord may contribute
to the development of neuropathic pain, with interleukin-6,
tumor necrosis factor alpha, and C-X-C motif chemokines being
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FIGURE 1 | Expression and colocalization of CXCR3 with spinal neuron markers. Spinal CXCR3 is expressed abundantly in the spinal dorsal horn, where it colocalizes

with NeuN (neuron marker), but not with GFAP (astrocyte marker) or Iba1 (microglia marker). The last row presents enlargements of the areas in white frames. Scale

bar = 100µm. NeuN, neuronal nuclear antigen; GFAP, glial fibrillary acidic protein; Iba1, ionized calcium binding adapter molecule.

possible examples (5, 37, 38). Among the chemokines, CXCL10
has been identified as a potentially important trigger (39, 40),
and our results provide further evidence for its importance.
Previous studies have indicated that increased BSCB permeability
is a prerequisite for immune cell infiltration of the spinal
cord during the development of neuropathic pain (41), and
we found that blocking CXCL10/CXCR3 signaling with anti-
CXCL10 antibodies reduced the BSCB’s permeability to NaFlu,
which suggests that CXCL10/CXCR3 signaling plays a critical
role in CCI-induced BSCB dysfunction.

The chemokines CXCL9, CXCL10, and CXCL11 compose
a subfamily of chemokines that bind to CXCR3 and have
various roles in nociceptive signaling. Past investigations have
suggested that CXCL10/CXCR3 signaling contributes to the
pathophysiology of neuropathic pain, although spinal CXCL9
and CXCL11 levels do not seem to have important roles in the
development of chronic pain (42, 43). Other reports have shown
that T cell infiltration of the dorsal horn may contribute to the
onset of neuropathic and inflammatory hyperalgesia (10, 12, 39).
Our present findings further this line of research by elucidating
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FIGURE 2 | CCI resulted in behavioral hyperalgesia and BSCB disruption. (A) PWTs of hindpaws ipsilateral and contralateral to surgical sites in the sham surgery

group and CCI group rats on various experimental days (***p < 0.001; ANOVA, n = 6). (B) Lumbar spinal cord NaFlu concentrations in the sham surgery group and

CCI group rats on experimental day 3 (*p < 0.05; Mann–Whitney U-test, n = 4). The data are shown as means ± standard errors. ANOVA, analysis of variance;

BSCB, blood-spinal cord barrier; Contra, contralateral; CCI, chronic constriction injury; Ipsi, ipsilateral; NaFlu, sodium fluorescein; PWT, paw withdrawal threshold.

FIGURE 3 | CCI induces CXCL10/CXCR3 signaling activation. (A) Upregulated CXCL10 expression is observed in the ipsilateral spinal cord after CCI injury (**p <

0.01; independent t-test, n = 3). (B) Immunohistochemistry reveals the CCI-mediated induction of CXCR3 activation. (C) The spinal CXCR3 protein level increased

during days 3–7 after CCI as shown by western blotting (**p < 0.01; ***p < 0.001; ANOVA, n = 3). The data are presented as means ± standard errors. GAPDH was

used as a loading control. ANOVA, analysis of variance; CCI, chronic constriction injury; CXCL10, C-X-C motif chemokine 10; Contra, contralateral to CCI.

FIGURE 4 | Neutralizing CXCL10 alleviated hyperalgesia and reduced CCI-induced BSCB disruption. (A,B) Hindpaw PWTs in CCI + anti-CXCL10 antibodies group

and CCI + saline group rats on various experimental days (*p < 0.05, **p < 0.01, ***p < 0.001; ANOVA, n = 5–6). (C) Lumbar spinal cord NaFlu concentrations in the

CCI + anti-CXCL10 antibodies group, CCI + saline group, and sham surgery group rats on experimental day 3 (*p < 0.01, CCI + NS group vs. sham surgery group;

Mann–Whitney U-test, n = 4–6; ##p < 0.01, CCI + anti-CXCL10 antibodies group vs. CCI + NS group; independent t-test, n = 6). The data are shown as means ±

standard errors. ANOVA, analysis of variance; BSCB, blood-spinal cord barrier; CCI, chronic constriction injury; CXCL10, C-X-C motif chemokine 10; NaFlu, sodium

fluorescein; PWT, paw withdrawal threshold; NS, normal saline.
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FIGURE 5 | Neutralizing CXCL10 reduced CCI-induced T cell infiltration of the dorsal horn. (A,B) CD3-positive T cell levels as percentages of CCI-ipsilateral dorsal

horn mononuclear cell populations in the sham surgery group and CCI + NS group rats (**p < 0.01; independent t-test, n = 3–4). (B,C) CD3-positive T cell levels as

percentages of CCI-ipsilateral dorsal horn mononuclear cell populations in CCI + NS group and CCI + anti-CXCL10 antibodies group rats (#p < 0.05; independent

t-test, n = 3). (D) Bar chart indicating the statistical analysis. The data are shown as means ± standard errors. CCI, chronic constriction injury; CXCL10, C-X-C motif

chemokine 10; NS, normal saline.

the potential mechanistic role of CXCL10/CXCR3 signaling in
the development of neuropathic pain following peripheral nerve
injury. Our observation that blocking CXCL10/CXCR3 signaling
reduced CCI-induced T cell migration into the spinal cord is
consistent with past reports suggesting that CXCL10/CXCR3
signaling plays a role in the migration of T cells from the
periphery into the CNS (44).

Within the spinal cord, neurons, and glia can secrete CXCL10,
which in turn promotes the entry of circulating immune cells
into the spinal cord (45–48). Studies have shown that type
1 T helper cells secrete interferon gamma, and elevated spinal
cord interferon gamma levels can induce CXCL10 secretion.
CXCL10 in turn increases BSCB permeability and promotes the
migration of T cells into the spinal cord (44, 49). This creates a
positive feedback system that favors ever-increasing migration of
activated T cells into the spinal cord. This implies that blocking
the contribution of CXCL10/CXCR3 signaling to increased BSCB
permeability, as we did by administering anti-CXCL10 antibodies
to the CCI group rats, may disrupt this positive feedback loop.

In conclusion, our study suggests that CXCL10/CXCR3
signaling triggers a positive feedback loop involving BSCB
permeabilization and T lymphocyte infiltration of the spinal cord.
Intrathecal administration of anti-CXCL10 antibodies prevents
the development of CCI-induced neuropathic pain. Our findings
highlight the CXCL10/CXCR3 signaling pathway as a new
potential target for drugs designed to treat chronic pain.
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