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Abstract

Alzheimer’s disease (AD), a dreadful neurodegenerative disorder that affects cognitive and behavioral function in geriatric
populations, is characterized by the presence of amyloid deposits and neurofibrillary tangles in brain regions. The Infer-
national D World Alzheimer Report 2018 noted a global prevalence of 50 million AD cases and forecasted a threefold rise
to 139 million by 2050. Although there exist numerous genetic association studies pertinent to AD in different ethnicities,
critical genetic factors and signaling pathways underlying its pathogenesis remain ambiguous. This study was aimed to analyze
the genetic data retrieved from 32 Gene Expression Omnibus datasets belonging to diverse ethnic cohorts in order to identify
overlapping differentially expressed genes (DEGs). Stringent selection criteria were framed to shortlist appropriate datasets
based on false discovery rate (FDR) p-value and log FC, and relevant details of upregulated and downregulated DEGs were
retrieved. Among the 32 datasets, only six satisfied the selection criteria. The GEO2R tool was employed to retrieve significant
DEGs. Nine common DEGs, i.e., SLC5A3, BDNF, SST, SERPINA3, RTN3, RGS4, NPTX, ENC1 and CRYM were found
in more than 60% of the selected datasets. These DEGs were later subjected to protein—protein interaction analysis with 18
AD-specific literature-derived genes. Among the nine common DEGs, BDNF, SST, SERPINA3, RTN3 and RGS4 exhibited
significant interactions with crucial proteins including BACE1, GRIN2B, APP, APOE, COMT, PSENI1, INS, NEP and
MAPT. Functional enrichment analysis revealed involvement of these genes in trans-synaptic signaling, chemical transmission,
PI3K pathway signaling, receptor-ligand activity and G protein signaling. These processes are interlinked with AD pathways.
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Introduction

Alzheimer’s disease (AD), a progressive irreversible neuro-
degenerative disorder affecting the elderly, is characterized by
dementia and disruption of cognitive functioning. It represents

Highlights

o Thirty-two AD-specific GEO datasets were screened based on
FDR p-value and log FC

o Nine DEGs were commonly found in more than 60% of the
selected AD datasets

e Five DEGs interacted with BACE1, GRIN2B, APP, APOE,
COMT, PSENI, INS, NEP and MAPT proteins

o BDNF, SST, RTN3 and RSG4 were downregulated, and
SERPINA3 was upregulated

o KEGQG analysis of DEGs revealed a link with PI3K, G protein
and trans-synaptic pathways
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one of the highest unmet medical needs worldwide. The Interna-
tional D World Alzheimer Report 2018 noted a global prevalence
of 50 million in 2018 and forecasted a threefold rise in AD cases
to 139 million globally by 2050 (International D World Alzhei-
mer Report 2018). In the United States, around 121,000 deaths
due to Alzheimer’s dementia were reported in 2019. During the
coronavirus disease 2019 (COVID-19) pandemic, fatality rates
amongst AD patients increased by 145% (Alzheimer’s disease
facts and figures 2021). The Alzheimer’s and Related Disorders
Society of India (ARDSI) forecasts a huge burden of 6.35 mil-
lion AD cases across India by 2025 (Kumar et al. 2020).

To date, the US Food and Drug Administration (US-FDA)
has approved only four anti-AD drugs, belonging to the fol-
lowing categories: (i) cholinesterase inhibitors: donepezil,
rivastigmine and galantamine; and (ii) N-methyl-p-aspartate
receptor antagonist: memantine (Alzheimer’s Association
2017). The AD treatments are oriented towards nominal
symptomatic relief and offer modest clinical effect.

Looking into the pathophysiology, neuropathological
evidence shows that AD is characterized by the presence of
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amyloid beta (Ap) plaques and neurofibrillary tangles (NFT)
in the hippocampal and cortical regions. Although there are
various complex pathophysiological theories explaining the role
of numerous genes and proteins in AD progression, a major role
is attributed to presenilin 1 (PSEN1), beta-secretase 1 (BACE1),
amyloid precursor protein (APP) and microtubule-associated
protein tau (MAPT) proteins (Chouraki and Seshadri 2014).
Disruption in regulatory activities such as phosphorylation and
dephosphorylation of these proteins result in AD progression.
Notwithstanding the existence of countless genetic evaluations,
inconsistencies among various ethnicities contribute to a lacuna
in unraveling crucial disease-specific targets. This study was
aimed at exploring the major genetic alterations among various
microarray datasets to retrieve common differentially expressed
genes (DEGs) among various ethnicities, with the hypothesis
that overlapping DEGs across different ethnicities might play
a definitive role in AD pathogenesis.

Methodology
Selection of Datasets

Microarray datasets pertaining to Alzheimer’s disease were
retrieved from the Gene Expression Omnibus (GEO) data-
base (Barrett et al. 2013) using the keywords “Alzheimer’s
disease”, “Familial Alzheimer’s disease”, “Sporadic Alzhei-
mer’s disease,” “Early onset Alzheimer’s disease” and “Late
onset Alzheimer’s disease”. The datasets retrieved through
the above search terms were screened through a set of inclu-
sion and exclusion criteria.

Inclusion Criteria
Datasets satisfying all the following criteria were selected:

Datasets with controls and AD

Datasets with expressional arrays

Datasets describing the diagnostic criteria of AD
Datasets studied in Homo sapiens

Datasets with a minimum of two samples in each cat-
egory, i.e., control and AD

e Datasets with blood/brain samples

Exclusion Criteria
Datasets with the following criteria were excluded.

Drug-treated datasets

Methylation studies

Datasets with no diagnostic criteria
Cell line studies

Datasets from other organisms

@ Springer

e Datasets with no details about controls
e Mutation studies

Gene Expression Analysis

The selected datasets were preprocessed, curated and ana-
lyzed individually for retrieval of differentially expressed
genes (DEGs) (both upregulated and downregulated)
through the Bioconductor package. The datasets which
revealed DEGs with a false discovery rate (FDR) p-value
(adjusted p-value according to Benjamini—Hochberg
method) < 0.05 were selected. These datasets were then
subjected to four sets of filtering criteria based on FDR
and log fold change (FC): (i) FDR p-value <0.05 and log
FC>2, (ii) FDR p-value <0.05 and log FC > 1.5, (iii) FDR
p-value <0.05 and log FC > 1 and (iv) FDR p-value <0.01
and log FC> 1. Based on the above stringent filtering cri-
teria, the datasets possessing the following characteristics
were included: (a) datasets satisfying one of the above four
criteria, (b) datasets that encompassed both upregulated and
downregulated DEGs and (c) 60% of the datasets showing
the aforementioned characteristics (a) and (b) that display a
higher degree of common DEGs.

Protein—Protein Interaction (PPI) Analysis

The common DEGs retrieved from the above step were sub-
jected to PPI analysis with literature-derived genes (LDGs)
gathered from the National Center for Biotechnology Infor-
mation (NCBI) (Brown et al. 2015) pertinent to AD progres-
sion through the Search Tool for the Retrieval of Interact-
ing Genes/Proteins (STRING) database (von Mering et al.
2003). The PPI network was visualized through Cytoscape
with proteins as nodes and interactions as edges. The pro-
teins exhibiting significant interactions (70% confidence
score) with LDGs were shortlisted, and the nodes exhibiting
node degree >2 were selected as AD targets.

Functional Enrichment Analysis

The common DEGs retrieved were subjected to functional
enrichment analysis to explore their involvement in sign-
aling pathways and physiological functions associated with
AD pathogenesis through ClueGO (Bindea et al. 2009) in
Cytoscape.

Results

Selection of Datasets

A total of 134 GEO datasets derived from studies performed
on Homo sapiens were retrieved from NCBI, of which 32
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Fig.1 CONSORT diagram
explaining the selection and
screening of datasets

Secondary screening through
filtering criteria

GSE97760

Fig.2 Venn diagram exhibiting the common upregulated (a) and downregulated (b) DEGs

@ Springer
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Table 2 Number of DEGs obtained through filtering criteria

Table 2 (continued)

Dataset accession number Number Dataset accession number Number
of DEGs of DEGs

FDR p-value <0.05 and log FC >2 FDR p-value <0.01 and log FC>1

Upregulated Upregulated

GSE110226 22 GSE122063 386

GSE15222 18 GSE132903 2

GSE48350 6 GSE15222 111

GSE5281 13 GSE48350 11

GSE97760 1463 GSE5281 834

Downregulated GSE97760 2987

GSE110226 6 Downregulated

GSE48350 1 GSE122063 653

GSE5281 27 GSE132903 28

GSE97760 1307 GSE15222 45

FDR p-value < 0.05 and log FC > 1.5 GSE48350 9

Upregulated GSE5281 1449

GSE110226 33 GSE97760 1580

GSE122063 129

GSE15222 32

GSE48350 6 datasets were found to satisfy the initial inclusion criteria.

GSES281 123 Details pertaining to the 32 datasets are presented in Table 1.

GSE97760 1998

Downregulated Gene Expression Analysis

GSE110226 15

GSE122063 11 The datasets were analyzed individually through Bio-

GSE15222 > conductor package in R using GEO2R tool (Barrett et al.

GSE48350 3 2013). Among the 32 datasets, 16 were rejected because they

GSES281 273 did not exhibit significant FDR p-values. The remaining 16

GSE97760 1235 datasets were analyzed based on the four filtering criteria

FDR p-value <0.05 and log FC> 1 L. . .

Upregulated a.nd thre.:e characteristics mentioned in the methodology sec-

tion (Fig. 1).

GSE110226 99

GSEI31617 8 (i) FDR p-value <0.05 and log FC > 2:

GSE132903 2 Out of the 16 qualified datasets, five possessing upregu-

GSE15222 144 lated DEGs and four with downregulated DEGs (Fig. 2)

GSE29378 7 satisfied this criterion (Tables 2 and 3). Nevertheless, the

GSE48350 1 upregulated DEGs of two datasets of the five displayed

GSE5281 885 overlapping genes, while the downregulated DEGs of

GSE63061 ! the shortlisted datasets did not show common genes.

GSE97760 4231 Therefore, this criterion was rejected.

Downregulated (i) FDR p-value < 0.05 and log FC > 1.5:

GSE110226 35 Among the 16 datasets, only six were found to meet

GSE122063 663 this criterion (Tables 2 and 3). Common DEGs were

GSE132903 38 found in datasets which accounted for 50% and thus

GSE15222 48 did not meet characteristic (¢) mentioned in the

GSE48350 o methodology section (Fig. 3). Thus, this criterion

GSES281 1507 was also rejected.

GSE63060 4 (iii) FDR p-value <0.05 and log FC > 1

GSE97760 2543

@ Springer

Among the 16 datasets, this criterion was met by nine
datasets with upregulated DEGs and eight datasets
with downregulated DEGs (Tables 2 and 3). Also,
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Table 3 List of common DEGs obtained through filtering criteria

Dataset no

Common DEGs

FDR p-value <0.05 and log FC >2
Upregulated

GSE48350 and GSE97760

GSE5281 and GSE97760

GSE110226 and GSE97760
Upregulated

GSE110226, GSE122063 and GSE97760
GSE122063, GSE5281 and GSE97760
GSE15222, GSE5281 and GSE97760
GSE122063, GSE48350 and GSE97760
GSE5281 and GSE97760

GSE122063 and GSE97760
GSE48350 and GSE97760

GSE15222 and GSE97760
GSE122063 and GSE5281
Downregulated

GSE122063, GSE15222 and GSE5281
GSE110226 and GSE97760
GSE110226 and GSE122063
GSE5281 and GSE97760

GSE15222 and GSE97760
GSE122063 and GSE97760
GSE122063 and GSE5281
GSE122063 and GSE5281

FDR p-value <0.05 and log FC > 1
Upregulated

GSE132903, GSE15222, GSE5281 and GSE97760
GSE110226, GSE29378 and GSE97760
GSE15222, GSE5281 and GSE97760
GSE131617, GSE5281 and GSE97760
GSE110226 and GSE97760
GSE110226 and GSE5281
GSE110226 and GSE15222

GSE5281 and GSE97760

GSE15222 and GSE97760

GSE48350 and GSE97760

GSE29378 and GSE97760

GSE15222 and GSE5281

GSE48350 and GSE5281

GSE29378 and GSE5281

GSE132903 and GSE5281

GSE15222 and GSE48350

Downregulated

GSE110226, GSE122063, GSE5281 and GSE97760
GSE122063, GSE15222, GSE5281 and GSE97760

SLC25A46, ZNF621, XIST and ANKIB1
RBM33, NEATI and MALATI
ILIRLI and SERPINA3

SERPINA3 and ILIRLI
NEATI

SLC5A3

XIST

RGPDS, JPX, ZMYMS5, CCDC144A, SNRNP48, ZBED6, SKI, ANKRD36, MECOM, ZDHHC21, UBE3A, RAB1S, RBM25,
RGPDG6, RBM33, RRBP1, SEPT7, GOLIM4, ANKRD12, ZC3HIIA, MALATI and RANBP2

CCDC66, HMBOX1I, IL1S8RI and GON4L
SLC25A46 and ANKIB1

RADS5IC and F8

SOCS3 and SNX31

RGS4 and SST

SFRP2, TCF21 and HMGCLLI

CTXN3

TSTA3, DUSP4, DCTNI, SLIT3, SEZ6L2, CALY, SNCA, BLVRB, INA, PTPRF, CPNE6, ATP6 and V1G2
NELLI

GPRS88, STMNI, RPH3A, DNAH?2 and NRIP3

RTNI1, BDNF, VSNLI, NUNAT2, RPS4Y1, PTPN3 and MAL2

HSPB3

SLC5A3

SERPINA3

RHOQ and IL6ST

PPA2

ILIRLI, IL4R, ILIS8RI and Clorf21

SOCS3, MT2A, C10orf54, FBX032, BACE2, GALNT15 and SLCO4A1
GGPRC5A

HDY, IPW, QKT IL6R, PTPN2, UBE2W, AHNAK, JPX, CASC4, RDX, FAM161A, ZMYM5, SET, FAM120A, SNORA1S, BDPI,
C5orf56, PPFIBP1, YTHDC2, ELF1, CCDCI144A, TAFID, ZNF713, SNRNP48, SNORD107, SNORD50B, LRRFIP1, ELK4,
GRAMDIC, SNORDG1, LMO7, SAMHDI, PTBP3, TRIM4, CXCL2, TNPOI, CDK13, ZFP36L1, SEPTS, STAGI, SKI,
TBLIXRI, SNORAI, ANKRD36, CPEB4, MKL2, MBTD1, HCG18, ZNF160, MECOM, PDE4DIP, ZDHHC21, CBX3, TFEB,
SKIL, TLE4, IFNAR2, KCNJ16, SLC4A4, KTN1, SATI, ABLIM1, ZNF280D, RBMS1, LZTS2, LPP, ATRX, MACFI, PCMTD2,
CSorf24, TPP2, SFPQ, ZSCAN30, STAG2, RBM33, RAPHI, SOS2, SNORA40, WHAMMP2, NEAT1, ZNF566, PIK3C2A,
NOTCH2NL, LEF1, NEKI, MYH11, SNORDS, ITPR2, SEPT7, PTARI, FXRI, TUBEI, SGPP2, USP6, FAM198B, ZBTBI,
SNORAS, TP53INP1, SNORDS4, FAM185A, NFATC2, ANKRD12, MKRN3, RBMX, TCF7L2, ZNF800, MALATI, SREKI,
GKAPI, TRIMS9, UHRF1, WNK1, TRPS1, MIBI, STK17B, SCARNA17, TOBI, MDM4, CCDC88A, DCAFS8, ZNF638,
ANKRD36B, USP47, SYCP3, CDCI4A, TRA2B, FAM98B, PPMIK, BDH2, KDM5A, RGPD5, ANKRDI10-IT1, SNORD116-
4, NKTR, FRYL, SPAGY, UBE2D3, SMCHD1, FAM107B, SCFD1, ZBED6, RNPC3, ZFAND6, SMG1, ALS2, PTPRC,

PNISR, NUCKS1, TSIX, CNTLN, BRD7, NSUN6, PIGY, CELF2, LUC7L3, DDX59, UBE2Z, PLGLB1, ANKRDI13A, RUFY3,
DDX39B, UBE3A, RABIS, LOC100133089, RBM25, CCDC7, BHLHE41, SRRM2, RGPD6, PTEN, AGFG1, RASSF3,
AASDH, KDELC2, DACHI, REST, FNIP1, KIF5B, PRKD3, IFT80, C11o1f58, PPIG, ZNF138, PARP11, CARD6, MORF4L2,
TMTC3, SLC44A1, PYHINI, SNORA32, RRBP1, NEDDI, EPCI, PRPF38B, Cl60rf52, MIAT, CCNC, DIS3L2, SEPT7P2,
CLTC, RPS16P5, SREK1IPI, PPPIRI2B, NSF, SP100, CAPRINI, CNTRL, GNAQ, ESF1, TNFAIPS, LOC100129447,
FGFRIOP2, EIF3C, SCAMPI1, GOLIM4, ZEB2, CADM1, PAIP2B, YLPM1, ZC3HI11A, TTN, HBSIL, RHOBTB3, ZNF638-
IT1, VPS13C, RANBP2, MARVELD?2, C3orf38, SCAF11, WHAMMP3, FCHO2 and TOP1

LDHALGA, FANCC, ARMCX3, SLC26A2, PCDHGB3, TBC1D23, PSMAI, F8, GFM2, DDX6, ZNF326, IL7, FGF5, CDIC,
SYNE2, PBRM1, RAD51C, LONRF3, RNF13, TIFA and FANCB

SLC25A46, ANKIBI, XIST and ZNF621

RGS1

XAF1, SRGAPI, PATJ, YPEL2, GBP2, LATS2, MRGPRF, ITPRIPL2, GRTPI, MKNK2, ZIC1 and ANGPT2
CXCR4

CD44 and CD163

GFAP

C4B and LTF

HMGCLLI
NELLI

@ Springer
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Table 3 (continued)

Dataset no Common DEGs

GSE122063, GSE15222, GSE48350 and GSE5281 SST

GSE122063, GSE132903, GSE15222 and GSE5281 RGS4, ENC1, PCSKI1, CRYM and NPTX2
GSE110226, GSE122063 and GSE97760 HDC

GSE15222, GSE5281 and GSE97760 ROBO2

GSE122063, GSE5281 and GSE97760

GSE122063, GSE15222 and GSE97760
GSE132903, GSE15222 and GSE5281
GSE122063, GSE15222 and GSE5281
GSE122063, GSE48350 and GSE5281
GSE122063, GSE132903 and GSE5281
GSE122063, GSE132903 and GSE15222
GSE110226 and GSE97760

GSE110226 and GSE5281

GSE110226 and GSE122063

GSE5281 and GSE97760

GSE15222 and GSE97760
GSE122063 and GSE97760

GSE15222 and GSE5281
GSE132903 and GSE5281
GSE122063 and GSE5281

GSE122063 and GSE15222
GSE122063 and GSE48350
GSE122063 and GSE132903

FDR p-value <0.01 and log FC > 1
Upregulated

GSE132903, GSE15222, GSE5281 and GSE97760

GSE15222, GSE5281 and GSE97760
GSE122063, GSE5281 and GSE97760
GSE122063, GSE15222 and GSE5281
GSE122063, GSE132903 and GSE5281
GSE122063, GSE15222 and GSE48350
GSE5281 and GSE97760

GSE15222 and GSE97760
GSE48350 and GSE97760

PAX7, TSPAN7, STMNI1, WBSCR17, MAP7D2, SULT4Al, INA, NRIP3, DOCK3, IGF1, REEP1, CGREFI, ICAI, SPHKAP,
LAMBI and ZDHHC23

TAC3

SERPINI

ADCYAPI, ZBBX, NEURODG, GRP, SLC30A3, CARTPT, CRH and SERTM1

ABCC12, CALBI and MIR7-3HG

RTNI, PRKCB, NELL2, NEFM, HPRT1, DYNC111, PARM1, GABRAI, CHGB, GABRG2, RGS7 and SYTI
VGF and NECABI

SFRP2, TCF21, ADAMTSLI, EGFEMIP and IGSF1

LYRM9

CTXN3 and NPY2R

ATXN10, DUSP4, SSU72, KIAA1324, SEZ6, SYTL5, DCTNI1, TALDOI, FIS1, GPX4, PTP4A3, SNCA, HN1, AP2S1, KCTD2,
MCAT, BLVRB, DPP6, NCAM2, ATP6VOC, KCNG3, SYNEI, SPTBN2, ATRNLI, ATP2B3, PTGER3, ATP6VOD1, DNAJA4,
LMFI1, SGIP1, CROT, ANKSI1B, ANK2, SLIT3, SEZ6L2, RNF187, ANKRD54, CALY, TSPANS5, CSRNP3, MFSD2B,

HGD, DAB2IP, CX3CLI, RANBP10, AHNAK2, DPCD, PAK1, NOC4L, UBL7, HAGH, ASPSCRI, TRAPPC5, CNKSR2,
LOC729870, DCAF6, CD99L2, PTPRF, CPNE6, RNF24, TBC1D7, NAV3, ATP6VI1G2, TMEMS59L, SLC24A3, MLXIP,
TSTA3, FOLHI, SPTANI, TCEA2, AP2M1, SMOX, FHL2, ASCC2, PRDXS5, FKBP1B, HYDIN, AP3B2, PDEIA, FAMI31A,
TMEM158, NFIB, UMODLI, MEG3 and GCAT

DGKB and CORT

GLTIDI, NOS2, XK, FAM182B, PTPN5, RTN4RL1, NECAB2, PRRTI, LOC284395, SSX3, KIAA1045, NKX2-3, PVALB,
CHRFAMT7A, KIAA1239, GSG1, ADCY2, FAM178B, GLP2R, LOC100289580, WNK2, GYG2P1, LRRC38, DDAH1,
TBXAZ2R, RET, LOC100507534, ZSCANI, OCA2, HAPLNI, INSL3, ENTPD3, KATNBI, RPL13AP17, NAALADL2, ST7-AS1,
NPPA, SLC7A4, PCDH11X, RPH3A, CASQ1, ODZ3, NGEF, KIAA1644, LOC653550, MYO5B, PNMAS, LOC338797,
KCNH2, TUBA3C, LOC100288814, LOC497256, DRGX, GPRSS, CHRM2, PRKARIB, FLJ32255, LOC100134259,
SLC22A10 and PVRL3-AS1

GABRAS, ANO3, AP1S1, SERINC3, ITFG1, ICAMS5, PGM2LI1, CCK, PLK2 and NCALD
GLRB, ERICH3, TUBB2A and NSF

GDA, MET, SERPINF1, LINC00460, ZNF385B, SYT13, LOC283484, SARS, CHRM1, CHRNB2, GPATCH2, KRT222,
NMNAT?2, UBE2N, ZCCHC12, GPR158, SDR16C5, FGF12, FPGT-TNNI3K, TAC1, RNF175, UBE2QLI, SYN2, ATLI,
AMPH, MYTIL, NAPILS5, TAGLN3, Cl4orf79, UNCI3A, SOSTDCI, SH3GL2, STMN2, MAP4, MDH1, STAT4, VSNLI,
GPRASP2, EPHAS, TRIM37, FAR2, PCLO, SV2B, SVOP, PAK3, CDC42, CAMKIG, PPPIR2, NOP56, PTPRO, BSCL2,
CIRBP, HS6ST3, PPPIR14C, SCG5, NPTXR, GLS2, GOLTIA, TASP1, ACOT7, RSPO2, ENO2, NEFL, CD200, RBM3,
GAP43, ERC2, GNG2, PPMIE, RPS4Y1, TARBP1, SLCIA6, GNG3, NECAPI, GABRD, GLS, LINC00467, NRXN3,
LY86-AS1, ATPSA2, MLLT11, BRWDI, PPM1J, RAB3C, UCHLI, WDR54, BDNF, DCLK1, PNMAL2, CITED1, NUDTIS8,
RAB27B, SNAP25, GOLGASA, HMP19, LOC100506124, SYCEI, CCKBR, TUBB3, COPG2ITI, RBP4, PPEF1, CACNG3,
MICAL2, LOC100129973, PTPN3, PLD3, ATOH7, MAL2 and BEX5

SCG2, VIP, KCNVI1, TMEM155, NMU, HSPB3 and PCDH8
SLC32A1
CAP2

SLC5A3 and SERPINA3

RHOQ and IL6ST

FAM107B, ZBED6, NEATI, RRBP1 and TTN
GBP2 and ANGPT2

GFAP

C4B and LTF

USP47, CHDY, IPW, TRA2B, FAM98B, PPMI1K, BDH2, KDM5A, QKI, RGPD5, ANKRDI0-IT1, IL6R, SNORD116-4, NKTR,
FRYL, PTPN2, AHNAK, UBE2W, JPX, RDX, FAM161A, ZMYMS5, SET, FAM120A, SNORA1S, BDP1, C50rf56, UBE2D3,
YTHDC2, SMCHD1, CCDC144A, TAFID, ZNF713, SNRNP48, SNORD107, RNPC3, SNORD50B, LRRFIP1, ELK4, ALS2,
PTPRC, GRAMDIC, PNISR, SNORDG1, LMO7, NUCKSI1, CNTLN, SAMHDI, PTBP3, TRIM4, CXCL2, TNPOI, CDK13,
ZFP36L1, STAGI, BRD7, SKI, TBLIXRI1, SNORA1, ANKRD36, CPEB4, NSUN6, MKL2, PIGY, HCG18, ZNF160, CELF2,
LUC7L3, MECOM, DDX59, UBE2Z, ZDHHC21, CBX3, ANKRDI13A, TFEB, RUFY3, SKIL, UBE3A, TLE4, RABIS,
LOC100133089, RBM25, KCNJ16, CCDC7, KTN1, RGPD6, SATI, ABLIM1, ZNF280D, RBMS1, LPP, ATRX, MACF1,
PCMTD2, AGFGI, RASSF3, AASDH, C5orf24, KDELC2, SFPQ, ZSCAN30, STAG2, RBM33, RAPHI, REST, FNIPI,
KIF5B, SNORA40, PPIG, ZNF138, ZNF566, PIK3C2A, PARP11, NOTCH2NL, LEFI, MORF4L2, TMTC3, NEKI, SLC44A1,
PYHINI, SNORDS, NEDDI, EPC1, PRPF38B, Cl6orf52, MIAT, SEPT7, CCNC, DIS3L2, SEPT7P2, PTARI, TUBEI,
SREKI1IPI, NSF, USP6, SP100, CAPRIN1, ZBTB1, CNTRL, SNORAS, TP53INP1, GNAQ, ESF1, TNFAIPS, SNORD84,
FGFRIOP2, EIF3C, FAM185A, SCAMP1, GOLIM4, ZEB2, CADM1, ANKRD12, YLPM1, ZC3HI 1A, RBMX, HBSIL,
ZNF800, RHOBTB3, MALATI, SREKI, GKAPI, UHRF1, WNK1, VPS13C, TRPS1, RANBP2, C30rf38, SCAF11, VSIGI0,
WHAMMP3, FCHO2, MIB1, STK17B, SCARNA17, TOB1, MDM4, CCDC88A and DCAF8

SLC26A2, FGF5, TBC1D23, PSMAI, PBRM1, RAD51C, F8, LONRF3, DDX6, ZNF326 and FANCB
SLC25A46, XIST, ZNF621 and ANKIBI
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Table 3 (continued)

Dataset no

Common DEGs

GSE122063 and GSE97760

GSE15222 and GSE5281
GSE48350 and GSE5281
GSE122063 and GSE5281

GSE122063 and GSE15222

GSE122063 and GSE48350

Downregulated

GSE122063, GSE15222, GSE48350 and GSE5281
GSE122063, GSE132903, GSE15222 and GSE5281
GSE15222, GSE5281 and GSE97760

GSE122063, GSE5281 and GSE97760

GSE122063, GSE15222 and GSE97760
GSE122063, GSE15222 and GSE5281
GSE122063, GSE48350 and GSE5281
GSE122063, GSE132903 and GSE5281
GSE122063, GSE132903 and GSE15222
GSE5281 and GSE97760

GSE15222 and GSE97760
GSE122063 and GSE97760

GSE15222 and GSE5281
GSE132903 and GSE5281
GSE122063 and GSE5281

GSE132903 and GSE15222
GSE132903 and GSE15222
GSE122063 and GSE48350
GSE122063 and GSE132903

AHSA2, CHORDCI, EIF4G3, CCDC66, LOC100287765, Q5A5F0, SNORA75, MSR1, F13A1, WDR33, LOC100507645,
ZNF620, ILI8R1, SERPINA3, ZNF850, AFF1, GON4L, RUNXI, ILIRLI, LOC387895, CASBPI, SNORA73A, CXCLI12,
RBM47, LRRC37A3, EFTUDI, LOC100129089, SPATA13 and PLAC8

MRGPREF, ITPRIPL2, XAF1, GRTP1, MKNK2, SRGAP1, PATJ, YPEL2, ZIC1 and LATS2
CXCR4

CD44, HIGD1B, BACE2, PIEZ02, SOCS3, CEP104, EGFR, PDLIM4, ITPKB, RHOJ, PDE4DIP, VASP, COL27A1, MAFF,
KCNE4, SCIN, MYO10, SNX31, ZFP36L2, EMP1, SLCOIA2, TNSI, SRGN, SLCO4Al, CD163, TBLIX, CXCLI, BCASI,
TNFRSF10B, FAM65C and LOC100131541

FOXJ1, MIA, S100A12, S100A4 and C210rf62
C4A

SST and BDNF
RGS4, CRYM, NPTX2, RTN3 and ENC1
ROBO2

IGF1, STMNI1, REEP1, CGREF1, ICAl, SPHKAP, WBSCR17, MAP7D2, SULT4Al, LAMBI, ZDHHC23, NRIP3, HMGCLLI
and DOCK3

TAC3

ADCYAPI, CRH, ZBBX, NEURODG, SLC30A3, NELLI, CARTPT and SERTM1

ABCC12, CALBI and MIR7-3HG

RTNI, PRKCB, NELL2, GABRAI, CHGB, GABRG2, NEFM, RGS7, SYT1, HPRTI, DYNCIII and PARM1
PCSK1, VGF and NECAB1

NOC4L, ATXN10, DUSP4, SSU72, KIAA1324, SEZ6, UBL7, DCTNI1, HAGH, ASPSCRI, FIS1, PTP4A3, SNCA, HNI, AP2S1,
KCTD2, MCAT, CNKSR2, BLVRB, DCAF6, CD99L2, ATP6VOC, CPNEG6, SYNEI, TBC1D7, NAV3, ATP6V1G2, TMEM59L,
ATRNLI, MLXIP, LMF1, SPTANI, SGIP1, CROT, SMOX, FHL2, ASCC2, SEZ6L2, CALY, FKBPIB, TSPANS, FAM131A,
TMEM158, DAB2IP, CX3CLI, MEG3, GCAT and DPCD

CORT and DGKB

XK, KATNBI, FAM182B, RPL13AP17, PTPNS5, RTN4RLI, ST7-AS1, NPPA, PRRTI, PCDHI1X, LOC284395, SSX3,
KIAA1045, CASQ1, ODZ3, KIAA1644, NKX2-3, PVALB, CHRFAM7A, KIAA1239, GSG1, ADCY2, FAM178B,
LOC100289580, WNK2, MYO5B, PNMAS, LOC338797, KCNH2, RET, LOC497256, LOC100507534, ZSCAN1, GPRSS,
CHRM2, PRKARIB, FLJ32255, SLC22A10, PVRL3-AS1 and OCA2

PGM2LI1, GABRAS, ANO3, AP1S1, SERINC3, CCK, PLK2, NCALD and ICAM5
ERICH3, TUBB2A, NSF and GLRB

PAX7, GDA, MET, SERPINF1, LINC00460, SYT13, LOC283484, TASP1, TSPAN7, ACOT7, SARS, CHRM1, CHRNB?2,
GPATCH2, KRT222, NMNAT2, UBE2N, ZCCHC12, GPR158, SDR16C5, ENO2, FGF12, CD200, FPGT-TNNI3K, RBM3,
GAP43, ERC2, GNG2, RNF175, PPMIE, TARBP1, UBE2QLI, SYN2, ATLI, AMPH, SLCIA6, GNG3, NECAPI, MYTIL,
NAPILS5, TAGLN3, C140rf79, GABRD, UNCI3A, GLS, SOSTDC1, NRXN3, LY86-AS1, ATP8A2, SH3GL2, MLLT11, STMN2,
BRWDI, MAP4, PPM1J, RAB3C, UCHLI, WDR54, MDH1, BDNF, DCLK1, STAT4, VSNLI1, GPRASP2, EPHA5, PNMAL?2,
CITEDI, NUDTIS8, TRIM37, FAR2, PCLO, SV2B, RAB27B, SNAP25, GOLGASA, HMP19, SVOP, LOC100506124, PAK3,
CDC42, SYCEI, CAMKI1G, CCKBR, TUBB3, COPG2IT1, PPPIR2, RBP4, PPEF1, NOP56, INA, CACNG3, MICAL2,
PTPRO, LOC100129973, BSCL2, PTPN3, CIRBP, PLD3, HS6ST3, PPPIR14C, ATOH7, SCG5, MAL2, NPTXR, BEX5 and
GLS2

SERPINII

SCG2, VIP, KCNVI1, GRP, NMU, HSPB3, TMEM155 and PCDH8
SLC32A1

CAP2

@iv)

the number of datasets was not equal, and the com-
mon DEGs were not seen in 60% of the datasets.
Therefore, this criterion was rejected.

FDR p-value < 0.01 and log FC>1

Among the 16 datasets, this criterion was met by six
datasets containing both upregulated and downregu-
lated DEGs (Tables 2 and 3). Common upregulated
and downregulated DEGs were found in four datasets
which accounted for more than 60%. Hence, this cri-
terion was selected to retrieve the DEGs for PPI and
functional enrichment analysis. Among upregulated
DEGs, solute carrier family 5 member 3 (SLC5A3)
and serpin family A member 3 (SERPINA3) were

found to be common in four datasets. Among down-
regulated DEGs, somatostatin (SS7), regulator of G
protein signaling 4 (RGS4), crystallin mu (CRYM),
neuronal pentraxin 2 (NPTX2), reticulon 3 (RTN3),
brain-derived neurotrophic factor (BDNF) and ecto-
dermal-neural cortex 1 (ENC1) genes were found to
be common in four datasets (Fig. 4). These genes
were selected for further PPI analysis with LDGs.

PPI Analysis

Eighteen LDGs were selected from the NCBI portal
(Table 4) and were subjected to PPI analysis with the
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GSE122063

GSE110226

GSE48350

GSE15222

GSE48350 '

Fig.3 Venn diagram exhibiting the common upregulated (a) and downregulated (b) DEGs

shortlisted DEGs from the above step. PPI analysis (Fig. 5)
revealed that BDNF exhibited the highest node degree (16),
followed by SST (7), AACT (SERPINA3) (4), RTN3 (2),
RGS4 (3), NPTX (1) and CRYM (1). BDNF exhibited high
connectivity with AD-specific proteins including glutamate
ionotropic receptor NMDA type subunit 2B (GRIN2B),
BACEI1, MAPT, PSENI1, TP53, BCHE, SNCA, COMT,
INS, APP, APOE and ACHE. SST exhibited PPI with IDE,
MME, IGF, APP, INS and ACHE. SERPINA3/AACT exhib-
ited interactions with APOA1, APOE and APP proteins.

GSE48350

GSE97760

GSE132903

RTN3 interacted with BACE1 and APP. RGS4 interacted
with COMT alone. NPTX and CRYM did not exhibit inter-
actions with any of the LDGs (Fig. 5, Tables 5 and 6).

Functional Enrichment Analysis
The common DEGs retrieved were subjected to functional
enrichment analysis to explore their involvement in Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways.

GSE48350

GSE97760

GSE132903

Fig.4 Venn diagram exhibiting the common upregulated (a) and downregulated (b) DEGs
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Table 4 List of LDGs retrieved Gene symbol NCBI gene ID HUGO Gene Nomenclature Com- Chromosome Reference

from NCBI mittee (HGCN) ID location
APOE 348 HGNC:613 19q13.32 (Nho et al. 2017)
APP 351 HGNC:620 21q21.3 (Schrétter et al. 2012)
GRIN2B 2904 HGNC:4586 12p13.1 (Andreoli et al. 2013)
SNCA 6622 HGNC:11,138 4q22.1 (Mackin et al. 2015)
MAPT 4137 HGNC:6893 17q21.31 (Sassi et al. 2014)
coMT 1312 HGNC:2228 22q11.21 (Zhou et al. 2013)
TP53 7157 HGNC:11,998 17p13.1 (Wojsiat et al. 2017)
AGER 177 HGNC:320 6p21.32 (Deane et al. 2003)
IGF1 3479 HGNC:5464 12q23.2 (Majores et al. 2002)
PSENI 5663 HGNC:9508 14q24.2 (Sassi et al. 2014)
BACEI 23,621 HGNC:933 11q23.3 (Kimura et al. 2016)
INS 3630 HGNC:6081 11pl15.5 (Majores et al. 2002)
APOAI 335 HGNC:600 11g23.3 (Fitz et al. 2015)
LDLR 3949 HGNC:6547 19p13.2 (Shinohara et al. 2017)
ACHE 43 HGNC:108 7q22.1 (Scacchi et al. 2009)
BCHE 590 HGNC:983 3q26.1 (Scacchi et al. 2009)
IDE 3416 HGNC:5381 10q23.33 (Jha et al. 2015)
NEP 4311 HGNC:7154 3q25.2 (Jha et al. 2015)

Fig.5 PPI network of

DEGs exhibiting significant

interactions with LDGs. Yellow

nodes represent common genes

retrieved from GEO datasets.

Pink nodes represent LDGs

RTN3

RGS4

CRYM
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Table 5 Significant PPI of identified DEGs with LDGs

Node 1 Node 2 Combined
score*
BDNF TP53 0.95
IGF1 0.894
APP 0.828
APOE 0.81
PSEN1 0.781
COMT 0.733
INS 0.715
SNCA 0.708
ACHE 0.657
MAPT 0.598
BACEI1 0.594
BCHE 0.518
GRIN2B 0.982
SST APP 0.928
INS 0.915
IGF1 0.791
IDE 0.59
ACHE 0.579
MME/NEP 0.404
AACT/SERPINA3 APP 0.476
APOA1 0.45
APOE 0.609
RTN3 APP 0.523
BACEI1 0.8
RGS4 COMT 0.641

*Combined score-Computed based on the evidence gathered from
sources such as literature-derived co-expression and co-occurrences,
database imports, gene fusions, large-scale experimental reports, and
phylogenetic co-occurrences. Combined score<0.4 is considered
as low confidence; 0.4-0.7 as medium confidence; and above 0.7 is
acknowledged as high confidence

GO analysis revealed that SLC5A3 was involved in the
transport of potassium ions across plasma membranes
(GO:0098739) and peripheral nervous system development
(G0O:0007422), whereas BDNF, RGS4, NPTX2 and SST
were involved in cognitive ability (GO:0050890), trans-
synaptic signaling (GO:0099157), striated muscle cell
differentiation (GO:0051154), anterograde trans-synaptic
transmission (G0O:0098916) and regulation of nervous
system processes (GO:0031644). BDNF, SST and ENCI
were involved in receptor ligand activity (GO:0048018),
cytokine receptor binding (GO:0005126), positive regu-
lation of cell projection organization (GO:0031346) and
receptor regulator activity (GO:0030545). ENCI and RTN3
were found to be involved in negative regulation of cellu-
lar amide metabolic process (G0:0034249). SERPINA3 in
combination with SST was known to be involved in digestion
(GO:0007586) (Fig. 6).

KEGG analysis revealed that BDNF was involved in
triggering the phosphoinositide 3-kinase (PI3K) pathway
(hsa04213), rat sarcoma (RAS) signaling (hsa05212),
RACI signaling (hsa04510), FYN signaling (hsa04380),
cyclin-dependent kinase 5 (CDKS5) phosphorylation,

@ Springer

FYN-mediated GRIN2B activation and transcriptional sign-
aling. BDNF and SST were involved in transcription regu-
lation by methyl-CpG-binding protein 2 (MECP2), gastric
acid secretion (hsa04971) and somatostatin gene expression.
RGS4 was known to mediate G alpha (i) auto-inactivation
and G alpha (q) inactivation by hydrolysis of guanosine
triphosphate (GTP) to guanosine diphosphate (GDP). CRYM
was involved in lysine catabolism and autosomal-dominant
deafness, whereas RTN3 was involved in PPI at synapses,
binding of synaptic adhesion-like molecule 1-4 (SALM1-4)
to reticulons and synaptic adhesion-like molecules. SER-
PINA3 was involved in exocytosis of platelet alpha granules
and azurophil granule lumen proteins (Fig. 7).

Discussion

This study was aimed to retrieve significant DEGs associated
with AD by analyzing the gene expression data available in
the GEO database. Initially, the GEO datasets were selected
based on the inclusion and exclusion criteria, which resulted
in 32 datasets. The raw data for each dataset were analyzed
individually using the Bioconductor package in R, and
DEGs with FDR p-value < 0.05 were retrieved and segre-
gated into upregulated and downregulated DEGs. Although
32 datasets were found to be eligible, only 16 satisfied
the initial criteria FDR p-value <0.05. These DEGs were
subjected to screening based on different filtering norms,
and this yielded six datasets with both upregulated and
downregulated DEGs. Herein, the overlapping DEGs were
found in more than 60% of the above mentioned six data-
sets. SLC5A3 and SERPINA3 were found to be common
in upregulated DEGs, whereas SST, BDNF, RGS4, CRYM,
NPTX2, RTN3 and ENC1 were found to be common in
downregulated DEGs. These DEGs were further subjected
to PPI analysis with 18 LDGs which were known to play
a strong role in AD pathogenesis. Among the above nine
DEGs, BDNF, SST, SERPINA3 (AACT), RTN3 and RGS4
exhibited significant interactions.

BDNF exhibited interaction with crucial targets including
GRIN2B, BACEIL, APP, MAPT, SNCA, ACHE, APOE,
PSEN1 and COMT. Functional enrichment analysis revealed
a normal physiological role of BDNF in cytokine signaling,
receptor ligand activity and regulation, trans-synaptic signal-
ing, cognitive function, chemical synaptic transmission, cell
differentiation, cell growth and regulation. This suggests
its crucial involvement in neuronal growth, development
and transmission, which is found to be abnormal in AD.
KEGG pathway analysis revealed detailed mechanistic
action of BDNF. BDNF initiates its response by binding to
the tyrosine kinase beta (TRKf) receptor; post-binding, the
receptor dimerizes and undergoes autophosphorylation. The
phosphorylated TRK triggers various signaling mechanisms
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Table 6 Characteristics of the PPI network

Node name Average shortest path Betweenness cen- Clustering coefficient® Node Neighborhood con- Radiality" Topological coef-
length” trality” degree? nectivity® ficient®
APP 1.214286 0.167659 0.399209 23 10.26087 0.946429 0.380032
APOE 1.214286 0.171997 0.403162 23 10.3913 0.946429 0.384863
PSEN1 1.392857 0.045109 0.555556 18 12.05556 0.901786 0.446502
INS 1.392857 0.055697 0.542484 18 12 0.901786 0.444444
BACE1 1.428571 0.052044 0.573529 17 12.29412 0.892857 0.455338
BDNF 1.428571 0.1859 0.525 16 11.875 0.892857 0.4375
MAPT 1.535714 0.014431 0.703297 14 13.71429 0.866071 0.507937
SNCA 1.642857 0.00439 0.836364 11 15.27273 0.839286 0.565657
TP53 1.642857 0.011054 0.763636 11 14.90909 0.839286 0.552189
ACHE 1.642857 0.009583 0.745455 11 15.09091 0.839286 0.558923
IGF1 1.678571 0.003503 0.844444 10 15.8 0.830357 0.585185
BCHE 1.714286 0.002774 0.861111 9 16.44444 0.821429 0.609054
IDE 1.75 0.004939 0.781818 11 14.36364 0.8125 0.574545
COMT 1.75 0.035647 0.464286 8 10.375 0.8125 0.384259
SST 1.785714 0.003489 0.761905 7 14.14286 0.803571 0.52381
MME 1.785714 0.007593 0.711111 10 14 0.803571 0.56
GRIN2B 1.821429 0.001563 0.8 6 17 0.794643 0.62963
LDLR 1.892857 0.001436 0.857143 7 16.28571 0.776786 0.651429
APOA1 1.892857 0.005669 0.666667 7 12.42857 0.776786 0.497143
AGER 1.892857 0 1 7 17.14286 0.776786 0.685714
AACT 2 0 1 4 14.25 0.75 0.57
GIG25 2 0 1 4 14.25 0.75 0.57
RTN3 2.142857 0 1 2 20 0.714286 0.869565
RGS4 2.25 0.071429 0.333333 3 8.333333 0.6875 0.470588
NPTX2 2.392857 0 0 1 16 0.651786 0
CRYM 3.214286 0 0 1 3 0.446429 0

2Average shortest path length: the minimum distance anticipated between two interacting nodes

®Betweenness centrality: network analysis parameter which indicates the degree of influence of a specific node over other node’s interactions

“Clustering coefficient: the number of nodal triads that pass through a single node in comparison with maximum number of nodal triads that a

node could possess

9Node degree: the number of interactions exhibited by a specific node with other nodes (represented in Cytoscape)

“Neighborhood connectivity: the average connectivity of a particular node with all its neighboring nodes

fRadiality: shortest distance between interacting nodes

£Topological coefficient: calculated for those nodes showcasing multiple nodal interactions. It represents the extent of a specific node to share its

neighbor with other nodes

such as PI3K, RAS, CDKS, RAC1 GTPase, Src homology 2
domain-containing 1 (SHC1), FYN kinase, fibroblast growth
factor receptor substrate 2 (FRS2), T-lymphoma invasion and
metastasis-inducing protein 1 (TIAM1) and phospholipase C
gamma 1 (PLCG1). These were in turn found to be involved
in triggering secondary signaling pathways through GRIN2B,
which is associated with cocaine addiction, cognitive central
hypoventilation syndrome and eating disorders. A number
of research studies have reported downregulation of BDNF
expression, which is in line with our findings (Kang et al.
2020; Akhtar et al. 2020).

The PPI analysis of SST revealed its interaction with
primary AD targets including IDE, MME, IGF, APP, INS
and ACHE. Like BDNF, SST also exhibited a physiological
role in trans-synaptic signaling, cognitive function,
anterograde trans-synaptic signaling, receptor ligand activity,

cytokine receptor binding and receptor regulator activity.
KEGG pathway analysis revealed the association of SST with
MECP2 and c-AMP responsive element-binding protein 1
(CREBI). It is reported that MECP2 together with CREB 1
enhances the expression of SST by binding to the promoter
region (Chahrour et al. 2008). There are five subtypes of SST
receptors, of which three receptors, i.e., SSTR2, SSTR4 and
SSTRS, were observed to display marked downregulation
and reduced sensitivity in AD. This interferes with their
inhibitory control over the adenylyl cyclase (AC) pathway.
Decreased SSTR2 results in decreased activity of neprilysin,
an enzyme involved in the degradation of AP peptides
(Burgos-Ramos et al. 2008; Aguado-Llera et al. 2018;
Sandoval et al. 2019). In addition, postmortem AD brains
with decreased levels of SST receptors were correlated
with a higher degree of amnesia and cognitive dysfunction
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its interaction with APP, APOE and APOA1. Functional
enrichment analysis revealed its role in digestion and exocy-
tosis. In AD, it was reported to be colocalized with amyloid
plaques. The hydrophobic domain at the C-terminal of this
enzyme interacts and forms a complex with amyloid fibrils.
These complexes are known to upregulate SERPINA3,
resulting in disruption of cognitive function (Abraham and
Potter 1989; Eriksson et al. 1995). Apart from interacting
with A fibrils, it is also known to promote tau phosphoryla-
tion at Ser202, Thr231, Ser396 and Thr404 by augmenting
extracellular signal-related kinase (ERK), glycogen synthase
kinase-3 (GSK-38) and c-Jun N-terminal kinase (JNK), lead-
ing to inflammatory responses promoting neuronal death and
degeneration (Tyagi et al. 2013; Padmanabhan et al. 2006).

RTN3, a transmembrane endoplasmic reticulum (ER)
protein, belongs to a family of reticulons. Reticulons con-
sist of four mammalian paralogs, i.e., RTN1, RTN2, RTN3
and RTN4, of which RTN3 and RTN4 are neuronal-specific.
The members of this reticulon family possess a conserved
QID triplet region, known as a reticulon homology domain
(RHD) in their C-terminal region. This RHD domain was
found to interact with the C-terminal domain of BACE1,
which is involved in the formation of A peptides (Kume
et al. 2009; He et al. 2006, 2007). The BACE1-RTN3 com-
plex is reported to halt the axonal transport and enzymatic
activity of BACE1 on APP, thereby terminating the amy-
loidogenic pathway. It was also reported that BACE1 was
found to specifically interact with monomeric RTN3 rather
than dimeric forms (Sharoar and Yan 2017; He et al. 2006).
The formation of RTN3 aggregates was found to be regu-
lated by B-cell receptor-associated protein 31 (BAP31), an
integral ER membrane protein. Silencing of this gene leads
to formation of RTN3 aggregates, thereby reducing the inter-
action with BACE1 which promotes A formation (He et al.
2004; Wang et al. 2019). Our functional enrichment analysis
revealed the interactions of RTN3 with synaptic proteins
and gene expression analysis demonstrated downregulation
of this gene.

RGS4, a member of the RGS family, modulates G protein
signaling activity by inhibiting AC and phospholipase C
(PLC) activity. RGS4 inhibits G protein-coupled receptor
(GPCR)-mediated APP cleavage, while downregulation of
RGS4 enhances APP cleavage (Emilsson 2005). Functional
enrichment analysis revealed that RGS4 was involved in various
regulatory functions including modulation of chemical synaptic
transmission, regulation of trans-synaptic signaling, nervous
processes, striated muscle cell differentiation and regulation of
cell growth. KEGG analysis revealed that active G alpha (i),
(q) and (z) are binding partners of RGS4. Our gene expression
analysis revealed downregulation of RGS4 in AD cases.

In summary, from the analysis, BDNF, SST,
SERPINA3, RTN3 and RGS4 were found to be crucially
involved in AD pathogenesis. BDNF and SST trigger

@ Springer

various signaling mechanisms including PKA, PI3K and
AKT, which in turn inhibit GSK3p and BAD activ-
ity. This process results in the inhibition of apoptosis
and promotion of neuronal growth. On the other hand,
downregulation of BDNF and SST enables AP fibrils
to inhibit the aforementioned signaling mechanisms,
thereby resulting in enhanced apoptosis and neuronal cell
death. RTN3 interacts with BACEI directly and impedes
its access to APP cleavage, thereby promoting the non-
amyloidogenic pathway. RGS4 acts in similar fashion
as SST by hindering GTP hydrolysis (Fig. 8). The pres-
ence of Ap fibrils leads to AD progression; however, the
aforesaid targets are believed to have substantial poten-
tial to counteract Ap toxicity.

Blue arrows represent signaling mechanisms in the
absence of AP fibrils, and red arrows represent signaling
responses in the presence of Af fibrils. BDNF: brain-
derived neurotrophic factor, TRKp: tyrosine kinase 3, SST:
somatostatin, SSTR: somatostatin receptor, APP: amyloid
precursor protein, AC: adenylyl cyclase, BACE1: beta-
secretase 1, ER: endoplasmic reticulum, RTN3: reticulon 3,
GTP: guanosine triphosphate, GDP: guanosine diphosphate,
RGS4: regulator of G protein signaling 4, cAMP: cyclic
adenosine monophosphate, CDKS5: cyclin-dependent kinase
5, TTAM1: T-lymphoma invasion and metastasis-inducing
protein 1, FYN: Fyn kinase, IRS: insulin receptor substrate,
AQ11SHC: src homology and collagen, DOCK3: dedicator
of cytokinesis 3, GRIN2B: glutamate ionotropic receptor
NMDA type subunit 2B, RAC1: Rac family small GTPase
1, PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase,
AKT: AKT serine/threonine kinase, GSK3f: glycogen
synthase kinase 3, BAD:BCL2-associated agonist of cell
death, GRB2: growth factor receptor bound-protein 2, RAS:
KRAS proto-oncogene, GTPase, MEK: mitogen-activated
protein kinase, ERK: extracellular signal-regulated kinase,
CREB: cAMP responsive element binding protein 1, PHF:
paired helical filaments, EPAC: Rap guanosine nucleotide
exchange factor 3, RAP1: member of Ras oncogene family,
PKA: protein kinase A, BCL2: BCL2 apoptosis regulator.

Conclusion

Systematic analysis of the metadata by considering all
AD-related genetic datasets with a developed set of filter-
ing criteria improved the precision of results. Through this
analysis, SLC5A3, BDNF, SST, SERPINA3, RTN3, RGS4,
NPTX, ENCI and CRYM were identified as potential genes
involved in AD pathogenesis. Among the identified genes,
BDNF, SST, SERPINA3, RTN3 and RGS4 exhibited signifi-
cant interactions with LDGs, and thus they were considered
to play a major role in AD progression.
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