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Background: Toluene diisocyanate (TDI) is a highly reactive chemical that causes sensitization and has
also been associated with increased lung cancer. A risk assessment was conducted based on occupational
epidemiologic estimates for several health outcomes.
Methods: Exposure and outcome details were extracted from published studies and a NIOSH Health
Hazard Evaluation for new onset asthma, pulmonary function measurements, symptom prevalence, and
mortality from lung cancer and respiratory disease. Summary exposureeresponse estimates were
calculated taking into account relative precision and possible survivor selection effects. Attributable
incidence of sensitization was estimated as were annual proportional losses of pulmonary function.
Excess lifetime risks and benchmark doses were calculated.
Results: Respiratory outcomes exhibited strong survivor bias. Asthma/sensitization exposure response
decreased with increasing facility-average TDI air concentration as did TDI-associated pulmonary
impairment. In a mortality cohort where mean employment duration was less than 1 year, survivor bias
pre-empted estimation of lung cancer and respiratory disease exposure response.
Conclusion: Controlling for survivor bias and assuming a linear doseeresponse with facility-average TDI
concentrations, excess lifetime risks exceeding one per thousand occurred at about 2 ppt TDI for
sensitization and respiratory impairment. Under alternate assumptions regarding stationary and cu-
mulative effects, one per thousand excess risks were estimated at TDI concentrations of 10 e 30 ppt. The
unexplained reported excess mortality from lung cancer and other lung diseases, if attributable to TDI or
associated emissions, could represent a lifetime risk comparable to that of sensitization.
� 2020 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Toluene diisocyanate (TDI) is a high-volume chemical used in
themanufacture of polyurethane (PU). It appears as mixtures of the
2,4- and 2,6- isomers. In industrial environments it induces a TDI-
specific adult-onset asthma, diminishing pulmonary function, and
respiratory symptoms [1e9]. Three studies show an excess of lung
cancer in women workers exposed to TDI or associated in-
termediates and degradation products [10e12] (below 1.5 ppb
time-weighted average TDI in one plant [12]). A challenge in
describing TDI adverse effects arises from the apparent selection of
sensitized workers out of TDI exposure as the adverse effects
appear, and possibly declining susceptibility. This healthy worker
survivor effect (HWSE) for asthma has been reviewed in detail [13].
In this TDI risk assessment based on a thorough search of the
al Institute for Occupational Safety

afety and Health Research Institute
c-nd/4.0/).
published literature (SOM 6), exposureeresponses were estimated
under conditions corresponding to minimal survivor selection.
2. Materials and methods

2.1. Environmental toluene diisocyanate measurement

Early determinations of airborne TDI concentrations used the
Marcali impinger/colorimetric method. A paper tape method
(“MCM”) for continuous real-time recording used in several studies
was inaccurate at low TDI concentrations [14e18]; a review
concluded that there is a positive bias by a factor of 1.5 e 2.0 in
measurements below <e 10 ppb [16,17] (see SOM 1; Figs. S1-S6,
Table S1). Other methods involved derivatization and high-per-
formance liquid chromatography. The exposure assessments for
and Health (NIOSH), 1090 Tusculum Ave, MS C-15, Cincinnati, OH, 45226-1998, USA.
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Table 1
Pulmonary function: calculation for of excess annual proportional loss per ppb toluene diisocyanate (TDI) (EAPLX): for FEV1

Study design EAPLX (FEV1)

1 Cross-sectional group comparison of % predicted value (%FEV1(0) � (%FEV1(TDI))/cumTDI

2 Cross-sectional group comparison of adjusted-value, L (FEV1(0) � FEV1(TDI))/(cumTDI � FEV1(0))

3 Cross-sectional regression of % predicted value on cumTDI beta(TDI)

4 Cross-sectional regression of adjusted-value, L, on cumTDI beta(TDI)/FEV1(0)

5 Average annual loss % %AAL/meanTDI

6 Average annual loss, L AAL/(meanTDI � FEV1(0))

where, FEV1(0) e in unexposed (if regression: intercept), if FEV1(0) not reported, stipulate ¼ 3.8 L FEV1(TDI) e in TDI-exposed cumTDI e cumulative TDI exposure meanTDI e
average TDI exposure beta(TDI) e regression coefficient for cumTDI term AAL e average annual loss (age-adjusted).
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this risk assessment were limited: often a simple facility average
concentration possibly within time periods. Concentrations in 24
asthma study populations (1968e2001) ranged 0.2, to 112 ppb TDI
(median: 10 ppb) (SOM 2, Table S2) and in 18 pulmonary function
studies (1982e2003) ranged 0.1 to 5.7 ppb TDI (median: 2.5 ppb)
(SOM 3, Table S3). In a TDI mortality study [12] job exposure esti-
mates ranged 1 to 13.5 ppb in one plant, 0.4 to 6.8 ppb in a second
plant, and 0.1 to 2.3 ppb in a third. Facility-averages represent a)
periodic process events (e.g., opening molds, unloading ovens,
accessing curing areas, cleaning lines, nozzles, etc.), b) continuous
emissions (partially cured product, spraying and leaks), and c)
episodic excursions due to breakdowns (e.g., seal failures, spills,
etc.).

2.2. Toluene diisocyanateeinduced adult-onset asthma or
sensitization

Research on TDI-sensitizationmechanisms [19] has implications
for assumptions made in epidemiological analyses regarding
thresholds and linearity of exposure response. Studies have inves-
tigated regulatory T-cells in the draining lymph nodes in response
to dermal exposure [20] and tissue localization of TDI-haptenized
proteins accessible to dendritic cells [21]. Expression of micro
messenger RNA and transcription factors has been observed 1 hour
after dermal TDI exposure [22]. A role for inhalation following
dermal exposure has been observed in rats [23]. Manifestations of
sensitization form a continuum in animal studies. In inbred guinea
pigs, respiratory hypersensitivity, and anti-TDI-GSA titer responses
to challenge vary widely [24,25], as does local lymph node stimu-
lation [26] or, in rats, cytokine (interleukin-4) response [27].
However, one important assessment criterion (exceeding a mini-
mum wheal diameter) is dichotomous even though dose-
dependent. Of necessity, the clinical diagnosis of occupational
asthma is also a binary decision based on continuous response
measures such as challenge or pulmonary function as well as
exposure experience. Complicating matters, chronically exposed
workers can tolerate symptoms for years: in a large survey of 780
flexible foammanufacturing workers over 5 years, 17 of 24 incident
cases of TDI-sensitization remained in their jobs [28].

Sensitization after brief exposure is often observed. In a Velcro
tape manufacturing plant with relatively high TDI concentrations
(>25 ppb) and less than 2 years of operation, 14 of 34 were diag-
nosed with TDI-related asthma [29]. In a new facility producing PU
foam with relatively low TDI exposures (maximum concentrations
of 10 ppb), when evaluated at 6 months, 7 of 49 workers had new
asthma symptoms, airway obstruction, or TDI-specific IgG levels
[30]. In contrast, Adams identified new sensitization annually
following TDI workers over 9 years [31].

In animal studies, sensitizing exposures are typically adminis-
tered over one or several days and immunologic responses evalu-
ated within 3 to 30 days of exposure [1,26,32e35]. In contrast,
workplace TDI exposures extend for long periods punctuated with
occasional peak levels and dermal contact. Effects can accumulate
over time. In one human study, 5-min dermal sensitizer exposures
over 6 days produced the same response as a single 30-min
exposure [36]. Other studies suggest slow clearance from the
dermal compartment [23,35] for which an extrapolation factor of
10 was proposed for cumulative effects [35].

Here asthma onset, pulmonary function changes, and symptoms
are viewed as simultaneous sensitization and elicitation in a
possibly steady-state process. Although the mechanistic literature
commonly presumes a threshold in animal studies, it has not been
clearly demonstrated in occupational populations, particularlywith
respect to facility-average TDI air concentrations. Contribution of
both dermal and inhalation exposures would further disperse the
sensitization response.

The following assumptions are made for health outcomes
related to TDI-sensitization:

1. The immune responses and other effects reflect degrees of
sensitization.

2. Exposure-induced immunological changes occur after brief
delays (<than 1 month).

3. Effects of chronic low level exposures may accumulate over
weeks or months.

4. Effects of exposures (as vapor, aerosol or dermal contact) in a
given process environment can be roughly predicted by facility
average air concentrations.

5. There is a linear exposure-response for asthma/sensitization
incidence and TDI concentration considerably below 5 ppb
(without linearity, different studies could not be meta-
summarized based on facility average environmental
assessments).

6. There was minimal impact of MDI in mixed TDI/MDI exposures
in the studies used.

From 17 studies published between 1968 and 2001, 24 worker
populations provided estimates of incidence [28,29,31,37e52]
(SOM 2, Table S2). These studies reported sufficient steps taken to
identify TDI-sensitization using such criteria as: symptom onset
with exposure, pulmonary function assessment, TDI challenge, and
evaluation by occupational physician. For two studies missing in-
formation for duration of observation a plausible value of 5 years
was stipulated. Of the 24 populations analyzed, 14 were in TDI
manufacturing; 8 produced products using PU foam, or adhesives
or varnishes; 2 manufactured bulk PU foam. The mean number of
new onset asthma/sensitization cases was 13.8, mean population
size was 182, and mean TDI air concentration was 20.6 ppm,
ranging from 0.23 to 112 ppm. The mean annual incidence rate was
0.047 (SOM 2, Table S2).

Underestimation of incidence would result if cases were leaving
the workplace without being ascertained, or prior to the observa-
tion period (left-truncation bias [53]). An estimate of (linear)
exposure response (XR) was calculated as the observed incidence



Fig. 1. Asthma incidence rate (IR) on average prevailing toluene diisocyanate (TDI).
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rate of attributable asthma or sensitization divided by facility
average TDI exposure. Correction for survivor bias arising from
removal of symptomatic workers or declining susceptibility was
sought using an iteratively weighted non-linear regression model
of XR on facility-average TDI concentration, modeled as a simple
exponential decline [54] (SAS: proc nlin; SOM 2). The weights were
the inverse variance of the predicted incidence rates. From this
analysis, the intercept was interpreted as the XR with the least
survivor bias. Excess lifetime risk was calculated using the BEIR VII
lifetable procedure [55], applying the estimated XR for asthma/
sensitization incidence, assuming 45-year exposures (age 20 to 65)
and lifetime through age 85.
2.3. Toluene diisocyanateeassociated pulmonary function changes

Assessments of pulmonary function in 18 populations permitted
calculating a common measure of decline (SOM 3, Table S3)
[28,40,43,56e61]. Six different measurement approaches had been
used for FEV1 (Table 1) and/or FVC. Each outcome was expressed as
the excess annual proportional loss per ppb TDI current exposure
(EAPLX; Table 1; SOM 3). Most PFT studies did not report FEV1/FVC
results. In some cases, baseline FEV1 or FVC values, needed to
calculate proportional loss, were not reported and so were stipu-
lated based on typical worker population values (FEV1 ¼ 3.8 L,
FVC ¼ 4.3 L). Diem et al. [62] were excluded because only dichot-
omized exposure levels were used and the studies of Musk et al.
[63,64] were incompatible with the EAPLX estimation. The small
group included from Clark et al. [57] followed for 17 years over-
lapped with the much larger group (n ¼ 780) from Clark et al. [28]
followed for 5 years.

When EAPLX was observed to systematically decline with
facility-average TDI exposure, a non-iterative weighted non-linear
regression was performed (weights: inverse variance of the re-
ported annual proportional loss, using confidence intervals, p-
values or standard errors) and the intercept interpreted as the XR.
Impairment was defined as falling below the lower limit of normal
(LLN), defined for healthy non-smoking individuals in NHANES III
[65]. Using XR the additional proportion falling below the LLN in
NHANES III over a 45-year working life at fixed TDI concentrations
was calculated [66] (SOM 3). This benchmark dose procedure as-
sumes a) the effect on pulmonary function is cumulative, b) a cu-
mulative exposure dose results in the same loss whether it
occurred over 1 year or 5 years, and c) the distribution of percent of
predicted FEV1 in the NHANES III population remains the same
with increasing age. Declining pulmonary function is a risk factor
for mortality independent of age, gender, race, smoking, and body-
mass index (BMI) [67e71]. Three studies provide statistically sig-
nificant estimates of rate ratios relating all-cause mortality to FEV1
loss (1.010,1.016,1.015) [resp., 67, 69, 70]. For this risk assessment, a
mortality rate ratio of 1.015 per percent loss in FEV1 was applied in
a life-table calculation (SOM 3).
2.4. Toluene diisocyanateeattributable mortality from lung cancer
and non-malignant respiratory disease

Pinkerton et al. analyzed mortality in a NIOSH TDI cohort
updated through 2011, which was available for this work; their
analyses revealed statistically significant excesses for lung cancer
and non-malignant respiratory diseases (NMRDs) compared with
the general population, especially for women, but no significant
positive associations with duration of, or cumulative, exposure to
TDI [12]. A significant trend was observed for female breast cancer
mortality on TDI cumulative exposure (p ¼ 0.02) and TDI duration
(p ¼ 0.017) [12]. Because a strong HWSE was observed for asthma
incidence in other studies, and in view of high workforce turnover
in the NIOSH TDI cohort (median employment < 1.0 year) the
employment termination rate in that cohort was modelled in
relation to TDI exposure. Two other TDI studies found elevated
mortality for NMRD, especially for women [11,12], compared with
that typically observed in industrial populations [72]. Using the



Fig. 2. Asthma exposure response (XR), as incidence rate per ppb toluene diisocyanate (TDI), on average prevailing TDI exposure (�) (per 1000 person-years; excluding two
outliers).
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NIOSH TDI cohort data, applying US mortality rates [73] in Poisson
regression analysis, the overall NMRD SMR was calculated.
Assuming a) excess NMRD deaths were attributable to TDI-related
exposures and b) a predicted NMRD SMR of about 0.75 for unex-
posed industrial workers [72] to account for the healthy worker
effect (HWE), an approximate excess relative rate (ERR) was calcu-
lated: ERR ¼ SMR/0.75e1. NMRD mortality was also investigated
with models incorporating individual time-dependent employ-
ment duration and cumulative exposures attempting to correct
HWSE bias.

Three TDI mortality studies observed statistically significant
elevated lung cancer in women PU foam workers [10e12]. In the
NIOSH Pinkerton mortality study smoking history was unavailable
for an analysis stratified on smoking [12]; however, other smoking-
related causes of death in women (oral, bladder, and pancreas
cancer; leukemia) exhibited an SMR deficit (SMR ¼ 5/10.5 ¼ 0.48).
Therefore, it is appropriate to assume that smoking prevalence
among women in that study was not higher than in the national
reference population. In the Sorahan study [11], women in finishing
jobs were assumed to have minimal airborne TDI exposure and
quantitative exposure was not available for the Mikoczy study [10].
Using NIOSH TDI cohort data [12], assuming the predicted lung
cancer SMR would be about 0.93 for unexposed workers [72], the
ERR was calculated: ERR ¼ SMR/0.93e1. As with NMRD Poisson
regression models were used to investigate lung cancer mortality
correcting for HWSE.

2.5. Toluene diisocyanateeassociated symptoms

Respiratory symptoms were reported in 15 studies in TDI
exposed workers and, in most cases, in unexposed groups
[28,37,39,42,45,46,49,56e58,74e78]. Sixty estimates of excess
symptom prevalence were extracted (SOM 5, Table S7). There were
likely non-TDI exposures that could also cause symptoms (latex,
fabrics, plasticizers); it was assumed that half of the symptoms
reported by non-TDI exposed workers werework-related, the other
half representing background rates. In the few studies without
comparison groups, investigators reported symptoms judged to be
TDI related. Excess symptom prevalence per ppb of TDI was
calculated as an XR. A non-linear regression model was fit to obtain
the intercept representing the least selected population risk. In-
verse variance weights were calculated based on binomial vari-
ances for proportions derived from one (exposed) or two (exposed
and controls) groups (SOM 5). Because excess prevalence, at low
TDI concentrations, was a good approximation of the odds of
attributable symptoms, the excess prevalence at higher exposures
was obtained by linearly extrapolating the odds to higher expo-
sures and then evaluating prevalence as odds/(1þodds).

3. Results

3.1. Toluene diisocyanateeinduced adult onset asthma

The asthma incidence rate (per person-yr) showed little asso-
ciation with average TDI concentration across study populations
(Fig. 1) and the XR ranged from 0.2 10�3 to 23 10�3 per year per ppb
TDI (SOM 2, Table S2). When XR was plotted against average
exposure, considerable structure emerged (Fig. 2). Two outlying
points were: 1) a plant with low levels (0.23 ppb) and a stable
workforce [49] and 2) a study in which the observation time was
recent (prior 9 mo.) with rigorous follow-up of workers [29]. This
downward trend of XR with TDI level indicates survivor bias that
could arise, e.g., because: a) workers sensitized at higher exposures
leaving employment more rapidly and before ascertainment, or b)
declining susceptibility. In the regression model to minimize sur-
vivor bias the two outliers (XR > 17 10�3 per ppb-yr TDI) were
excluded (Fig. 2; SOM 2) resulting in amodel intercept of 7.0 10�3 or
0.7% per ppb-yr TDI. For TDI levels of 1, 5 or 10 ppb, the model



Table 2
Excess lifetime risk of new onset asthma per thousand with 45 years of toluene
diisocyanate (TDI) exposure or with incidence limited to the first 9 or 4.5 years, as
predicted from constant non-cumulative current exposures

TDI conc. (ppb) Excess lifetime risk of asthma onset (per 1000)

45 years 9 years 4.5 years

1 260 54 28

0.5 140 28 14

0.2 59 11 5.6

0.1 30 5.6 2.8

0.05 15 2.8 1.4

0.02 6.0 1.1 0.56

0.01 3.0 0.56 0.28

0.005 1.5 0.28 0.14

1 ppb ¼ 7.4 mg/m3 TDI.

Table 3
Excess prevalence per thousand of impaired pulmonary function (FEV1 and
FVC) over 45-year working lifetime at constant toluene diisocyanate (TDI) exposure
and all-cause mortality associated with FEV1 changes, for effective exposure dura-
tions of 45, 9, and 4.5 years

Excess prevalence below
lower limit of normal (per

1000)

Excess lifetime risk of
mortality associated with
reduced FEV1 (per 1000)

TDI conc. (ppb) 45 years 9 years 4.5 years 45 years 9 years 4.5 years

0.5 d 87 34 273 76 39

0.2 249 26 12 124 31 16

0.1 87 12 6.1 65 16 7.9

0.05 34 6.1 2.9 33 7.9 4.0

0.02 12 2.5 1.2 13 3.2 1.6

0.01 6.1 1.2 0.44 6.8 1.6 0.80

0.005 2.9 0.44 0.18 3.4 0.80 0.40

Impairment estimates based on common exposure response estimates for FEV1 and
FVC.
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predicts XR: 5.9, 2.8 and 1.110�3 per ppb-yr, respectively. Applying
the estimated XR in a life-table calculation (assuming constant
susceptibility) yielded estimates of excess lifetime risk (Table 2): at
1 ppb the proportion becoming sensitized after 45 years is 260 per
1000 or 26%. One per thousand excess risk is estimated to occur
over a working lifetime at about 0.003 ppb or 3 ppt.
3.2. Toluene diisocyanateeassociated pulmonary function changes

The range of values for EAPLX was 0.00033 to 0.038, that is,
0.03% to 3.8% loss per year per ppb TDI, over a range of 0.1 to
5.7 ppb TDI (SOM 3, Table S3). These measures of PFT-TDI XR
also showed a diminishing pattern in relation to TDI concen-
trations (Fig. 3). A fixed effect, non-linear weighted regression
fit produced an estimate of XR at low exposures (from inter-
cept) of: 0.0077, or 0.8% per ppb; at 1 ppb the estimated XR
was 0.53% (see SOM 3). A random mixed-effect model
Fig. 3. Pulmonary function exposure response (XR, excess annual proportional loss per ppb
random-effect models.
addressing interstudy variability, produced a larger, more sta-
tistically significant estimate of the XR intercept: 0.0155, or
1.55% per ppb; at 1 ppb the estimated XR was 0.8% (see SOM
3). The TDI exposure over 45 years estimated of give 1/1000
excess impairment (by benchmark dose procedure) was
0.0017 ppb (0.005/2.9, Table 3). For increased mortality
resulting from impaired pulmonary function, the estimated
exposure conferring 1/1000 excess lifetime mortality risk was
0.0015 ppb TDI (Table 3).
3.3. Toluene diisocyanateeattributable employment termination,
non-malignant respiratory disease, and lung cancer mortality

In the Pinkerton mortality cohort (three plants with exposure
history) [12], there was a high termination rate in the first 3months
toluene diisocyanate [TDI]) on facility average TDI concentration (per ppb): fixed- and



Table 4
Standardized mortality ratios (SMRs), excess rate ratios (ERRs), and exposure
response (XR) for NMRD and lung cancer in three polyurethane foam plants, making
assumptions of linearity of response and attributability exclusively to toluene dii-
socyanate/polyurethane production, using mean. lagged cumulative exposure over
all observation time

SMR
(RR)

95% CI ERR Mean cumulative toluene diisocyanate
exposure (ppb-yr)

Non-malignant respiratory disease (NMRD)

All 1.46 1.18, 1.82 0.95 4.20

Men 1.39 1.05, 1.84 0.85 4.21

Women 1.59 1.13, 2.23 1.12 4.19

Lung cancer

All 1.57 1.29, 1.88 0.68 2.63

Men 1.27 0.99, 1.62 0.37 2.87

Women 2.25 1.70, 2.97 1.42 2.31

Women in
finishing

2.48 1.85, 3.32 1.66 2.32

SMR by Poisson regression (SAS proc nlin); model: cases ¼ exp(a0) � expt;
SMR ¼ cases/expt.
expt ¼ expected deaths from US specific rates; separate models by sex.
For NMRD: ERR ¼ SMR/0.75e1; for lung cancer: ERR ¼ SMR/0.93e1.
Personetime-weighted mean cumulative exposure from original exposure matrix
over observation time of model; 10-year lag for lung cancer, 90-day lag for NMRD.
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of follow-up, at an annual rate of 58%, which by 10 years of
employment declined to 3% per year (SOM 4, Table S4). Statistical
models revealed this negative association with duration and a
positive association with 10-year lagged cumulative TDI exposure
that was higher in finishing jobs (termination rate ratio: 27.8, 95%
CI: 21.2e34.5, per mg/m3-yr) than in other jobs (10.9, 95%CI: 7.2e
14.6) (average finishing cumulative exposure across observation
time after 10 years was 0.016 mg/m3; SOM 4, Table S5). The TDI
dependence was higher in women especially black women who, at
low TDI concentrations, had the lowest termination rate (SOM 4,
Figs S7-S10).
Fig. 4. Attributable symptom prevalence exposure response in relation
The overall NMRD SMRs calculated here for the Pinkerton
cohort [12] (using different methods) for all workers, men, and
women in the three plants with exposure history were 1.46 (95%
CI ¼ 1.18, 1.82), 1.39 (95%CI ¼ 1.05, 1.84), and 1.59 (95%CI ¼ 1.13,
2.23), respectively (Table 4), and very close to those reported [12].
The ERRs, adjusted for HWE, were 0.85 and 1.12, for men and
women, respectively (Table 4). Models of NMRD mortality using
individual time-dependent cumulative TDI exposures exhibited
negative non-significant associations with employment duration
and TDI exposure and elevated intercepts (corresponding to
SMR ¼ 2.05, data not shown). For lung cancer, the SMRs were 1.57
(95%CI ¼ 1.29, 1.88), 1.27 (95%CI ¼ 0.99, 1.62), and 2.25 (95%
CI ¼ 1.70, 2.97), respectively, for all workers, men, and women
(Table 4). The ERRs were 0.37 and 1.42, respectively, for men and
women, corresponding to person-time-weighted average cumula-
tive exposures of 2.87 and 2.31 ppb-yr. For women in finishing jobs
the SMR (2.48, 95%CI ¼ 1.85, 3.32) and ERR (1.67) were larger
(Table 4). Models of lung cancer mortality with TDI cumulative
exposures showed non-significant negative associations, consistent
with a strong HWSE in the mortality analyses as observed with
employment duration.

3.4. Toluene diisocyanateeassociated symptoms

Excess symptom prevalence varied from 0.01 to 0.96 over an
exposure range of 0.23 to 160 ppb TDI (SOM 5, Table S7, Fig. S11)
with no increase above 5 ppb. The decline in the XR (excess prev-
alence per ppb TDI) with increasing exposure (Fig. 4) (a direct
consequence of the boundedness of prevalence) also reflects a se-
lection/survivor effect. Comparing the observed excess prevalence
with that predicted based on linear extrapolation of the excess odds
suggests the magnitude of the survivor effect (SOM 5, Fig. S11). The
intercept of the non-linear regression model of XR corresponded to
an excess symptom prevalence per ppb of 1.02 at very low expo-
sures (Fig. 4); at 1 ppb the predicted excess prevalence per ppbwas
to facility average toluene diisocyanate concentration (per ppb).



Table 5
Predicted prevalence, per thousand, of an attributable symptom in relation to cur-
rent exposure correcting for survivor bias

Excess prevalence (per 1000)

Toluene
diisocyanate
conc. (ppb)

All Shortness
of breath

Cough Wheeze All but irritation,
chronic bronchitis

Irritation*

1.0 504 459 514 468 473 452

0.5 337 298 346 305 309 292

0.2 169 145 175 150 152 141

0.1 92 78 96 81 82 76

0.05 48 41 50 42 43 40

0.02 20 17 21 17 18 16

0.01 10 8.4 11 8.7 8.9 8.2

0.005 5.1 4.2 5.3 4.4 4.5 4.1

Estimated excess prevalence at lowMWF concentrations was estimate of odds from
which excess prevalence at higher exposures was obtained as odds/(1þodds) by
linear extrapolation of odds.

* Reported as: any irritation, throat irritation, eye irritation, rhinitis, runny nose,
stuffed nose, or dermal irritation.

Table 7
Toluene diisocyanate (TDI) exposure (ppt) conferring excess lifetime risk (asthma) or
excess prevalence. (PFT) of one per thousand, with 45 years TDI exposure or with
effects limited to the first 9 or 4.5 years of exposure

End-point Asthma PFT

TDI concentration with 45 years exposure, ppt 3 1.5

TDI concentration with 9 years exposure, ppt 18 6.3

TDI concentration with 4.5 years exposure, ppt 32 12
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0.13 (SOM 5). Linear extrapolation (as odds) of the XR estimate
(1.02) yielded an excess average risk of a respiratory symptom of
about 20 per 1000, or 2%, at 0.02 ppb TDI which was similar in the
individual symptom classes (Table 5). To the extent different
symptoms are statistically independent, the risk of symptoms
would be greater than 2%.
3.5. Summary risk assessment

The excess risk estimates across the various outcomes varied
within a factor of 3 at 0.05 ppb TDI (Table 6). Excess lifetime risks of
one per thousand occurred at 0.003 or 0.0015 ppb TDI, respectively,
for asthma onset and respiratory impairment (Table 7). This risk
assessment did not use the supporting symptom analyses because
of unknown severities and subjective and unstandardized assess-
ments. Mortality related to declining FEV1 was not included
because it represents an upper bound of risk to which other con-
ditions may have contributed. Limitations in the different estimates
could have resulted from extrapolation to a working lifetime of 45
years. With maximal or steady-state effects after only 9 or 4.5 years
1/1000 excess risks for asthma/sensitization would occur at
0.018 ppb (18 ppt) and 0.032 (32 ppt), respectively and, for respi-
ratory impairment, at 0.0063 ppb (6.3 ppt) and 0.012 (12 ppt),
respectively (Tables 2, 3, and 7).
Table 6
Excess lifetime risk (asthma, mortality) or excess prevalence
(pulmonary impairment, attributable symptoms), per thousand, with a 45-year
working life at fixed toluene diisocyanate (TDI) airborne concentration

Excess risk (per 1000)

TDI conc.
(ppb)

Asthma
onset*

PFT
impairment

Associated symptom
prevalence*

FEV1 e related
mortality

0.5 140 d 337 273

0.2 59 249 169 124

0.1 30 87 92 65

0.05 15 34 48 33

0.02 6.0 12 20 13

0.01 3.0 6.1 10 6.8

0.005 1.5 2.9 5.1 3.4

* In relation to current exposure.
4. Discussion

4.1. Findings

Therewas a striking reduction in the XRwith increasing facility-
average TDI exposure across studies, which appears to be a survival
phenomenon. Whether it results from changing intrinsic suscep-
tibility, diminishing ascertainment of cases or some other mecha-
nism such as immune tolerance or a countervailing reduction in
dermal exposure (improbable) cannot be determined with the
available data. A method was used to correct for survivor effects,
but these may have occurred even in populations with low average
exposures due to exposure variability within studies. Few studies
described or discussed the reasons for employment termination;
two studies performed careful case ascertainment over time
[29,31].

Prior employment in isocyanate-sensitizing environments could
have contributed what appeared to be new cases in some studies.
However, in studies where an employer or medical doctor assessed
respiratory cases one would assume that work prior to current
employment, an important diagnostic issue, would have been
queried but whether or not this was done was rarely and not sys-
tematically reported. The exposureeresponse for new sensitization
is generally understood to be weaker (responses at higher expo-
sures) than for elicitation of responses in sensitized individuals.
Previously sensitized workers would be expected to become
symptomatic rather quickly and at almost all levels of ambient TDI
concentrations. Although possible, it is unlikely that prior sensiti-
zation could account for much of the observed pattern of incidence,
PFT changes or symptoms.

In a recent study at three TDI production facilities (after the 2017
literature search), the annual incidence rate for asthma/sensitiza-
tionwas 0.9% [79] with mean TDI exposures of 0.65 ppb (1,594 full-
shift routine air samples) [80] for a XR of 0.9%/0.65 ¼ 1.4% per ppb-
year. The observations were based on medical surveillance over 6
years with relatively low turnover [81]. The 73% potentially selec-
tive participation by symptomatic workers would imply an XR as
low as of 1.4% � 0.73 ¼ 1.0% per ppb-year, similar to the XR esti-
mated here (0.7%).

For asthma and PFT impairment, considering maximal effects
attained by 9 or 4.5 years, the TDI exposures conferring 1/1000
excess lifetime risk or prevalence (6.3e32 ppt) are 100-fold below
typical TDI manufacturing activities at 4 ppb (4000 ppt) and above.
Excess lifetime risks of 1/100 correspond to estimated TDI expo-
sures of 0.063e0.32 ppb. Respiratory and other symptoms exhibi-
ted the same pattern of diminishing prevalence with increasing
average TDI exposure. In some studies, the symptoms reported
could have included those arising from irritant effects. The symp-
tom associations supported but were not basis for this risk
assessment. One study investigated the possible role in sensitiza-
tion of the concomitant high amine exposures in PU production
[37]. In that study, a visual “blue haze” was reported, a known
consequence of corneal edema from amine exposures, but this
complaint was not associated with the reported respiratory
symptoms.
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In manufacturing environments, TDI is often accompanied by
other isocyanate moieties arising as feedstock mixtures, in-
termediates, and volatile reaction products in polymerization or as
degradation products from high temperature applications (hot
knife-cutting, flame bonding, lamination, etc.). For TDI-associated
health effects, the available studies do not distinguish these expo-
sures. The role of dermal exposures remains unquantified. In a fa-
cility manufacturing PU blocks, in workers exposed to 0.8 ppb TDI,
Austin [83] observed higher levels of the biomarker urinary tol-
uenediamine (uTDA) in jobs handling partially cured foam versus
jobs with no physical contact (resp., 2.1, 0.11 mmol uTDA/mol
creatinine). In manufacturing final products such as auto parts,
women are over-represented in jobs handling recently cured PU
foam [12,46] such as gluing, sewing, and laminating. This is the
group where excess lung cancer was observed in three mortality
studies [10e12].

The unexplained excesses in lung cancer and NMRDmortality in
the Pinkerton cohort [12] are concerning, and any exposure
dependence appears to be affected by healthy worker survivor bias.
If a substantial part of the lung cancer excess were attributable to
TDI-related process emissions, the excess risk could be comparable
with or exceed that of asthma onset. At 18 ppt TDI, in the range of
concentration for 1/1000 risk of sensitization, and making impor-
tant assumptions such as the independence of employment dura-
tion and exposure intensity, the approximate excess lifetime risk
for lung cancer mortality in women is estimated to be on the order
of 50 per 1000 (See SOM 4). The concentrations of actual lung
carcinogens that could be associated with TDI (rather than TDI it-
self), and conferring 1/1000 risk could be much higher than 18 ppt.

If dermal exposure plays a major role in sensitization, the con-
tributions of TDI inhalation exposures to risk could be substantially
less that estimated here. The sequence of events in sensitization
may involve patterns of skin contact followed by brief elevated
airborne levels [23]. Mice were sensitized by application of 1% TDI
to the skin at Day 1 followed by intratracheal instillation of 0.2% TDI
at Day 6 [84]. Recently, Pollaris et al. [85] observed a pronounced
airway hyperactivity in mice following repeated intranasal expo-
sures only with prior dermal sensitization.With reduced or avoided
dermal sensitization, 1/1000 risk may be achievable with TDI air
levels considerably above those identified here.
4.2. Other risk assessments

Another quantitative risk assessment for TDI was performed by
Daniels [82] based on a subset of 8 employers identified in the same
literature search used here but with lower TDI air concentrations
(<5 ppb), whereas in the present analysis 14 of the 24 populations
had average TDI exposures ranging 5.9 to 112 ppb (mean: 33.8). In
the Daniels analysis, a pattern consistent with HWSE was not
observed and the TDI exposure estimate for 1/1000 lifetime risk
based on a linear model, was 17 ppt (or 0.17 ppb for 1/100 risk),
which was about midrange for the estimates produced here under
different assumptions regarding relevant exposure periods, ranging
3e32 ppt (Table 7).

In 2019, the European Chemicals Agency (ECHA) provided a
comprehensive review of isocyanate health effects [86], discussing
HWSE in some detail, and concluding that there is insufficient
human data to address the issues of thresholds or quantifying the
role of dermal exposures. ECHA compiled current global occupa-
tional exposure limits (OELs), which largely center on 5 ppb TDI
with some ranging 1e10 ppb. These OELs are more than a factor of
100 higher than those based on risk estimates of Daniels [82] or in
the present analysis.
4.3. Conclusions

The likely presence of some form of strong survivor effect in TDI-
exposed workers is problematic for XR estimation. This investiga-
tion demonstrates that examination of the dependence of XR es-
timates on average air concentrations of irritant or sensitizing
exposures offers some control of survivor bias and permits an
assessment of risk. In clinical and investigational settings the
importance of distinguishing irritant and early manifestations of
sensitization effects was affirmed. When possible, a clinical opinion
on whether sensitization-related health effects played a role in a
worker's leaving employment should be recorded (anonymously)
for assisting risk management. Lau and Tarlo have reviewed current
issues in the diagnosis and management of work-related sensiti-
zation [87]; they affirm the importance of primary prevention
given the complex exposure environments where sensitizers occur
and the likely under-ascertainment of new cases. The analyses of
exposure response and risk assessment in the present work sup-
port this view.
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