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ABSTRACT: Contact angle hysteresis is a common phenomenon in nature, which also
plays an important role in industrial applications. A numerical model based on the
moving mesh two-phase flow method is presented for modeling contact angle hysteresis.
The implementation includes a displacement-based penalty method and a state variable
method. The pinning, moving, and repinning of the contact lines can be simulated. This
method is robust considering both two-dimensional and three-dimensional geometries.
To further demonstrate the performance of this method, a fluid−solid interaction model
with a cylinder fluctuating on a water surface considering contact angle hysteresis is
demonstrated.

■ INTRODUCTION

The contact angle (CA) for a liquid droplet on a solid surface
is commonly used to characterize the wettability of the solid
surface.1 The classical Young’s equation provides a unique CA
when the three-phase system is in a static state with the lowest
global surface energy. However, solid surfaces can hardly be
perfectly homogeneous and smooth because most of them are
covered with natural defects, rough structures, or artificial
patterns, where the apparent contact angle is generally different
from the equilibrium CA.2−4 The CA when the interface is
moving forward (called the advancing CA) is larger than that
when moving backward (called the receding CA). The
difference between the advancing CA and the receding CA is
defined as contact angle hysteresis (CAH).1,4−6 CAH is one of
the most common phenomena in nature, which also plays an
important role in industrial applications such as immersion
lithography, fiber coatings, and inkjet printing.2 Recently, many
digital microfluidics7−9 take advantage of surface wetting
phenomena to achieve droplet manipulations and drug
delivery. Numerical simulation is a powerful tool to help
design these microfluidic devices. However, because of the
complexity of CAH modeling, the CAH is usually ignored in
these simulations for microfluidic designs.10 Thus, developing
numerical methods to model the CAH phenomenon is an
important topic in computational fluid dynamics (CFD).
The simulations of droplet motion require a two-phase flow

model, where the shape of the droplet interface is explicitly
presented. The finite volume method or finite element method
CFD solvers for these kinds of two-phase flow can be classified
into two types. The first type is field-based methods including
the volume of fluid (VOF) method,11 level-set method,12,13 or

phase-field method,14 which distinguishes the two-phase flow
using an additional field variable. The second type is the
moving mesh method,15 which uses the deforming mesh to
describe the shape of the interface. In some works,16−19 the
authors implement CAH using the first type of two-phase flow
model. Fang et al. carried out a transient model by correcting
boundary force balances through specifying the local CA and
instantaneously updating the local angle values based on the
variation of the volume fraction from previous time steps.16

Dupont et al. carried out the numerical method based on the
implementation of a “subgrid” description of the contact line
that consists in imposing the apparent angle for static and
moving contact lines.17 The model reported by Ahmed et al.
automatically locates the advancing and receding sections of
the contact line, which enables the application of different
contact angles at the advancing and receding fronts and
therefore takes into account CAH.18 In the model of He et al.,
a pair of pseudoline tensions in the receding and advancing
states, respectively, are utilized to represent contact line
interactions with the substrate.19

Here, we provide a method to implement CAH in a moving
mesh-based two-phase flow CFD solver. With the moving
mesh approach, the phase boundary is modeled as a
geometrical surface separating two domains, with one phase
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at each side in the corresponding domains. The shape of the
interface is more accurate compared to field-based methods.
Forces and fluxes can be directly applied on the phase
boundary. An advantage of the moving mesh method is that it
can model one single phase while the other phase can be
ignored. The drawback of the moving mesh model is that it
cannot deal with topology changes.15,20 This work is based on
a commercial CFD solver provided by COMSOL Multiphysics
(abbreviated as COMSOL). The “two-phase flow moving
mesh” interface in COMSOL only provides the condition of a
simple CA that follows the Young’s equation.21,22 This work
provides a method to implement CAH in COMSOL. The core
idea of this method is based on the penalty method.23,24 The
advancing and receding CA are the input parameters in the
simulations. The pinning, moving, and repinning of the contact
line can be simulated. This method is robust in simulations
considering both two-dimensional (2D) and three-dimensional
(3D) geometries. To further demonstrate the performance of
this method, we conduct a fluid−solid interaction (FSI)
simulation, where a cylinder is fluctuating on a water surface,
where the contact line exhibits CAH.

■ RESULTS AND DISCUSSION
Numerical Models and Methods. The main character-

istic of CAH is that the contact line is pinning at the initial
position when the apparent CA is less than the advancing CA
and larger than the receding CA. The contact lines begin to
move as the apparent CA reaches advancing CA (θa) or
receding CA (θr). The relation between the apparent CA and
the displacement of the contact line is plotted in Figure 1a. We
use a penalty method to describe the pinning characteristics.
First, we use a 2D geometry to demonstrate this method. As
shown in Figure 1b, a droplet is placed on a surface with a

channel at the bottom to inject or remove liquid to or from the
droplet. We define the input CA (θin) as a function of the
displacement (d) of the contact point, i.e.,

θ θ= + pdin 0 (1)

where θ0 is the initial CA and p is the penalty parameter being
positive. The displacement (d) is defined as

= − − ·d x x y y i( , )1 0 1 0 ms (2)

where ims is the unit surface binormal vector as shown in
Figure 1b, (x0, y0) is the initial position of the contact point,
and (x1, y1) is the current position of the contact point after
moving. When the contact point is advancing, the value of d is
positive and θin will become larger to prevent the contact point
from advancing any further. When the contact point is
receding, the value of d is negative and θin will become smaller
to prevent the contact point from receding any further. When p
is big enough, the value of d is very close to zero as the value of
CA changes from θa to θr. Thus, eq 1 makes the contact point
pinning at the initial position (x0, y0). Based on eq 1, we
construct an inequality relation to constrain the maximum and
minimum values of θin.
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Then, θin will not become larger than θa or smaller than θr. The
contact point will start to move as θin reaches θa or θr. We plot
eq 3 in Figure 1c with different values of p while the values of
θ0, θa, and θr are 90, 100, and 80°, respectively. When p is big

Figure 1. Numerical method demonstration in 2D. (a) CA versus contact line displacement of CAH. (b) Modeling scheme with the black curve
indicating the initial shape of the droplet and ims is the unit surface binormal vector. (c) Plots of eq 3 with different p values. (d) Velocity
distributions and shape deformations of the droplet. (e) Simulation results of contact point moving velocity andMv corresponding to panel (d). (f)
Simulation results of θ0 and θin corresponding to panel (d).
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enough, the curve is nearly the same as in Figure 1a. Thus, eq 3
can be used to simulate CAH.
Some refs 2, 17, 25 reported that the apparent CA varies

with the moving velocity of the contact point (vc). To include
this effect, an additional velocity-dependent function, f (vc),
can be added to describe this dynamic CA.
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The wetting behavior varies for different liquids and different
substrates. It depends on the experimental observations
whether the velocity-dependent CA requires to be considered
in the simulations. In this work, we only use eq 3, where the
velocity-dependent CA change is ignored.
When the CA reaches θa or θr, the contact point starts to

move. Then, when the contact point stops, it will be pinned
again in a new position. To describe the repinning process, the
coordinates of the position (x0, y0) need to be updated. To
simplify the formulas, we define a bool variable, Mv.
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Mv equals 1 when the contact point is moving and 0
otherwise. Then, the position (x0, y0) is defined as a state
variable
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When the contact point is pinning, the value of (x0, y0) keeps
unchanged. When the contact point is moving, the pinning
position is updated to be the current position. To avoid the
eruptive change of θin, θ0 also needs to be defined as a state
variable and is updated when Mv is 1.
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Using the above settings, we simulate such a process that the
water is first drained out of the droplet and then injected into
the droplet. The governing equations for the incompressible
fluid flow are

ρ ρ μ∂
∂

+ ·∇ = ∇·[− + ∇ + ∇ ]
t

p
u

u u I u u( ) ( ( ) )T
s (8)

ρ∇· =u 0 (9)

where u is the velocity, ρ is the density, ps is the pressure, μ is
the dynamic viscosity, and t is the time. The equation for the
droplet surface is

μ σ σ·[− + ∇ + ∇ ] = ∇· − ∇pn I u u n n( ( ) ) ( )T
ts t (10)

where σ is the surface tension and n is the surface normal
vector. The moving mesh provided by COMSOL will
automatically deform the mesh to adapt the shape of the
droplet. The numerical solver in COMSOL will apply a force
at the contact point to maintain the apparent CA of the droplet

Figure 2.Modeling of a sliding droplet: (a) Simulation results with the color presenting the velocity, (b) advancing CA and receding CA over time,
and (c) contact line profiles over time.
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to be the input CA. As for the example in Figure 1d, the initial
CA is 60°. The advancing and receding CA is 70 and 50°,
respectively. The initial distance between the two contact
points is 5 mm. The material of the droplet is water, with its
parameters taken from the built-in library in COMSOL. The
instructions for implementing eqs 1−7 in COMSOL are
provided in Figures S1−S3. The simulation results are shown
in Figure 1d and Movie S1. Figure 1e shows the time-
dependent plots of contact point moving velocity and the bool
variable, Mv. Figure 1f shows the time-dependent plots of θ0
and θin. The contact point goes through four processes,
namely, pinning, moving, repinning, and moving. In the first
process,Mv is 0 and θ0 keeps unchanged while θin decreases. In
the second process, Mv turns into 1 and θ0 turns into θr since
the contact point moves. In this process, the state variables θ0
and (x0, y0) are updated in every numerical time step. As θin
cannot be smaller than θr, the value of θ0 is always θr. The
value of (x0, y0) is the output value of (x1, y1) in the last time
step of the current process and is the input parameter for the
simulation in the next time step. If the output value of (x1, y1)
makes a negative value of d in the next time step, θ0 + pd will
be less than θr. Then,Mv is still 1. If the output value of (x1, y1)
makes a positive value of d in the next time step, θ0 + pd will be
larger than θr, which means that the moving direction of the
contact point is changed. Then, Mv is 0, and the state variable
stops updating. Thus, the contact point is pinning again, which
is described as the third process. In the fourth process, θ0 + pd
is larger than θa, and the contact point is moving again. Thus,
the CAH is successfully simulated.

3D CAH Simulations. Here, we demonstrate two 3D CAH
examples. In 3D, the contact points become contact lines.
Every contact point at the contact line has a value of CA. The
implementing methods in 3D and 2D are similar. The only
difference is that the coordinates of contact points and the
vectors have three components in 3D.
The first example is a hemispheric droplet sliding down a

ramp. The ramp has a gradient of 45°. The acceleration of
gravity is 9.8 m/s2. The radius of the droplet is 1 mm. The
initial CA is 90°. The density and viscosity of the liquid are
998.2 kg/m3 and 0.02 Pa·s, respectively. The surface tension is
0.01 N/m. The advancing and receding CAs are 110 and 80°,
respectively. The initial shape of the droplet is hemispherical,
and its deformation and movement are shown in Figure 2a and
Movie S2. Figure 2b shows the time-dependent plots of the
advancing CA and receding CA. The instructions for
implementing CAH of this example in COMSOL are provided
in Figures S4−S6. Figure 2c shows the profile change of the
contact line over time. The results are qualitatively agreeable
with experimental observations in the refs 18, 19.
The second example is the rising and falling of a liquid

surface in a tube with an elliptical cross section. The long axis
and short axis of the ellipse are 6 and 2.6 mm, respectively. The
initial CA is 90°. The advancing and receding CAs are 110 and
70°, respectively. The density and viscosity of the liquid are
998.2 kg/m3 and 0.01 Pa·s, respectively. The surface tension is
0.07 N/m. The inlet and outlet velocity are both 4 mm/s. The
instructions for implementing CAH of this example in
COMSOL are provided in Figures S7−S9. The results are
presented in Figure 3a and Movie S3. As shown in Figure 3a,

Figure 3.Modeling of a liquid surface rising and falling in an ellipse tube: (a) Simulation results with the color presenting the height of the surface,
(b) Mv distributions along arc AB, (c) surface height distributions along arc AB, and (d) apparent CA distributions along arc AB.
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we define two points, namely, A and B at the contact line. The
time-dependent distributions of variable Mv, height of the
contact line, and CA along the contact line from A to B are
plotted in Figure 3b−d, respectively. The abscissa is the arc
length and the ordinate is time, and the variable values are
presented by colors. Because of the elliptical shape, it is easier
to reach point B, advancing CA and receding CA. Thus, point
B starts moving first and then point A finally starts to move.
These two examples show that this method can be well applied
to 3D cases.
Fluid−Solid Interaction Simulation with CAH. To

further demonstrate the performance of this method, we
conduct an FSI simulation with CAH. Compared with a
previous simulation, the difference here in the FSI simulation is
that the solid surface also moves. The relative displacements
need to be calculated. Here, we simulate a cylinder floating on
the water surface (Figure 4a). The density of the cylinder is
600 kg/m3. The cylinder is pressed into the water at the
beginning. After releasing, the cylinder is floating up and down.
The initial CA is 90°, with the advancing and receding CAs of
100 and 85°, respectively. In the simulation, 2D axisymmetric
space dimension is used. The cylinder is considered as a rigid
body. The cylinder is subjected to the gravitational force, fluid
force, and surface tension force. The acceleration of the
cylinder (as) can be written as

∫ ∬σ θ
= − − +a g

x

m

T s

m

cos( )d d
s

in

s s (11)

where g is the acceleration of gravity, T is the fluid force acting
on the solid surface per area calculated by COMSOL, θin is the
apparent CA, ms is the mass of the cylinder, and σ is the surface
tension. The instructions for implementing eq 11 in COMSOL
are provided in Figure S10. The velocity of the cylinder (vs) is

∫=v a tds s (12)

The displacement of the cylinder (Ds) is

∫=D v tds s (13)

The instructions for implementing eqs 12 and 13 in
COMSOL are provided in Figure S11. Then, Ds is used to
control the deformation of the fluid domain. The instructions
for implementing the deformation of the fluid domain in
COMSOL are provided in Figure S12. In this model, the
cylinder can only move in a vertical direction (z direction). We
take an arbitrary point in the cylinder to trace its movement.
The initial z coordinate of this point is zs0, and the current z
coordinate is zs1. The displacement of the cylinder (ds) can be
defined as

= −d z zs s1 s0 (14)

Then, the displacement of the contact point on the cylinder
surface (dc) is

= − −d z z dc c1 c0 s (15)

where zc0 is the initial z coordinate of the contact point and zc1
is the current z coordinate of the contact point. Then, the
input CA can be defined.
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To simulate the repinning of the contact point, zc0, θ0, and zs0
need to be defined as state variables.
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Figure 4. FSI simulation: (a) Cylinder floating on the water surface, (b−d) simulation results with the color presenting the velocity, (e) simulation
results of the velocities of the cylinder (vs) and the contact point (vp), and (f) simulation results of θ0 and θin.
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In FSI simulations, the displacements of the solid surface also
need to be updated when depinning occurs. The instructions
for implementing eqs 14−19 in COMSOL are provided in
Figures S13−S15.
Using the above settings, the FSI with CAH is simulated.

The results are shown in Figure 4b−d and Movie S4. Figure 4e
shows the moving velocity of a cylinder (vs) and the contact
point (vp). When the two curves are overlapping, the relative
velocity between the cylinder and contact point is zero,
indicating the pinning of the contact point at the cylinder
surface. The time-dependent values of θ0 and θin are shown in
Figure 4f. When the contact point is pinning, the values of θ0
and θin are different. From these results, we can see that FSI
with CAH is successfully simulated.

■ CONCLUSIONS

In this paper, a method of implementing CAH in a moving
mesh-based two-phase flow model has been presented and
verified with several examples. This method is based on the
displacement of the contact lines. It takes advantage of easily
obtaining the coordinates of the contact lines in the moving
mesh method. The penalty method is used to pin the contact
line at a given position. The maximum and minimum values of
the input CA are constrained to be the advancing and receding
CAs. The repinning of the contact line is realized using the
state variables to update the pinning positions. This method is
robust when dealing with both 2D and 3D geometries and can
be implemented in FSI simulations.
Some previous works26,27 reported the velocity-based

methods to describe the dynamic CA, where the CA is a
function of the moving velocity of the contact line, which
increases with the advancing velocity and decreases with the
receding velocity. CAH can be mimicked by these methods.
However, this method is difficult to model static CAH when
the velocity of the contact line is zero. The velocity-dependent
CA only gives one specific value when the velocity of the
contact line is zero, which cannot describe the CA change
when the contact line is pinning. Our displacement-based
method can model static CAH when the contact line is
pinning, and the velocity-based dynamic CA can also be
incorporated in our method as shown in eq 4 when the contact
line is moving. From a numerical calculation point of view,
penalty methods based on the contact line displacement are
usually easier to solve and have better convergence than those
based on the contact line velocity, as velocity is the derivative
of displacement with respect to time. Moreover, although this
method is implemented in COMSOL in this work, it is
possible to be applied in other CFD solvers.
In addition, the reported methods3,16−19 for CAH are

unfriendly for researchers who are not familiar with the
sophisticated CFD solver and programming, which cannot
benefit many researchers from applying them in microfluidics.
This work provides a method to simulate CAH through the
commercial software COMSOL without any coding. With the
detailed modeling setups provided in the Supporting

Information, this method can be replicated by other
researchers easily.
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