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Development and performance 
verification of a 3-D position-
sensitive Compton camera for 
imaging MeV gamma rays
Hiroki Hosokoshi1*, Jun Kataoka1, Saku Mochizuki1, Masaki Yoneyama1, Soichiro Ito1, 
Hiroaki Kiji1, Fumiya Nishi1, Shuji Miyamoto2 & Tatsushi Shima3

In gamma-ray astronomy, the 1–10 MeV range is one of the most challenging energy bands to observe 
owing to low photon signals and a considerable amount of background contamination. This energy 
band, however, comprises a substantial number of nuclear gamma-ray lines that may hold the key 
to understanding the nucleosynthesis at the core of stars, spatial distribution of cosmic rays, and 
interstellar medium. Although several studies have attempted to improve observation of this energy 
window, development of a detector for astronomy has not progressed since NASA launched the 
Compton Gamma Ray Observatory (CGRO) in 1991. In this work, we first developed a prototype 3-D 
position-sensitive Compton camera (3D-PSCC), and then conducted a performance verification at 
NewSUBARU, Hyogo in Japan. To mimic the situation of astronomical observation, we used a MeV 
gamma-ray beam produced by laser inverse Compton scattering. As a result, we obtained sharp peak 
images of incident gamma rays irradiating from incident angles of 0° and 20°. The angular resolution 
of the prototype 3D-PSCC was measured by the Angular Resolution Measure and estimated to be 
3.4° ± 0.1° (full width at half maximum (FWHM)) at 1.7 MeV and 4.0° ± 0.5° (FWHM) at 3.9 MeV. 
Subsequently, we conceived a new geometry of the 3D-PSCC optimized for future astronomical 
observations, assuming a 50-kg class small satellite mission. The SΩ of the 3D-PSCC is 11 cm2sr, 
anticipated at 1 MeV, which is small but provides an interesting possibility to observe bright gamma-ray 
sources owing to the high intrinsic efficiency and large field of view (FoV).

Technologies for imaging gamma rays in astronomy have been developed in both the high and low energy 
ranges. For example, Imager on-Board the INTEGRAL (International Gamma Ray Astrophysics Laboratory) 
Satellite (IBIS), launched in 2002, demonstrates good sensitivity in soft gamma rays up to sub-mega-electron-volt 
energy levels using a coded aperture mask1. INTEGRAL-IBIS provided a sky map between 17 and 1,000 keV 
with 12’ (FWHM) angular resolution and has revealed several soft gamma ray sources so far2. Moreover, the 
Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope was launched in 2008 for imaging 
high-energy gamma rays between 100 MeV and 300 GeV3. The main detectors of Fermi-LAT were silicon strip 
detectors (SSDs) to measure the tracks of electrons and positrons. Interaction with photons in this energy range 
is mostly pair production, and therefore the tracking detectors possess high sensitivity for gamma rays at more 
than 100 MeV. Fermi-LAT achieved angular resolution of ~5° at 100 MeV and ~0°.8 at 1 GeV, which led to the 
discovery of many unidentified sources4. Between these energy ranges, however, 1–10 MeV gamma rays can easily 
penetrate a collimator such as a coded aperture mask. Therefore, it is impossible to acquire images using photoab-
sorption within the detector. In addition, pair production does not occur adequately, and therefore, it is difficult 
to obtain a back-projection image using tracking detectors such as SSDs. A Compton camera is commonly used 
for identifying the direction of MeV gamma-ray sources based on Compton kinematics. The Compton Telescope 
(COMPTEL), which was a large Compton camera loaded on the Compton Gamma Ray Observatory (CGRO), 
demonstrated the highest sensitivity in the 1–10 MeV range5. However, the sensitivity of the MeV-energy range 
is currently a few orders lower than that of other energy ranges. CGRO-COMPTEL succeeded in producing a 
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1–30 MeV image of the entire sky for the first time; however, only 32 gamma-ray sources have been detected from 
this so far6.

Establishing a method to image 1–10 MeV gamma rays is of great significance because there is a substantial 
number of nuclear gamma-ray lines in this narrow energy range. In astrophysics, radioactive isotopes that are 
synthesized at the core of stars emit nuclear gamma rays when they decay. This band of nuclear gamma rays has 
even been detected in actual observation. For example, a diffused image of 1.807 MeV gamma rays from 26Al was 
obtained by both CGRO-COMPTEL and INTEGRAL-SPI7,8. The 1.807 MeV image appears concentrated on the 
galactic plane, which indicates nucleosynthesis is still taking place in our galaxy. In addition, 1.156 MeV gamma 
rays from 44Ti were detected from a region of young supernova remnants, Cassiopeia A9. Nuclear gamma rays are 
also emitted via nuclear excitation and de-excitation when cosmic protons interact with the interstellar medium10. 
Therefore, even spatial distribution of cosmic rays and interstellar medium can be revealed by detecting these 
nuclear gamma rays. Many de-excitation lines are expected to come from the galactic center region11. At present, 
however, these have neither been detected nor confirmed.

A Compton camera usually consists of a scatterer and an absorber where an incident photon undergoes 
Compton scattering and photoabsorption, respectively. The direction of a source is calculated using the energy 
deposit of the scatterer and absorber, and its position based on Compton kinematics. Although there are various 
choices of detectors as the scatterer and absorber12–15, our group adopted Ce-doped Ge3Al2Ga3O12 (Ce:GAGG) 
scintillators for environmental survey and medical use16,17. The properties of Ce:GAGG scintillators, such as 
radiation tolerance, have already investigated in a study that confirmed the suitability of Ce:GAGG for use in 
space satellite missions18. The high density of Ce:GAGG, combined with a compact configuration of the cam-
era, can realize a high intrinsic efficiency, but in general, a scatterer has to be set considerably apart from an 
absorber to achieve a high angular resolution. In fact, in the case of CGRO-COMPTEL, the scatterer and absorber 
were placed 1.5 m apart from each other. The large structure also enabled the measurement of Time of Flight 
(ToF) to prevent the order of interactions from being misidentified. In contrast, our group developed a 3-D 
position-sensitive scintillator which can determine the 3-D position of gamma-ray interaction with an accuracy 
of ~1 mm19. Owing to this configuration, we can achieve high angular resolution even when the scatterer and 
absorber are placed as close as possible to each other. Although ToF cannot be measured in the compact config-
uration, back-scattering gamma rays from the absorber are avoided using the energy cut of the scatterer. Various 
methods to reduce background contamination have been considered, and we successfully proved these methods 
could exclude the background events and improve the quality of the MeV gamma-ray images20,21.

In this study, we used the prototype 3D-PSCC that was originally developed for MeV gamma-ray imaging in 
proton therapy21. To verify the performance of the prototype 3D-PSCC, we irradiated the camera with a MeV 
gamma-ray beam to mimic signals from celestial gamma-ray sources. Then, a clearly separated image of gamma 
rays from each incident angle, 0° and 20°, was obtained in the experiment. Subsequently, we considered the 
optimization and upsizing of the prototype 3D-PSCC based on the Geant4 simulation, assuming a payload of 
50-kg class small satellite for future astronomical observations. Although the detection area is still small, we show 
that even a small satellite mission may provide a unique opportunity to open new energy windows toward MeV 
gamma-ray astronomy.

Results
Imaging of 1.7 and 3.9 MeV gamma-ray beams.  A quasi-monochromatic gamma-ray beam produced 
by laser inverse Compton scattering was used in the experiment to verify the imaging performance of the proto-
type 3D-PSCC. Although there is a slight energy distribution due to the physical property of inverse Compton 
scattering22, the energy peaks of the gamma-ray beam are 1.7 MeV and 3.9 MeV, determined by the wavelength of 
the laser and the energy of electrons. We irradiated 17 positions of 3D-PSCC with the 1.7 MeV gamma-ray beam, 
and the center with the 3.9 MeV beam. Figure 1 shows images of the 1.7 MeV (upper) and 3.9 MeV (lower) gam-
ma-ray beam with an incident angle of 0° (left) and 20° (right). The energy window was 1.4–1.9 MeV for 1.7 MeV 
imaging, and 3.0–4.2 MeV for 3.9 MeV. Both 1.7 MeV and 3.9 MeV images appeared concentrated around the 
position corresponding to each incident angle. Specifically, the peak locations derived from 1-D projection along 
the X-axis were 1.7° ± 1.1° and 19.6° ± 1.4° for each 1.7 MeV image, and 1.4° ± 2.4° and 17.4° ± 2.1° for each 
3.9 MeV image. As the multi-pixel photon counter (MPPC) of the scatterer would be saturated above 1 MeV, the 
energy cut of the scatterer was set so as not to exceed 1 MeV. Therefore, only small Compton cones were permitted 
for 3.9 MeV, and as a result, only a narrow region within ±40° was captured in the 3.9 MeV image.

To evaluate the angular resolution of the 3D-PSCC, we used Angular Resolution Measure (ARM), which rep-
resents the difference between the geometrical scatter angle and the scatter angle calculated using energy deposit. 
The ARM spectra are displayed next to each image in Fig. 1. An experimental value of the ARM spectra was 
fitted by Gaussian to evaluate angular resolution. The angular resolution at 1.7 MeV was estimated as 3.4° ± 0.1° 
(FWHM) and 3.8° ± 0.1° (FWHM) for each incident angle. These experimental values and their dependence on 
the incident angles agreed well with Geant4 simulation. Note that the angular resolution of COMPTEL aboard 
CGRO was 3.9° (FWHM) at 1.7 MeV5. Moreover, the angular resolution at 3.9 MeV was 4.0° ± 0.5° and 4.6° ± 0.4° 
for each incident angle, which is again consistent with the simulation.

Simultaneous drawing of gamma-ray sources from two directions.  In actual astronomical obser-
vation, we need to image gamma rays with different incident angles corresponding to different sources in the FoV. 
To mimic such a situation, we superposed an image of 1.7 MeV gamma-ray beams with incident angles of 0° and 
20°. Flux and measurement time are the same for both 0° and 20°. The intensities of the two sources, however, 
will not be identical without correction because a Compton camera shows a different response to each source 
within the FoV. Therefore, we inspected the response of the 3D-PSCC to the sources which were distributed 
uniformly on a hemispheric surface using Geant4 simulation beforehand. The generated sensitivity maps were 
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used to correct the intensity of gamma-ray sources within the FoV. Figure 2 (left) shows a simple back-projection 
image of two gamma-ray beams. The good angular resolution of the 3D-PSCC at 1.7 MeV enables the images of 
the two sources to be clearly separated. The maximum likelihood-expectation maximization (ML-EM) analysis 
was also performed, as shown in Fig. 2 (right). Further, the intensities of the two gamma-ray beams from 0° and 
20° were nearly the same, as expected. This means the sensitivity map correctly anticipated the response of the 
3D-PSCC to the sources at 0° and 20°.

Discussion
The results of the experiment are validated by Geant4 simulation. Figure 3 shows the simulated angular resolution 
of the 3D-PSCC at various incident energies, compared with the experimental value. The energy window for the 
simulation was . < < .E E E0 9 1 1i i, where Ei denotes the incident energy of gamma rays. The angular resolution 
of a Compton camera is affected by energy resolution, position resolution and the Doppler broadening effect23. In 
this case, the energy resolution dominates the angular resolution below 1 MeV. However, position resolution, 
which is determined by the pixel size of the scatterer and absorber, dominates the angular resolution above 1 MeV. 

Figure 1.  Experimental images and ARM spectra of the 1.7 MeV (upper) and 3.9 MeV (lower) gamma-ray 
beams irradiating from an incident angle of 0° (left) and 20° (right). The X- and Y-coordinates of the imaging 
plane are associated with spherical coordinates (θ, ϕ) by Eq. (3).

Figure 2.  Images of 1.7 MeV gamma-ray beams irradiating from 0° and 20° off the axis of the camera. (left) 
Simple back projection image. (right) ML-EM image (iteration: 5 times).
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The Doppler broadening effect is caused by a momentum distribution of bound atomic electrons, but its influence 
on the angular resolution is negligible in the MeV-energy range.

The results in the experiment (yellow plots) agreed well with the Geant4 simulation (blue). Both the exper-
iment and the simulation confirmed that the 3D-PSCC has better angular resolution than COMPTEL in the 
energy range below 2 MeV, despite its compact structure. However, the angular resolution of the 3D-PSCC 
decreases in the range above 3 MeV. In the high-energy range, energy uncertainty caused by the increased escape 
events dominates the angular resolution. As gamma rays above 3 MeV are considerably more energetic and can-
not be easily stopped with the current configuration of 3D-PSCC, we applied a broad energy window to increase 
the number of proper events for imaging. The broad energy window also contains a substantial number of escape 
events where only a part of the incident energy was deposited within the detector. The discrepancy between the 
incident energy and the observed one caused degradation of the angular resolution, which led to the results in the 
energy range above 3 MeV.

As the prototype is not optimized for astronomical observation, the scintillators of the scatterer and absorber 
are not thick enough to obtain a sufficient number of whole-absorption events. To achieve high efficiency while 
maintaining high angular resolution in the MeV-energy range, a configuration of 3D-PSCC was briefly improved 
in simulation for future astronomical observation. Specifically, two layers of 10 mm thick scatterer and 60 mm 
thick 3-D position-sensitive absorber were placed 70 mm apart from each other. The detection area of the new 
3D-PSCC assumed here was 20 × 20 cm2. Note that the new 3D-PSCC still has a compact structure compared 
to COMPTEL and can be loaded in 50 kg-class small satellites. High angular resolution was maintained in the 
energy range below 2 MeV with the new configuration (Fig. 3, red); 4.23° ± 0.02° at 1 MeV and 3.46° ± 0.03° 
at 2 MeV were achieved, respectively, which are still comparable to the corresponding values of COMPTEL. 
Furthermore, the angular resolution above 3 MeV was significantly improved owing to the reduction of escape 
events.

The intrinsic efficiency of the 3D-PSCC was also estimated based on the simulation. In this simulation, the 
parallel gamma rays of each incident energy irradiated the camera uniformly at normal incidence. Figure 4 shows 
the estimated intrinsic efficiency for each incident energy. The experimental values (yellow plots) agreed well with 
the simulation (blue), but there is a slight discrepancy between the two. One factor that accounts for the discrep-
ancy is that the gamma-ray background cannot be considered in the simulation due to the difficulty of estimating 

Figure 3.  Comparison of the angular resolution simulated using Geant4 and the experimental value. 
Experimental value: yellow plots, simulation values of the prototype 3D-PSCC: blue, simulation values of the 
new 3D-PSCC: red.

Figure 4.  The simulated intrinsic efficiency of the 3D-PSCC. Experimental value: yellow plots, simulation 
values of the prototype 3D-PSCC: blue, the new 3D-PSCC: red.

https://doi.org/10.1038/s41598-019-54862-z


5Scientific Reports |         (2019) 9:18551  | https://doi.org/10.1038/s41598-019-54862-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

the background in the hutch. The intrinsic efficiency of the 3D-PSCC has been significantly improved between 
the prototype and the new configuration (red). The new 3D-PSCC shows an excellent performance, especially in 
the range below 2 MeV. In the high energy range, however, most gamma rays undergo multiple scattering events 
within the detector. The 3D-PSCC cannot recognize the sequence of interaction because the pixels are small and 
fairly close to each other. Therefore, the multiple scattering events are eliminated using a method described in 
Methods. On the other hand, the cells of COMPTEL are substantially larger (for example, the cell of the scat-
terer is 28 cm in diameter and 8.5 cm deep) and further apart from each other. Hence, the multiple scattering 
events within each cell are safely used for image reconstruction, and high efficiency is maintained in the case of 
COMPTEL.

We briefly discuss the anticipated performance of the new 3D-PSCC in terms of SΩ, where S is an effective 
area and Ω is the FoV at a corresponding energy. Note that a large SΩ is generally required for wide-field sur-
vey without focusing detectors such as the COMPTEL, Fermi-LAT and SPI/INTEGRAL. For example, SΩ of 
COMPTEL at 1 MeV is 15 cm2sr, and at 2 MeV is 20 cm2sr, respectively, assuming an FoV of 1 sr. Detector size 
of the new 3D-PSCC, 20 × 20 cm2, is more than an order of magnitude smaller than that of the COMPTEL, but 
the intrinsic efficiency is higher because the scatterer and absorber are placed much closer to each other. For the 
same reason, the new 3D-PSCC can capture an image of a gamma-ray source even with an inclination of 60°, thus 
achieving a wider FoV of ~3 sr. As a consequence, SΩ of the 3D-PSCC is estimated to be 11 cm2sr at 1 MeV and 
6 cm2sr at 2 MeV, respectively. Although the difference between the SΩ of COMPTEL and 3D-PSCC is increased 
at higher energy, this first-order estimation suggests an interesting possibility that even a small 50-kg class satellite 
mission may be useful for future astronomical observations in the MeV energy window.

Figure 5.  Provisional detection sensitivity of the new Compton camera ( σ ∆ = =E E T3 , , 1Msec), 
considering the extragalactic diffuse gamma rays (Ackermann et al.24) and atmospheric gamma rays (De 
Angelis et al.12). The LEO was assumed to be the orbit of the small satellite.

Figure 6.  (a) Schematic view of the scatterer and absorber. Scatterers are surrounded by collars of tungsten 
passive shield to prevent direct injection to the absorber. (b) A configuration of the bismuth germanate (BGO) 
active shield and tungsten passive shield. (c) Schematic view of the MPPC arrays.
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Finally, we calculated the detection sensitivity of the new 3D-PSCC, taking into account the contamination of 
the extragalactic diffuse gamma rays24 and atmospheric gamma rays12. The low earth orbit (LEO) was assumed as 
the possible orbit of the small satellite. The calculated detection sensitivity for 1 Ms observation is shown in Fig. 5. 
The sensitivity for the atmospheric gamma ray is still preliminary because we have not yet employed background 
suppression tools such as the anticoincidence system for the new 3D-PSCC. However, this estimation suggests 
that the Crab Nebula, one of the brightest gamma-ray sources, can be detected with the new 3D-PSCC in the 
range below 2 MeV with a reasonable exposure time of 1 Ms.

We are aware that there are still number of problems we have to consider for actual astronomical use. Although 
we have developed a method to eliminate misdetection of signal gamma rays, atmospheric gamma rays or sec-
ondary particles in a satellite orbit can also cause background contamination. To estimate the effect of these back-
ground components, further analysis would be required, including a more elaborate design of the anticoincidence 
system and radiation tolerance of the detectors. Moreover, the materials that surround the 3D-PSCC like satellite 
housing, and even the detector itself, may also deteriorate the performance due to activation in the orbit. We have 
not taken these effects into account in the simulation yet. These topics would be addressed in future studies.

Methods
3D-PSCC for imaging MeV gamma rays.  The 3D-PSCC was originally developed for imaging MeV 
gamma rays in proton therapy21. The target energy band of the 3D-PSCC is from 300 keV to 5 MeV. A schematic 
view of the 3D-PSCC is shown in Fig. 6. Two scatterers comprising 42 × 42 × 1 arrays of 0.5 × 0.5 × 3.0 mm3 
cubes were placed apart from each other by 11 mm. In contrast, 22 × 22 × 10 arrays of 2.0 × 2.0 × 4.0 mm3 cubes 
were used as an absorber. Each pixel was divided by a reflector (BaSO4 with thickness of about 0.1 mm) in the XY 
direction defined in Fig. 6(a). The absorber’s pixels aligned along the Z direction were also divided by a thin layer 
of air, enabling easier measurement of the depth of interaction (DOI). Moreover, a bismuth germanate (BGO) 
active shield was placed behind the absorber, while tungsten passive shields were placed in front of the scatterer 
and absorber, as shown in Fig. 6(b).

Each scatterer was coupled with MPPC arrays (Hamamatsu Photonics S13361-3025NE-08) to acquire the 
information with respect to the deposited energy and its position. MPPC arrays were also placed at both the top 
and bottom of the absorber, to enable measurement of DOI19. To reduce the number of readout channels, each 
MPPC was divided by a resistor chain network, as shown in Fig. 6(c). The original position of signals can be iden-
tified by measuring the ratio of the amount of charge flowing along each side of a resistor chain. Although some 
pixels are degenerated near the edge of arrays due to light leakage, most of the pixels are clearly separated, and the 
typical spatial resolution is equal to the pixel size. We derived the energy spectra of 8,368 pixels individually, and 
then calibrated the gain of each pixel with various calibration sources before the experiment. The typical energy 
resolution of each pixel was 8.9% (FWHM) at 662 keV and 7.0% (FWHM) at 1.17 MeV. The dynamic range of 
each scatterer’s pixel was from ~10 keV to 1 MeV, while that of the absorber’s pixel was from ~50 keV to ~5 MeV. 
Four-channel readout MPPC arrays were coupled with the scatterer, while 32-channel strip-readout MPPC arrays 
were coupled with the absorber. Each interaction position of the scatterer was calculated using the following 
equation:
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Incident energy 
[keV]

Incident angle 
[degree]

E1 (scatterer) and E2 
(absorber) [keV] E1 (scatterer) [keV]

1700 0 1400 < E1 + E2 < 1900 10 < E1 < 200

1700 20 1400 < E1 + E2 < 1900 10 < E1 < 200

3900 0 3000 < E1 + E2 < 4200 10 < E1 < 230; 
500 < E1 < 1000

3900 20 3000 < E1 + E2 < 4200 100 < E1 < 200; 
450 < E1 < 1000

Table 1.  The energy cut range applied for MeV gamma-ray imaging.
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where =k 1, 2 denotes each MPPC array on the top and bottom of the absorber, Pk,i denotes the pulse height 
from the ith channel, W denotes the half-length of the scintillator array in the XY direction, and d denotes the 
half-length of the scintillator array in the Z direction.

The signals from each MPPC array were sent to a signal-processing board via FPC cables. Subsequently, the 
time-stamped ADC data were translated to binary data in FPGA, which were sent to a laptop via USB 3.0 cable. 
The output data were recorded in list mode, and then time coincidence analysis was performed offline. The coin-
cidence time window was 1.5 μs in this experiment. The operation voltage of each MPPC array was controlled by 
applying 5.0 V to the signal-processing board.

Table 1 shows the energy cut range that is applied for each incident energy and angle. In particular, the E1 
cut range was determined so that the scattering angle would be below 20°, which is approximately the max-
imum angle allowed for the configuration of the current detector. With this energy cut, we can remove the 
back-scattering events in which the incident gamma ray first hits the absorber and is then subsequently absorbed 
in the scatterer. We also did not use events with E1 > 1000 keV because the MPPC of the scatterer may be affected 
by the saturation of scintillation light (see Results section). Furthermore, the E1 cuts of the simulation were set in 
the same manner as the experiment.

The major types of background in MeV gamma-ray imaging are escape, back-scattering and multiple scat-
tering events. As each pixel of the 3D-PSCC is small and they are placed side by side, the sequence of multiple 
scattering within a detector cannot be recognized. Therefore, we have to eliminate multiple scattering events to 
improve the signal-to-noise ratio. To reject these events, we compared interaction points calculated individu-
ally from each MPPC array of the absorber using Eq. (2). If the photon undergoes single Compton scattering, 
the interaction points calculated from the top and bottom of the absorber should be identical to each other. 
Figure 7(a) shows a 2-D plot comparing the coordinates of the top and bottom in the case where a 1.7 MeV beam 
irradiated the center of the 3D-PSCC, as an example. We pre-emptively determined the event selection range 
using a 60Co source (shown in Fig. 7(b)). By applying this method, 71% and 79% of all the coincidence events 
were rejected as multiple scattering events for 1.7 MeV and 3.9 MeV, respectively. In addition, both escape and 
back-scattering events are rejected by the energy cuts. As the scatterer and absorber are close to each other, the 
3D-PSCC cannot distinguish between the proper events and back-scattering events. While COMPTEL meas-
ures ToF to eliminate the back-scattering events, the 3D-PSCC used the energy cut of the scatterer to avoid 

Figure 7.  (a) 2-D histograms comparing X1/L vs X2/L and Y1/L vs Y2/L in the absorber, where Xk and Yk 
denote the coordinates of each MPPC array, and L denotes the half-length of the absorber. (b) 2-D histogram 
comparing X1/L vs X2/L using a 60Co source. Each peak in the red box represents a single Compton event, while 
multiple Compton events appear outside the red box. The event selection range in (a) was determined using a 
60Co source.

gamma-ray 
energy [MeV]

laser wavelength 
[mm]

laser 
power 
[W]

electron 
energy [GeV]

electron beam 
current [mA]

collimator 
[mm]

1.7 10.6 3.3 1 300 3

3.9 10.6 1.5 1.5 222 4

Table 2.  Experimental conditions for MeV gamma-ray imaging.
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back-scattering gamma rays from the absorber. Escape events were also excluded by veto signals from the BGO 
active shield.

In the process of image reconstruction, the directions of sources are calculated in spherical coordinates (θ, ϕ). 
Therefore, each pixel of the imaging plane (R, Θ) has to correspond to that of the sphere on a one-to-one basis. We 
adopted equisolid angular projection represented by the following equation:

θ ϕ= Θ = = Θ = ΘR X R Y R2 sin
2

, ( cos , sin ) (3)

Description of the experiment in NewSUBARU.  NewSUBARU is a synchrotron radiation facility 
located in the site of SPring-8, Hyogo in Japan. High-energy electrons from Spring8 are used for various exper-
iments in 11 beam lines. Our experiment was conducted in BL01, which treats a quasi-monochromatic MeV 
gamma-ray beam. The gamma rays are produced by inverse Compton scattering of a CO2 laser (λ = 10.6 μm) 
with 1 or 1.5 GeV electrons. Here, the upper limits of incident energy were estimated at 1.7 MeV and 3.9 MeV. 
These gamma rays pass through a thick Pb collimator to form a quasi-monochromatic gamma-ray beam. The 
experimental conditions of the gamma-ray beams are shown in Table 2.

To simulate the situation of an astronomical observation, we used the MeV gamma-ray beam assuming signals 
from celestial gamma-ray sources. Considering the symmetry of the camera, irradiating points of 1.7 MeV beams 
(shown in Fig. 8(a)) are selected to cover 17 positions (shown in Fig. 8(b)) so that the 3D-PSCC is exposed to 
gamma rays as uniformly as possible. Eight out of these 17 positions are assuming background events that enter 
the absorber directly. By contrast, only the center of the 3D-PSCC was irradiated with the 3.9 MeV gamma-ray 
beam due to time restrictions of the experiment. A geometry of the experiment is shown in Fig. 8(c). A 5 cm thick 
Pb block was placed in front of an irradiating port considering the rate tolerance of the 3D-PSCC. The measure-
ment times for 1.7 MeV and 3.9 MeV were 5 min and 30 min respectively.
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