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Abstract
Background: A key problem in the sequence-based reconstruction of regulatory networks in
bacteria is the lack of specificity in operator predictions. The problem is especially prominent in the
identification of transcription factor (TF) specific binding sites. More in particular, homologous TFs
are abundant and, as they are structurally very similar, it proves difficult to distinguish the related
operators by automated means. This also holds for the LacI-family, a family of TFs that is well-
studied and has many members that fulfill crucial roles in the control of carbohydrate catabolism
in bacteria including catabolite repression. To overcome the specificity problem, a comprehensive
footprinting approach was formulated to identify TF-specific operator motifs and was applied to
the LacI-family of TFs in the model gram positive organism, Lactobacillus plantarum WCFS1. The
main premise behind the approach is that only orthologous sequences that share orthologous
genomic context will share equivalent regulatory sites.

Results: When the approach was applied to the 12 LacI-family TFs of the model species, a specific
operator motif was identified for each of them. With the TF-specific operator motifs, potential
binding sites were found on the genome and putative minimal regulons could be defined. Moreover,
specific inducers could in most cases be linked to the TFs through phylogeny, thereby unveiling the
biological role of these regulons. The operator predictions indicated that the LacI-family TFs can
be separated into two subfamilies with clearly distinct operator motifs. They also established that
the operator related to the 'global' regulator CcpA is not inherently distinct from that of other
LacI-family members, only more degenerate. Analysis of the chromosomal position of the identified
putative binding sites confirmed that the LacI-family TFs are mostly auto-regulatory and relate
mainly to carbohydrate uptake and catabolism.

Conclusion: Our approach to identify specific operator motifs for different TF-family members is
specific and in essence generic. The data infer that, although the specific operator motifs can be
used to identify minimal regulons, experimental knowledge on TF activity especially is essential to
determine complete regulons as well as to estimate the overlap between TF affinities.
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Background
Numerous studies have been devoted to the identification
of Transcription Factor (TF)-binding sites or other regula-
tory elements in bacterial genomes. So far, most large-
scale approaches relied heavily on statistics and the input
of known binding motifs [1-7]. Unfortunately, purely sta-
tistical approaches are seriously hampered by the trade-off
that exists between a high true-positive rate and a low
false-negative rate of the prediction. Nonetheless, both
rates can be considerably improved by taking advantage
of additional data [2,8] like, for instance, sequence data
from related species [9-11], structural information [12] or
transcriptome data [13,14]. Another way to enhance the
accuracy is phylogenetic footprinting which takes both
'phylogeny' and 'synteny' into account[8,14-16].

We have recently developed a large-scale automated regu-
latory motif prediction method for prokaryotic genomes
[17]. It was applied with success in the identification of a
relatively large number of regulatory motifs in genomes of
the Firmicutes, a phylum that comprises many well-stud-
ied families like the Bacillaceae, Clostridiaceae, Lactobacil-
laceae, Staphylococcaceae and Streptococcaceae. The
identified motifs included several new motifs besides
known ones. Nevertheless, in many cases the method
appeared less suited to couple a specific TF or signal to the
regulatory motif in a straightforward manner. For exam-
ple, although the characteristic T-box motif was easily
identified – the T-box is a regulatory element that
responds to uncharged t-RNA [18] and is found in all Fir-
micutes – the amino acid specificity of that element was
not retrieved for the individual instances automatically
(Wels et al. unpublished results). Likewise, the 'CRE-like'
motif that was retrieved is very similar to known operator
motifs of various TFs of the LacI-family, suggesting that
the recovered motif is not specific.

The LacI-family of TFs plays a crucial role in many bacte-
rial species, and certainly in those of the phylum Firmi-
cutes, as these TFs mediate preferences in the utilization of
certain carbohydrates over others. The prioritization
involves both repression (or activation) of catabolic genes
(i) in the absence (or presence) of a related substrate and
(ii) in the presence (or absence) of a preferred substrate
[19-21]. The latter process is referred to as carbon catabo-
lite repression (CCR) and its main mediator in Firmicutes
species is CcpA [21-25]. CcpA operators were called CREs
(CcpA-responsive elements [26]) and a CRE consensus
motif was defined on basis of experiments in various Fir-
micutes species [21-23,25,27-30]. The consensus motif is
very similar to, and sometimes coincides with, operators
related to other TFs of the LacI-family [30-33]. Most fam-
ily members, however, interact with only a few operators
on the genome, like LacI of Escherichia coli, which
represses specifically the lac-operon in the absence of lac-

tose [34]. This raises the question how these bacteria coor-
dinate 'local' (def: control of the expression of one or a
few genes/operons) and 'global' (def: control of the
expression of many genes/operons) regulatory effects
using homologous TFs.

Thus, the lack in specificity of the current prediction meth-
ods is a key issue in case one wants to disentangle complex
regulatory relationships, like between those of the TFs of
the LacI-family and the operons involved in carbohydrate
catabolism. Therefore, we have formulated a comprehen-
sive sequence-based comparative approach for the predic-
tion of TF-specific operators in bacteria. Specificity is
ensured by building upon a proper phylogenetic classifi-
cation of each family of TFs (whose members can for
instance be found in reference databases [35-37]) and
very strict criteria to define synteny.

The value of the approach was put to the test on the well-
described LacI-family of TFs, and more specifically, to
uncover the regulatory connections of the 12 LacI-family
TFs in L. plantarum WCFS1. This species was chosen as a
representative of the phylum Firmicutes, as it is an indus-
trially and medically relevant model organism that is
encountered in very different environmental niches, i.e. in
association with plants, fermenting food and feed, and in
the animal and human gastrointestinal tract [38,39]. The
approach proved successful and each LacI-family TF of L.
plantarum was linked to a putative operator motif and
thereby to a putative regulon. In addition, several princi-
ples that should govern LacI-family TF mediated 'local'
and 'global' transcription regulation could be inferred
from the results. Ample experimental and structural infor-
mation was used to evaluate and support the predictions
and inferences.

Results
I) A comprehensive approach to identify TF-specific 
operators
It has been observed consistently that orthologous protein
sequences [40] are very likely to have molecular properties
that are alike [41]. Similarly, synteny – conserved gene
order – was found to be a strong indicator of functional
equivalency [42]. Thus, genes that are orthologous and
share 'gene context' can be assumed to be functionally
more equivalent than orthologous genes that are not syn-
tenous. Based on this premise we formulated a generic
phylogenetic footprinting [43]/shadowing [44] approach
for the identification of TF-specific operator sequences in
bacteria (description in Methods). High specificity in the
motif prediction was achieved by properly classifying
orthologous TFs into groups that share gene context to
yield putative Groups of Orthologous Functional Equiva-
lents or GOOFEs. To develop the approach, we chose the
well-described LacI-family of transcriptional regulators
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(PFAM PF00356), limiting the analysis to Firmicutes and
focusing specifically on the model organism Lactobacillus
plantarum WCFS1, which has a high number of LacI-fam-
ily TFs for which we have ample experimental and tran-
scriptome data for validation.

Collect homologs: LacI-family TFs in the genomes of L. plantarum 
WCFS1 and other Firmicutes
The search for LacI-family TF specific operators was initi-
ated by collecting the LacI-family TF protein sequences
from taxonomically related genomes and grouping them

using the Neighbor Joining (NJ) algorithm (for relevant
data see Additional files 1, 2, 3, 4). The resulting NJ-tree
indicated a clear separation between two subfamilies of
LacI-family TF homologs (top of Figure 1 and see Addi-
tional file 5). One subfamily represented the vast majority
of LacI-family TF homologs including CcpA, whereas the
other represented only 1 to 3 homologs per species. The
latter subfamily contained one well-studied TF from E.
coli, the evolved beta-galactosidase repressor or EbgR [45].
Henceforth, the two LacI-family TF subfamilies will be
referred to as 'CcpA-like' and 'EbgR-like'. The number of

The number of LacI-family TF homologs and the presence of Lactobacillus plantarum orthologs in different FirmicutesFigure 1
The number of LacI-family TF homologs and the presence of Lactobacillus plantarum orthologs in different Firmicutes. The organ-
isms are organized on basis of their phylogeny (left; inferred from phosphoglycerate kinase amino acid sequence data [98]) and 
the TFs on basis of the NJ-tree of the L. plantarum LacI-family TFs (top). The presence of an ortholog to the L. plantarum pro-
teins is indicated by open (different cluster in the NJ-tree) and closed circles (same cluster in the NJ-tree). The members of the 
various L. plantarum GOOFEs are colored. Some orthologs have been experimentally characterized and are indicated by '+'. 
remark: Although the PFAM HMM that is used to identify the LacI-domain represents only a small part of the DNA-binding 
domain, in most instances there was complete correspondence between the number of LacI-family TFs identified by us and the 
number listed by PFAM [96]. However, there were a few exceptions and in these cases the number given by PFAM appeared 
erroneous [see Additional file 1]. In some cases the PFAM database was just incomplete (e.g. Pediococcus pentosaceus and Leu-
conostoc mesenteroides). In other cases sequences were counted twice as a result of double Uniprot entries (e.g. for CcpA in L. 
plantarum). Other proteins were missing in the PFAM database because of mistakes in the ORF definition.

Lactobacillus plantarum      WCFS1 3.3 12 ! ! ! ! ! ! ! !! ! !!+

Pediococcus pentosaceus   ATCC 25745 1.8 6 ! ! ! ! ! !
Lactobacillus salivarius        UCC18 2.1 5 ! ! ! !
Lactobacillus brevis             ATCC 367 2.3 9 ! ! ! ! !
Lactobacillus casei              ATCC 334 2.9 8 ! ! ! !" ! !
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[368] [991][326][117]
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Name genome size

 (Mb)

LacI TF CcpA Lp_0173 Lp_2602 Lp_3221 Lp_0172 Lp_3661 Lp_0188 Lp_3531

Lp_3625

Lp_3470 Lp_3479

Lp_3488

Oenococcus oenii                      PSU-1 1.8 7 ! ! ! !
Leuconostoc mesenteroides       ATCC 8293 2.1 12 ! ! ! ! ! ! !
Lactobacillus sakei                            23K 1.9 7 ! ! !+ ! !"
Lactobacillus delbruecki bulgaricus ATCC 11842 1.9 2 ! !
Lactobacillus acidophilus                 NCFM 2.0 7 ! ! !+ !
Lactobacillus gasseri                        ATCC 33323 1.9 5 ! ! ! !
Lactobacillus johnsonii                     NCC533 2.0 7 ! ! ! !
Enterococcus faecalis                 V583 3.2 11 ! ! !+ ! ! !"
Listeria monocytogenes               EGD-e 2.9 10 ! ! ! !
Staphylococcus saprophyticus   ATCC 15305 2.6 7 ! !
Staphylococcus aureus              Mu50 2.9 4 ! ! !
Staphylococcus epidermidis       ATCC 12228 2.6 2 !
Staphylococcus haemophilus     JCSC1435 2.7 6 ! " ! !
Lactococcus lactis                   str. IL1403 2.4 6 ! ! !+

Streptococcus mutans           UA 159 2.0 5 ! ! !+ !
Streptococcus thermophilus   CNRZ1066 1.8 4 ! ! ! !+

Streptococcus pneumoniae    TIGR4 2.2 7 ! !+ ! !
Streptococcus agalactiae       2603V/R 2.2 7 ! ! ! !
Streptococcus pyogenes        M18 MGAS8232 1.9 5 ! ! !
Clostridium perfringens          13 3.0 7 ! !
Clostridium difficile                 630 4.3 6 !
Clostridium tetani                   E88 2.9 4 !
Clostridium acetobutylicum    ATCC-824D 4.1 7 ! !
Oceanobacillus iheyensis      HTE831 3.6 8 ! !"
Bacillus clausii                       KSM-K16 4.3 16 ! " ! ! !
Bacillus halodurans               C-125 4.2 14 ! " ! !
Geobacillus kaustophilus      HTA426 3.6 8 ! !
Bacillus anthracis                  Ames 5.2 11 ! "" !
Bacillus subtilis                      168 4.2 11 ! !+ !+ "+ !+

Bacillus licheniformis            DSM13 4.2 12 ! ! " ! !

‘CcpA-like’      ‘EbgR-like’
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LacI-family TF homologs ranged from 2 to 17 and the
homolog composition was found highly variable between
different species and also variable between strains (see
Figure 1 and Additional file 1) and correlated roughly
with genome size. For example, although all 6 LacI-family
TFs of Pediococcus pentosaceus [46] were orthologous to a
LacI-family TF in L. plantarum WCFS1, only 5 out of 9
where orthologous in Lactobacillus brevis [46], another
close relative. Moreover, when the LacI-family TF content
of various strains of L. plantarum was analyzed – the data
were derived from a strain diversity analysis [47] – it
appeared that apart from ccpA none of the individual LacI-
family genes was present in all other strains. In fact, the
master regulator CcpA was the only LacI-family member
present in all sequenced Firmicutes genomes.

Determine synteny: Identification of TF-specific binding motifs
Inspection of the gene-neighborhood of the genes encod-
ing LacI-family TF homologs in L. plantarum indicated
that most of them are associated with genes encoding pro-
teins that catabolize carbohydrates. Although the gene
association appeared conserved in other genomes, it was
mostly only true for a limited number of species. A TF-spe-
cific GOOFE was defined for each L. plantarum LacI-family
TF on basis of context conservation and then the upstream
regions preceding the conserved operons/genes were
selected (see Methods for the precise procedure). Multiple
sequence alignments, motif-finding methods, as well as
visual inspection, were then used to identify potential
GOOFE-specific LacI-family TF operator motifs for all 12
LacI-family TFs (see Additional file 6). A first comparison
of the motifs, depicted in Figure 2, showed that the 'CcpA-
like' and 'EbgR-like' LacI-family TF operators had charac-
teristic yet distinct subfamily traits. The 'CcpA-like' opera-
tors carry a central CG nucleotide pair, whereas the 'EbgR-
like' operators have only a single central C or G nucle-
otide. Moreover, within the subfamilies, the motifs
appeared to be discretely different in at least one position.

Validation: Comparison of the predicted motifs with experimental 
functional data from literature
Compelling evidence that the recovered motifs were gen-
uine and the approach was effective came from a compar-
ison of the motif predictions with experimentally
characterized operators. In all cases that could be checked,
the prediction was in full agreement with the experimen-
tal findings. This was true for CcpA in Lactobacilli [48,49],
for the Lp_3470 ortholog LacR in Lactobacillus delbrueckii
subsp. lactis [50], for the Lp_3479 ortholog GalR in Strep-
tococcus thermophilus [51] and in Streptococcus mutans [52],
as well as for MalR in Stretococcus pneumoniae [53], for
MalI in E. coli [31] and for ExuR in Bacillus subtilis [54] (see
Tables 1, 2 and 3).

Validation: Comparison of the predicted with 3-D structure 
information from literature
It also proved possible to use structural information on
the binding of several LacI-family members to their
respective operator [55-57] to validate predicted motifs.
Differences in the conservation of certain amino acid res-
idues in the DNA-binding domain of the TF were com-
pared to the composition of the connected operator. Two
clear correlations between protein sequence and operator
sequence were found (see also the legend to Figure 2):

- Firstly, the structural data suggest that, in the case of
CcpA and LacI, the conserved arginine located at position
24 is one of the few residues that hydrogen bonds directly
with one of the nucleotide bases, a guanine at position -6
of the operator [56,57]. In Lp_3661 (RbsR) and its
orthologs, the arginine is replaced by a glutamine (or leu-
cine) and correspondingly the otherwise 'conserved' gua-
nine is replaced by a thymidine. In fact, such a
replacement was observed for all other studied LacI-fam-
ily TFs deviant at position 24 (see Additional file 7). These
anomalous TFs include MalI from E. coli which was
proven experimentally to indeed bind an operator with a
thymidine at position -6 [31] (Table 2).

- Secondly, the 'EbgR-like' TFs (i.e. Lp_3470 (LacR),
Lp_3479 (GalR) and Lp_3488 (RafR)) are expected to
have distinct DNA-binding features. Members of this sub-
family lack the conserved leucine residue (position 60 in
Figure 2) that according to the 3D-structure of operator-
bound CcpA [57] intercalates between the central CG base
pairs that are characteristic for 'CcpA-like' operators [22].
Concordantly, the predicted 'EbgR-like' LacI-family TF
operators lack the central CG nucleotide pair. Possibly,
the conserved arginine at position 24 interacts with the
conserved single C or G nucleotide in the operator (Table
3).

II) Identification of the biological role of a TF through 
comparative genomics
The biological role of a transcription factor is to activate or
repress the transcription of certain genes in response to
the presence of a signal (e.g. a nutrient or metabolite). In
principle, once the sequence of a TF-specific operator is
known, a genome-wide search for the related motif could
be used to find putative TF-binding sites on the genome
and to establish the regulated functionalities (regulon).
The signal that triggers the transcriptional response can be
obtained by linking the specific TF to an ortholog that has
experimentally verified 'inducer' specificities. Finally, the
transcriptional effect (i.e. activation or repression) of the
binding of the TF can be deduced from the relative posi-
tion of the putative binding site with respect to the pro-
moter [25,58].
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Regulon predictions for the LacI-family TF homologs in L. plantarum 
WCFS1
The 12 predicted specific operator motifs were used to
search the genome for potential TF-binding sites. For each
of the identified specific motifs an initial list of 30 to 100
putative binding sites was retrieved and the list was

reduced by application of a distance and similarity crite-
rion to yield a few putative highly specific binding sites
per TF (visualized in Figure 3; data in Additional file 8).
Not surprisingly, the 'best hits' included those sites that
were used to create the search motif in the first place.
However, they also included multiple sites that were not

Left panel: Sequence motifs of predicted LacI-family TF specific operators in L. plantarumFigure 2
Left panel: Sequence motifs of predicted LacI-family TF specific operators in L. plantarum. Right panel: The protein sequence 
motif of the DNA-binding region of the LacI-family TFs per GOOFE. The numbering of the protein residues deviates slightly 
from that in the various crystal structures. This relates to the fact that the alignment includes some gaps that are necessary to 
accommodate all the LacI protein sequences that have been compared by us. The visualization of the sequences was created 
using Weblogo [99]. remark: NMR studies have shown that the hinge helix plays an important role in kinking the DNA whilst 
forming an alpha-helix (helix 4) and thereby stabilizing the induced fit of the recognition helix within the major groove of the 
operator [33,81]. In fact, the 3D-structures of operator-bound CcpA and LacI implicate many residues of helix 3 and 4 in the 
contact of the TF with the operator [56,57]. Moreover, the 3D-structures indicate that in both CcpA and LacI the same resi-
dues are involved. The DNA-protein contacts are indicated with triangles. The blue triangles mark the residues interacting 
with the phosphate backbone and the red triangles mark the residues interacting directly with a nucleotide (the position of the 
nucleotide is indicated in a box). In the case of Lp_0188 (SacR), a well-conserved guanine and corresponding cytidine are found 
at positions -7 and 7 of the operator, respectively. This suggests that the operator recognized by Lp_0188 (SacR) and its 
orthologs, is two nucleotides wider than that recognized by other 'CcpA-like' LacI-TFs. The 'EbgR-like' LacI-family TFs carry a 
conserved insertion before helix 3 and seem to lack the characteristic conserved alanine and leucine (or methionine in the case 
of RbsR) at position 60 of the hinge helix in the 'CcpA-like' LacI-family TFs. The absence of these residues coincides perfectly 
with the absence of the central CG nucleotide pair in the predicted Lp_3470 (LacR), Lp_3479 (GalR) and Lp_3488 (RafR) oper-
ators.

 Nucleotide         -8 -7 -6 -5 -4 -3 -2 -1  1  2  3  4   5   6  7  8

CcpA-like

EBgR-like

G
T
A
C
T
A
T
C
AT
ATTGTACGTAAATATGCTAGTAGTA

T
A
T
C
AT
A
G
A
TTTTACGTTAAACTAGATGATAT

C
T
A
T
C
A
G
T
A
A
TTTATACTCAAATCAATCTAATC

 Nucleotide           -8 -7 -6 -5-4 -3-2 -1 0 1  2  3  4 5  6  7  8

T I RKE I ALAKTAGYSSPATVSRLI LNNDQPTSFSVI TSDSHTARKETKVI QLTQVTARQQNLNEY I
E
S
Q
V
P
N
G

T
S

T I
L
A
KD I ASEQKRQALVASDKG I

VS
S
Q
P
N
L
I

S
ATVSRVLNRKYDRKQESTLSVGTSQDESQKDETKRRQKHQKRVI LFMKTEATIVAGDETSKE I

L
S
R
N
GYQKSTKYNLRHTALK T

R
K
Q
K
I
H
T

T

R

N

H

G

A

K

L
I
E
K
N

TLKD I ANDKVGVSLATVSRVLNKDQASLSVSGDTETRQRK I LKDTAAEALQHYSKSNK RHTN
Residue                    20                      30                      40                       50                     60

T I YDVASRREVANGDAKVSLMATVSRVVNGNSNPN VRKEKPVSEATKRREDKRKVNMLDAEAV I KEDERLGHDYHQRPNAVAQRGLA
TLNASDVAKRKANVSKMTVSRV I NHPDETQ VSRTPDELRKMEKML I

V
Y
L
H
N
S
V
AMTEKQAELEDNYVHI PNAYAARALV

T
S
N I SRHD I AKRLKASGVYASKVSTVSRVLI NQHHQPKHY VASDEDATKAKRQKEAKVI MEAVL I TKQELDY I

VPNSRQLARDLS
T I SE I AKAEAAGVGVTGTVSRYLNHRHPYS V

I SVAEAKRKTKRQ I QEKAA I HEQKLGDYTPSNA I
AATSSQLR

T I QRKD I
VAQNAKRLEKTAGVAS I

V
PSTVASRAMLGNHGNDNSNKPLKIR I SQLKDATRPKAT I

R
K
D
ERK I

V
Q
K
I
R
A
K
L
I
A
M
A
K
R
E
D
A
E
M
E
L
D
N
G
F
Y
T
S
L
K
APDNAYFSNAARQKTSNLSTA

T I KDVANARQDLSAQEGTRVSVI SATTVSLQ I LNNGKHNEGTQDAKR FSSGALKEAT I
V
K
E
A
R
KVRLIEQAARKKDERKED I

L
S
NYQEPDYFARQNRMVI

KLSNTDVAREAKEKLAKGCVSAVPTTVSRV I NRKNHYKGY I
LS

D

S
E
Q
Q
KTVRKI QTNKEDKVQNFHQKEAAMEAQKRKTELHGNYKQPNGSNVMLARGSLKHQ

T I KD I
VAAKNKATANGFVSTI ATVSRVLSAKGKQKDGFETFA YSLEDAKTQEEKKR I

V
L
K
HKVAAI RQKEDLGYKRKNKTLAAMVELV

T I KD I ARKLKVAGVSAPSATVSRVLSANKTSKAYF Y
F
T
S
S
A
E
DTAEAMKVRQKAAATRTELGYQKKNTQAAVAELV

Residue                    20                      30                      40                       50                     60

N
-1/+1

N
-6/+6

N
+2

N
-5

N
+4/+5

N
-3/-4

Lp_2256  CcpA

Lp_0173 

Lp_2602  CcpB

Lp_3221

Lp_0172  MalR

Lp_0188  SacR

Lp_3661  RbsR

Lp_3470  LacR

Lp_3488  RafR

Lp_3531

Lp_3625

Lp_3479  GalR

C
A
T

G

A

C
TT
G
G
A
T
T
AAGACGT A

TTTGCACTA
T
CTGTATATCACGTCGTTATACGATGA
A
CTGGTGAACCGCGGTTCTCATGC
ATGGAAATACGATTCCATA
T
A
G
T
G
CGCAATACGGCTTCGCACTA

G
C
A
G
C
ATAAAACGTTTTACAAT
TGTTCATATGACGCATTTTAGGTACTA
G
C
A
TA
TGTAAACGTTTACAGTGCAT

T
A
T
A
C
T
A
GCAAACGTTTGTACTGT

helix 3 helix 4helix 2helix 1
Page 5 of 19
(page number not for citation purposes)



BMC Genomics 2008, 9:145 http://www.biomedcentral.com/1471-2164/9/145
used as input. For instance in L. plantarum, new Lp_0172
(MalR) operators were detected upstream of the operon
comprising the gene lp_0172 (malR) and upstream of the
neighboring operon. Furthermore, the notion that auto-
regulation is an important feature connected to LacI-fam-
ily TF mediated regulation [27,49-51,54] was confirmed
within L. plantarum, by the identification of a specific
binding site upstream of all LacI-family TFs with the
exception of Lp_0173, Lp_3488 (RafR) and Lp_3661
(RbsR). It is generally accepted that auto-regulation pro-
vides stability to a transcriptional network [59-61].

As expected, most potential binding sites were identified
upstream of operons that encoded functionalities related
to the catabolism of particular carbohydrates. In L.
plantarum WCFS1, 11 out of 12 LacI-family TFs were
found to be associated with active carbohydrate transport
systems (driven by protons: GPH family; ATP: ABC trans-
port systems; or phosphoenolpyruvate: PhosphoTrans-
feraseSystems). Furthermore, the size of the putative
regulons varied slightly. For instance, the putative regulon
of Lp_3625 encompassed only one operon, whereas that
of Lp_0172 encompassed five operons (Figure 3).
Although the putative regulon of CcpA was the largest, it
was still limited in size, which is slightly in contrast with
the global role of CcpA [21,24,25]. The precise composi-
tion and functionality of most of the predicted regulons is
discussed in some detail in Additional file 9.

The molecular function of LacI-family TFs and the connection with 
the predicted biological role
The functional similarity between homologs can be
derived from a proper phylogeny of all homologous
sequences [41,62]. However, the low bootstrap support
for the 'early' branches in the NJ-tree of all LacI homologs
made it impossible to deduce functional similarities
between the members of different clusters of orthologous
sequences (Methods and see Additional file 4). It was
observed by us (Francke et al. unpublished results) and
others [63] that generating a NJ-tree of intra-species
homologs of specific functional domains is extremely
helpful to overcome this problem. To obtain putative
links with experimental functional data, orthologous
sequences linked with experimentally verified 'inducer'
specificities can be added. The branching pattern within
such a NJ-tree for the LacI-family TFs of L. plantarum (Fig-
ure 4 and see Additional file 5) and the bootstrap support
for that pattern, suggested clear similarities in the encoded
affinity for certain inducer substrates. It must be noted
here that 'inducer' does not necessarily mean that the
binding of the TF to the DNA is promoted by the particu-
lar molecule. In fact, in many cases the interaction with
the 'inducer' causes a release of the LacI-family TF from
the DNA and thereby a relief from repression (as shown
experimentally for MalR of E. faecalis [64]; SacR in L.
plantarum [65]; GalR in S. thermophilus [51]; and RbsR in
L. sakei [66]).

Table 1: The CRE consensus. For B. subtilus and species of the phylum Firmicutes in general, a consensus has been formulated by others 
on basis of both (exp) experiment and (pred) predictions. For the composition of the L. plantarum CRE consensus (bold, italics) we 
have used the two experimentally established CREs in L. plantarum [49,110] and the initial CcpA operator motif retrieved by us 
(Figure 2).

LacI-family TF Organism Site Operator(a) Evidence

CcpA B. subtilis CRE TG WNAN CG NTNW CA pred/exp: [29]
B. subtilis CRE TG NAAR CG NWWW CA pred/exp: [22,28]
L. lactis CRE WG WAAR CG YTWW MA pred/exp: [25]

Firmicutes CRE WG NAAS CG NWWN CA pred/exp: [30]
Firmicutes CRE WG HWAD SG YWWD CA pred/exp: [21] (b)

L. plantarum CRE NK NWAN SG NWWN CA pred/exp: [49, 110] and this work

(a) Abreviations for specific nucleotide combinations taken from [111]: C, G: S (strong); A, T: W (weak); A, G: R (purine); T, C: Y (pyrimidine); T, 
G: K (keto); A, C: M (amino); A, T, G: D (not-C); A, T, C: H (not-G); A, T, C, G: N (any).
(b) This consensus is based on the experimentally verified operators listed in this reference

Table 2: Known and predicted operators for ExuR in B. subtilis and MalI in E. coli. The operators determined by experiment are shown 
in normal print and the same operators as predicted using our new approach are shown in bold italics. O1 and O2 indicate the relative 
position of the operator sequences with respect to the translation start.

LacI-family TF Organism Site Operator Evidence

ExuR B. subtilis TG TTAA CG TTAA CA pred/exp: [54]
ExuR B. subtilis TG TTAA CG TTAA CA pred, this work
MalI E. coli O1 GT AAAA CG TTTT AT pred/exp: [31]

O2 GA AAAA CG TTTT AT
MalI E. coli gT aAAA CG TTTT At pred, this work
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The identification of various additional sites whose pres-
ence should be expected (i.e. related to autoregulation or
regulation of genomically associated operons) supported
the view that the approach yielded genuine TF-specific
binding sites. Other support for the validity of the identi-
fied sites and regulons was provided by a comparison of
the functionalities encoded by the regulons and the mol-
ecules that induced the activity (or better: the in-activity)
of the related TFs. Figures 3 and 4 show that in almost all
cases a straightforward metabolic link existed between the
predicted regulated functionality and the assigned
'inducer' of the TF. For example in L. plantarum, Lp_0188
(SacR) is predicted to respond to sucrose or oligofructose,
a prediction that was derived from experimental evidence
obtained for orthologous TFs [67-69]. Concordantly, its
putative operators are found upstream of two operons
that harbor the genes encoding an active oligofructose/
sucrose uptake system [65] and enzymes that catalyze the
conversion of the phosphorylated oligosaccharide into
phosphorylated disaccharide and the phosphorylated dis-
accharide into glucose-6-P and fructose.

Some of the predicted regulatory connections could be
substantiated directly by published transcription data for
L. plantarum or related species. On the other hand, the pre-
dictions also could often not be extrapolated in a straight-
forward way. For instance, similar to the prediction for L.
plantarum, the expression of the ribose utilization operon
(rbsUDK) in L. sakei was shown to be controlled by RbsR
and induced by ribose [66]. Unfortunately, the induction
of other operons was not studied. Another example is pro-
vided by transcriptome data for L. plantarum grown on
short-chain fructooligosaccharides compared to glucose.

As predicted, expression of the divergon associated with
lp_0188 was induced under these conditions [65]. Never-
theless, the maltase/sucrase encoding gene lp_0174 that
was predicted to be controlled by Lp_0188 (SacR) was not
induced. This observation could very well relate to addi-
tional factors that are involved in the regulation of the
particular gene. An example of the subtle differences
between species is found for the regulation of the gal
operon (galK, galT and galE) and lac operon (lacS and
lacZ). In S. mutans [52], S. thermophilus CNRZ 302 [51]
and S. salivarius [70] expression of the gal operon, as well
as that of galM and the lac operon in S. thermophilus and
S. salivarius was shown to be controlled by GalR and
induced by galactose. Our predictions suggest that in L.
plantarum the gal operon is similarly controlled by the
GalR ortholog Lp_3479. The lac-operon in L. plantarum
however, was predicted to be controlled by a paralogous
LacI-family TF, Lp_3470 (LacR), that is absent from the
Streptococci, but which is present in L. acidophilus where it
was shown to regulate an integrated lac-gal operon [71].
At the same time, in some strains of another Lactobacillus
species (L. delbrueckii [50]) the lac-operon was shown
again to be controlled by an ortholog of Lp_3479 (GalR).

The mode of action: repression or activation
Although, the nomenclature of most LacI-family TFs hints
that their main mode of operation is repression (hence:
Repressor), for CcpA it has been shown that it can also act
as activator [21,23]. In Lactococcus lactis, activation by
CcpA was observed when the central nucleotide of the
CRE was located at position -31 or -21 with respect to the
-35-sequence of the promoter and repression by CcpA,
when it was located around positions -9, -4, +9, +19, +40,

Table 3: Operators for various LacI-family TFs present in L. plantarum. The operators that were verified by experiment in several 
species of the phylum Firmicutes are listed in normal print, the operators predicted by us for the orthologous TFs in L. plantarum are in 
bold italics. O1 and O2 indicate the relative position of the operator sequences with respect to the translation start. * Transcription 
from O1 was 10 times stronger than from O2.

CcpA-like LacI-family TF Organism Site Operator Evidence(a)

MalR S. pneumoniae O1 CG CAAA CG TTTT CC pred/exp: [53]
Om CG CAAA CG TTTG CG pred/exp: [53]

Lp_0172 L. plantarum cG CAAa CG cTTG CA pred, this work
RbsR L. sakei gT AAAA CG TTTT Ac pred: [112]

E. faecalis gT AAAA CG TTTT Ac
Lp_3661 L. plantarum .T AAAA CG TTTT Aa pred, this work

EbgR-like LacI-family TF

LacR L. delbrueckii O1 TTG TTT ACT AAA AAT pred/exp: [50]
O2 TTG TTT AGT AAA CGG pred/exp: [50]

Lp_3470 L. plantarum aaa TTT AGT AAT t.. pred, this work
GalR S. thermophilus ..T TTT AGT AAA A.. pred/exp: [51]
GalR S. mutans O1* AAA TTT AGT AAA ATT pred/exp: [52]

O2* ATT TTT ACT AAA ATT pred/exp: [52]
Lp_3479 L. plantarum aat TTT AGT AAA a.. pred, this work
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The L. plantarum operons predicted to be controlled by (a) 'CcpA-like' LacI-family TFs and (b) 'EbgR-like' LacI-family TFsFigure 3
The L. plantarum operons predicted to be controlled by (a) 'CcpA-like' LacI-family TFs and (b) 'EbgR-like' LacI-family TFs. The 
set of operons is restricted to those having a very high probability of being correctly predicted. The positions of putative oper-
ators are marked by triangles and the direction in which transcription is presumably regulated is indicated (< and >). The func-
tional categories of the proteins encoded by the genes that are under the control of LacI-family TFs are color-coded as 
depicted in the inset. The functional annotations were taken from the in-house annotation database of L. plantarum WCFS1 
([38] and C. Francke unpublished results). See [Additional file 9] for a detailed description of the functional annotation.
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+50 and further downstream [25]. The characteristic inter-
vals of 5 or 10.5 bases were ascribed to a helix-face
dependence of the regulatory activity. A similar depend-
ence had been observed before in the activation of ackA
transcription in B. subtilis [72]. The footprints accumu-
lated in Figure 5, indicated that most LacI-family TFs in L.
plantarum are indeed expected to act as repressor. Moreo-
ver, in all cases the predicted operators are found at the
expected characteristic positions with respect to the pro-
moter.

Regulatory overlap between LacI-TFs
Another interesting aspect of the predicted regulatory con-
nections that became apparent from inspection of the
footprints in Figure 5 was that many operons appear to be
preceded by multiple LacI-specific putative operators. For

example, the two neighboring operons involved in
sucrose/oligofructose transport and catabolism are pre-
ceded by two putative Lp_0188 (SacR) operators. It was
shown that transcription of these operons is indeed
induced simultaneously [65]. This observation fits the
assumption that one of the operators controls the tran-
scription in one direction and the other in the opposite
direction. Conversely, two divergently transcribed genes
can in principle also be controlled by a single operator.
The latter was shown to be the case in the transcriptional
control of the gene levR and the operon levABCDX in
Lactobacillus casei [73] and in the transcriptional control of
the genes pepQ and ccpA in L. delbrueckii [74] and L. lactis
[25]. The genes pepQ and ccpA are similarly organized in
L. plantarum. Furthermore, upstream of the ccpA gene
three different putative promoter sites can be distin-

A reduced NJ-tree of the inducer-binding domain for the LacI-family TF homologs of L. plantarumFigure 4
A reduced NJ-tree of the inducer-binding domain for the LacI-family TF homologs of L. plantarum. The sequences of LacI-family 
TF homologs with known inducer from other organisms were added for comparison [21, 34, 45, 50-53, 64, 67-69, 84, 100-
109]. Orthology is indicated by color-coding. The numbers accompanying the clusters in the NJ-tree represent the bootstrap 
support for the individual divisions (out of 1000).
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Lactobacillus plantarum   Lp_2256 (CcpA) P-Ser-HPr 
Bacillus subtilis   CcpA   P-Ser-HPr (see [21])
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guished and every promoter seems to be connected to its
own CcpA operator. This finding is in line with the exper-
imental evidence provided by [49]. Nevertheless, based
on the relative positions of the putative CREs, the effect of
CcpA on its own expression is extremely difficult to pre-
dict of hand. CcpA seems to act as activator as well as
repressor depending on the actual promoter.

The role of TF concentration
The molecular nature of the interaction between TF and
operator dictates that the actual binding of the two will be
dependent upon the activity (in the thermodynamic
sense) of both. Consequently, the occupancy of any bind-
ing site by a certain TF can be raised by raising TF concen-
tration. In fact, a relatively high TF concentration is
anticipated for CcpA [21]. To get some idea of the relative

concentrations of the LacI-family TFs in L. plantarum, tran-
script levels obtained under different growth conditions
were inspected (see Figure 6). The observed transcript lev-
els suggested that except for Lp_3625, all LacI-family TFs
are under some conditions expressed to relatively inter-
mediate levels and Lp_0172 (MalR), Lp_0188 (SacR),
Lp_3531, and CcpB even to levels as high as, or even
higher than CcpA.

Discussion
A generic method to identify TF-specific operators
Every line of evidence sustains the validity of the approach
we have formulated to identify LacI-family TF specific
operator motifs. In all cases where a LacI-family TF opera-
tor has been characterized experimentally, our prediction
is in full agreement (see Tables 1, 2 and 3). And likewise,

Operators present in the neighborhood of the genes encoding the LacI-family TFs of the 'CcpA-like' subfamilyFigure 5
Operators present in the neighborhood of the genes encoding the LacI-family TFs of the 'CcpA-like' subfamily. For most TFs an 
alignment of the upstream region is shown for the sequences related to one GOOFE. In the case of CcpA, CcpB and Lp_0172 
(MalR), no proper alignment could be made with regions from other organisms. Potential CREs are indicated by orange bor-
dered boxes and the LacI-family TF specific operators are indicated by differently colored boxes. The -35/-10 regions of the 
putative promoters are underlined in purple and pink, respectively. The translation start is positioned at the right end and is 
indicated in green, as is the putative ribosome binding site.

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

G AT T G ACCT GGT ACCGGT T T C AC AGGCT AC ACT AGCG A AGT GT T A A AT AT T GGCCGGC A AT C A AT T A AG A AT C A A A A A A AT A AG ACG A AGGT GG A AT T A AT G
Lp_2602-CcpB
CcpB: 

AT A A AGT AT A AT T A A AT A A AT A AT GC A AGT T T AT GC A AT CGCT T GC A AT A ACG AT G A A A ACGT T T T AT AT T T A AT G AG AT GG AT T C A A AT AG AT CGGGGGG AT C AT G AT GLp_0172-MalR
MalR: 

AT T CT GT T A ACGT T A AC AT T ACG A A A ACGCT T GCG A A AGCGT T T GC AC AGT T GC AT A AT A - A AT T A T GGT A A AT G A AT T A AG AT ACT T CGC A - AGG AGG A AGC A - CT AT G

AT GT T GT T AT CGGT A AC AT GT G A A AT CT CCT T GT A A ACGCT T T - - - - CG A A AT C AGC AT AT A AT A A AT ~ 16 ~  T T C AC A A ACT T T A A A A A AG A AT T G      ~ 53 ~  G AGG AGG A A A AGT A A AT G
AT T CT GT T ACCGGT A AC AGGT T T A A A ACT AT T GT A ACCGCT T T - - - - CT GT CG AGG AT T AC A AT T G T CT C AG AT T CC A AG AT AG A - AGGGGG A A A A A - AG AT G
AT T CT GT T AT CGGT A AC A A AT CG A A AGT T GT T GT A ACCGCT T T - - - - CT AT AGG AC A AT AC A AT T G T T AT AGT T T CGT A A AT AG A - AGG AGG A A A AG - AG AT G

Lp_0175   (Lp_0173/ Lp_0172-MalR)
Lp_0173:

LMO02124-L.monocytogenes
BLH00606-B.licheniformis
BS03456-B.subtilis

C AT G A A A AT AT A AT AT A A A A AT GT C A A ACG AT T G AC AT AT C - AGT GT A AGCGGT T T T AT A AT AGT G AC A AT T A AGT CG A ACGT T A A A A AGG AGCT C AT CGT C AT G
AT A AGG AT T T A A A AG A AT G AC AT ACGT T T G AC AT AT C A A ACGT T T AC AT T T AT AT T AT AT T T AT T G A AT A AC AT GT C AC A A AGG AGT T T A T T AT G

C AT G A A A AT AT A AT AT A A A A AT GT C A A ACG AT T G AC AT AT C - GGT GT A AGCGGT T T T AT A AT AGT G AC A AT T A AGT CG A ACGT T A A A A AGG AGCT C AT CGT C AT G

T C A A ACGCT T G AC AT AT T T T CC A A AC - - T T GT T AT T AT T GGGT CT GT A A AGCGCT T GC AT T AT T A A AT T A A A - A AT A AT T T T AG ACT C AGGG AGT G A AT T AT T AT G
AT A AT CGT T T G AC AT A A A AT GT A A ACGGT T G - T AT T AT CGT AT T T G A A A AGCGT T T AC A A A A AT ACGT A A A AC A AT A AT GT T A A A AGG AGT G T T CGGC AT G
T C A A ACGCT T G AC AT AT T T T CC A A A A T T GCT AT T AT T GGGT CT GT A A AGCGCT T GC AT T AT T A A AT T A A A - A AT A AT T T T AG ACT C AGGG AGT G A AT T AT T AT G

A AT T T T GT A
T AT G

A AT T T T GT A

Lp_0187  (Lp_0188-SacR)
LSK01793-L.sakei
PEP01800-P.pentosaceus

Lp_0185  (Lp_0188-SacR)
LSK01792-L.sakei
PEP00270-P.pentosaceus

SacR:

CT T AG ACT T A AT C A A A AG A A A A AGT GCT T A AGCCT T T T T CT T T T G AT T A A AGT GG A AT CG AT T CC A A AT AT A GG AGT A - GT A AT T AT G
CT T AT CGT T G A A A AT C AGGC A A AGCGCCT G AG T T T T AT T T T T GCCT C AT AT GG A AT CG AT ACC AC AT T T T C AT ACG AC AGC AT C AGCT A ACT GG AGG AT AT AGT C AT G

GT C A AT T T GT CT T G AC A AT T ACT T G A A AGGT CGT T AT AT T A AT - T AT GG A A ACG AT T CC A A AC AGGGGGGT G AGC - CT A A AT G
AGT C A AT ACT T G AC AT T T CT T G A A AGCGCT GT AT ACT AGT CT AT G A A AT CG AT T CC AT AC A A A AGG AG AT GC A AGG A AT G
A

LSE01605-L.casei

LSE01604-L.casei
Lp_3221: 

Lp_3220  (Lp_3221)

GT A A ACGT T T ACT T T AT T AT T A A A AC AGT AT T GT A A ACGT T T ACGT T A AGT GCT AGT AT T GCCCT GT - T G A A A AGT G A T T A ACT - - T T T A AGG AG AT GG AT T CT C AT G
GT A A ACGT T T ACT AT CT T GT T A A A A AGCC AT T GT A A ACGT T T ACT GT AT GT GCT A AT AT T CT T T T T T GT A A ACGT T T ACT T A A A A ACT T A A AG A A A T T T A AGG AG A AT A AT T T AT G
GT A A ACGT T T ACT GT ACT GGT AT A A AT G A AT T GT A A ACGT T T A CGC A A AGT GGT A AT CT A T G AGT AC A A A AT A A A A AGG AG A AT C A A AC - A AT G

A AT A AT A A AGT A A ACGT T T AC ACT T T T G ACG AT G AT T T T ACCT GCT T T T AGCGCT AT A AT T A AT T T - A A AT GGG AGGGG - AGT T GG A A A A - - AT G
A AC A AG AT AGT A A ACGT T T ACT - - - - - - GT A A A A AT A A A A A AT ACT C AT A AT GT T AG ACT T T AT T T A - T A A AG AT AT T C A A AT GGG AG AGC - T T A - - - AT G
ACC AGT AC AGT A A ACGT T T ACT T AGT - - GT A AT A AT - T G AT T T A AT C AT A AGGT C A~10~ A AG A AT T T AT T T  ~ 2 1 ~ T T GGG AT AT A AT A A A AT G AGGT AGT A AGT T AG A A A ACGGGGT T A AT G AT G

T ~ 9 ~
Lp_3533  (Lp_3531)

OON00187-O.oeni
LME01514-L.mesenteroides

Lp_3531: 
OOE00186-O.oeni
LME01513-L.mesenteroides

A AT AT C AT T G ACT T T T GGC AT GT A AGGGGT T AC AT T CT AT T T A A - - - - - - - GC A A ACGT T T GCT T A A ACT - AT AG T G AT ACT CG A A A A GG AT G A A AT ACT T T G

ACT C AT CGT T T T T T - - - AC AC A A ACGT T T GCT T T T CT T T CGT A A AGGC AT T GC A A ACGT T T GT GT A A A AT G AT AG A AT T C AT T T T G A A A ACGGT T ACT T AT T T T T T A A AGG AGGCCT T CCT AT G
AT CT A A GT T T T T A - - - ACT T AG AT T T T T A AT T AT T AT T T T T AC T C A A ACGT T T G AGT A A A - - - A AT T T CT CT T T AT AG A A A - - GG AT GT T T T T T AT G

Lp_3627  (Lp_3625)
LBE02143-L.brevis
SHA00075-S.haemolyticus

Lp_3625: 

G A AT T A AT T AT T C AG AT GT GT T AT AT T T T T T ACG AGT T AT T A A A ACGT T T T C AT A A A ACGT T T T A AT A A A A ACT A A AT T C AG AT T A AT T T A ACT - AT T T GG AGGG A - CC AT T AT G

G A AT T AT CG A A A A AGGT C AT T T AT A AT A AT C AT C A AG AT A - GT T AGT A A A ACGT T T T ACT A A T T G AT T A A AT AGGCT T GG AGG A A AT T AT G AT G
G A A AT AGCT T T C A AGGT GT GCT AT AT T T T T GT T GT GG A AT T A A A ACGT T T T ACT A A A ACGT T T T A AT T AG A AT G A A A - - - A A AT A A AT T T T AT T G AGGT GG AT G A A - A AT G
G AT T T A AT AG A AT C A AT GT GCT AT AT T T T T G AT AT GCT AT T A A A ACGT T T T C AT A A A ACGT T T T A A AC A AGT A A A - - - A AG AT A AT CG A A A A - - - - CGG AGG A AT CC AT C AT G

Lp_3660  (Lp_3661-RbsR)
RbsR:

LSK00196-L.sakei
EF00346-E.faecalis
PEP00437-P.pentosaceus

CG ACGGC AC AT T T

C A A A A A AGGT T
CG AC AGC ACCCT T
CC AC AGC AC AT T T

-140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

G A A A AC A AGT ACGGT AT T AT T T T C AT G A A AGCG AT T T C A AT A AC A AT CT T A AGT T GC AT T GG A AGCGT A AT T T T GCT AT AT T GGT T G AT GT T GC AT G A A A ACGG AT G A A A AC AT AT G AT ACC A AGC A AG A A AGGGCT AT T T T T AT AT GLp_2256-CcpA
CcpA: 
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several correlations between the TF sequence (protein)
and operator sequence (DNA) that are anticipated on
basis of structural information [56,57] were retrieved per-
fectly. Moreover, the fact that a specific operator motif
could be identified for every LacI-family TF and that rela-
tively few proper hits for these operator motifs were found
on the complete genome, is proof by itself. More non-spe-
cific methods inevitably would have yielded more degen-
erate motifs and more false-positive identifications.

In lactic acid bacteria many operons involved in carbohy-
drate catabolism are associated on the genome by the
gene encoding the respective regulator [75]. In fact, this
observation may be generalized for all TFs that are consid-
ered 'local' regulators. Our results indicate that especially
for these TFs, a distribution into Groups of Orthologous
Functional Equivalents will reduce the noise in the motif
prediction significantly. In contrast, as current automated
methods generate more degenerate motifs [17] these
methods are better suited for the recovery of binding sites
for 'global' regulators.

Characteristic motifs and the implications of degeneracy
As the interaction between TF and DNA allows for a cer-
tain structural freedom, a TF-specific operator is not nec-
essarily a unique sequence but merely a collection of
sequences which can be represented as a motif or consen-
sus sequence. The molecular nature of the interactions
dictates a distinct relationship between the affinity of the
TF protein for the operator DNA and their respective
sequence. As a consequence, a more degenerate operator

motif relates to reduced affinity. For example, the LacI-
family TF CytR in E. coli exhibits a more versatile binding
of operator sequences than LacI (i.e. has a higher motif
degeneracy). At the same time it was observed that its
affinity for the operator is much reduced when compared
to LacI [76,77]. Likewise, the affinity of the TF for the
operator was shown to be affected significantly by subtle
changes in the protein sequence [78] as well as in the
nucleotide sequence of the operator (for LacI: [79-81]; for
CcpA: [29]). Lehming et al. therefore [78] assumed explic-
itly that the interaction between TF and operator should
be concentration dependent. Ultimately, it is the relation
between the concentration (or better: activity) of active TF
and the rate of expression that determines key features of
the dynamics of the cellular response to internal and
external signals [82].

The predicted specific operator motifs of the LacI-family
TFs in L. plantarum exhibit relatively little degeneracy (>8
nucleotides fully conserved for the 'CcpA-like' subfamily;
see Figure 2) with one exception: the operator motif of
CcpA itself. Considering the above, and based on the fact
that in the 3D-structures of CcpA and LacI bound to their
respective operators the same residues are involved in the
interaction of TF with DNA [56,57], the degeneracy of the
CcpA operator motif indicates it should act at relatively
higher concentrations with respect to LacI and other rela-
tives. Concomitantly, variable regulation of ccpA expres-
sion would represent a way to control the differential
binding of CcpA to CREs [21].

The relative absolute levels of LacI-family TF related mRNAs in various microarray experiments with L. plantarumFigure 6
The relative absolute levels of LacI-family TF related mRNAs in various microarray experiments with L. plantarum. The related 
array data were used before by [17]. Information on the determination of these levels can be found in the Materials and meth-
ods.
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'Local' versus 'global' regulation
The identified CcpA operator motif (CRE) of L. plantarum
is very similar to the consensus CRE that was initially
defined for B. subtilis on basis of a site-directed mutagen-
esis study [29] and later refined on basis of the experimen-
tal identification of additional CREs [22,30] (CRE
consensus sequences are summarized in Table 1).
Remarkably, the DNA-binding domain of CcpA on the
protein level is considerably more conserved compared to
that of the other LacI-family TFs (see Figure 2 right panel),
whereas in contrast, the operator motif is the most degen-
erate. Both facts reflect and emphasize the 'global' role of
CcpA. We observed that the CcpA regulon that was
defined on basis of a genome wide search with the specific
operator motif was relatively small. The same observation
was made by [22] when the genome of B. subtilis was
searched for potential CREs for the first time. The authors
concluded that this related to the lack of degeneracy in the
search motif and they proved experimentally that this was
indeed the case.

It is generally assumed that transcription and translation
are connected processes in bacteria [83] and as a conse-
quence proteins should be produced in the physical vicin-
ity of where they are encoded. A major implication of an
intended local role of a TF would then be that the number
of TF molecules necessary to effectively control expression
can be minimized in case the affinity for the operator is
relatively high (signified by a less degenerate motif). As
mentioned in the previous section, all but one of the pre-
dicted operators indeed show a relatively high degree of
conservation over different, sometimes even distantly
related, species. A low TF concentration will keep in check
non-local interactions as the TF will be virtually absent in
the rest of the cell and, as a result, even operators that are
very similar will not be affected. In fact, it was shown for
carbohydrate utilization by Lactobacillus acidophilus that
induction of catabolic operons is highly specific for dis-
tinct sugars [71]. Vice versa, a higher TF concentration,
like anticipated for CcpA [21], would relax the sensitivity
towards the composition of the operator and thus enable
binding to sites for which the TF has less affinity. How-
ever, transcript levels that are observed in L. plantarum
under different growth conditions are not completely
conclusive (see Figure 6). Nevertheless, based on the
observed transcript levels one should expect that Lp_0172
(MalR), Lp_0188 (SacR), Lp_3221, Lp_3531, Lp_3661
(RbsR), CcpB and CcpA in principle could regulate multi-
ple and also distant operons.

Regulon boundaries and induced response
Searching the genome of L. plantarum with the identified
specific operator motifs yielded a list of potential binding-
sites for every LacI-family TF. To avoid many false predic-
tions, we have used two conservative criteria to reduce the

list of putative TF-specific binding sites. They related to
the position of the site with respect to the translation start,
as there is experimental data showing certain boundaries
for that distance [21,23], and to a maximum number of 2
deviating nucleotides. The genes/operons preceded by the
putative binding sites thus should constitute putative
minimal regulons. In principle, more degenerate motifs
should lead to a longer list of compliant sites, as was
indeed observed. This observation, which was earlier
made by others [22], reveals a key point in regulon predic-
tions based on operator motifs, namely motif degeneracy
complicates a straightforward decision about the authen-
ticity of the recovered sites. Moreover, as described in the
above sections, binding will by necessity be influenced by
TF concentration (activity). Therefore, experimental data
on gene expression and TF concentration (activity) will be
essential to refine the predictions. At the same time, in
most cases, a proper interpretation of experimental tran-
scription data will require motif and regulon predictions
because of the fact that the activity of many TFs is inter-
twined and the number of conditions tested or testable
too limited to untwine these. Although the extrapolation
of the predictions to experimental data is non-trivial, sev-
eral of the predicted associations could be confirmed on
basis of data obtained in L. plantarum and related species
(see Results). Moreover, a comparison of the predicted
regulons depicted in Figure 3 with the environmental sig-
nals that are expected to govern the specific LacI-family TF
activities (see Figure 4) shows that the recovered connec-
tion make perfect biological sense. This finding strongly
supports the assertion that the predictions provide a valid
coupling between the LacI-family TFs and functionalities
encoded by the putative regulons.

Conclusion
We have formulated a sequence-based approach that ena-
bles the identification of TF-specific binding motifs. One
of the major advantages of the approach is that it is
generic and thus, in principle, can be applied to any TF
family without prior knowledge of the actual composition
of the binding motif. In fact, we are in the process of per-
forming similar analyses for various TF-families, includ-
ing two component systems, and the preliminary results
confirm the assertion. The method appears perfectly
suited to identify binding sites on the genome connected
to local regulators in contrast to current automated proce-
dures that yield mostly sites connected to global regula-
tors.

The presented data substantiate the successful identifica-
tion of specific operator motifs related to the LacI-family
TFs in the model organism L. plantarum. The recovered
motifs differ in at least one position but at the same time
their similarity is considerable. As the composition of the
operator motif is tightly related to the affinity of the TF for
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the DNA this finding implicates that some of the LacI-
family TFs could potentially bind to the operators of
another. In fact, the observed competition in B. subtilis TF
knock outs, between CcpA and CcpB in the repression of
the gnt and xyl operon [84], exemplifies this phenome-
non. Simultaneously, higher TF (or binding site) concen-
tration (activity) will result in regulation at degenerate
sites (i.e. lower affinity) (see [1]), a conclusion that corre-
lates well with the mechanism of control of TF-activity
itself as this involves a change in affinity of the TF for the
operator upon induction [34,85]. An important corollary
is that regulons, and especially those related to global reg-
ulators, will vary in size depending on the environmental
conditions.

Finally, potential binding sites can be identified based on
the operator motif predictions and from those the func-
tionalities that are regulated in response to a given stimu-
lus can be reconstructed. In principle, the coupling of
putative regulons with potential TF inducers thus provides
insight in the prioritization of the functionalities within a
certain organism. Nevertheless, our data on LacI-family
TFs in L. plantarum makes perfectly clear that in order to
arrive at a complete reconstruction of the encoded tran-
scriptional response to environmental stimuli, experi-
mental data on transcription as well as TF and inducer
concentration under different environmental conditions
is adamant.

Methods
Resources and tools
All genomic information was obtained from the ERGO
genome analysis and discovery system [86] and updated
until the 1st of July 2007. Nevertheless, the presented
results do not depend on the use of this particular
resource and the methods described in this paper can as
well be applied using publicly accessible resources (like
those at NCBI [87]). The genome sequence of L. plantarum
WCFS1 and the functional annotation of its genes was
taken from our in-house annotation database [38]. Poten-
tially homologous sequences were collected from the
database using the BLAST algorithm [88], with a typical
cut-off between 10-2 and 10-10. Multiple sequence align-
ments were made with MUSCLE [89] (default settings).
Alignments were visually inspected and aberrant
sequences were removed (characterized by many gaps and
a distinctly different conservation pattern). BioEdit [90]
and Jalview [91] were used to edit sequences, and Clus-
talW [92] was used to create (domain-) specific boot-
strapped neighbor-joining trees (with 'correction for
multiple substitutions' [93]). The resulting trees were ana-
lyzed using LOFT, a tool that automatically divides the
sequences into orthologous groups based on the hierar-
chy of the tree and the duplication and speciation events
implied by that hierarchy [62]. Overrepresented DNA

sequences in a selected set of upstream regions (300
bases) were identified automatically using MEME [94]
and MAST [95] was used to detect other potential TF-bind-
ing sites on the genome (default cut-off p-value < 10-5).

Identification of TF-specific operator motifs
A generic phylogenetic footprinting/shadowing approach
was formulated to improve the identification of TF-spe-
cific operator motifs. Compared to other methods the spe-
cificity of the motif prediction is increased by the
identification of orthologs proper and by taking into
account the modular organization of the bacterial
genome. The approach was applied to a model family of
TFs (LacI) in the model organism L. plantarum WCFS1.
The related flow scheme is depicted in Figure 7 and
described in detail below:

- Selection of a TF family, the collection of homologs and the 
derivation of orthology (Figure 7 1–4)
Intra-species and inter-species homologs were collected
from the database using BLAST and the search was iterated
until no additional sequences were found. This search was
not only performed on the level of the complete sequence
but also with individual functional domains. The
sequences were aligned, aberrant sequences were
removed, a bootstrapped NJ-tree was generated, and the
hierarchy of the branching together with the bootstrap
support were considered to identify orthologs. In the case
of LacI-family members, the complete sequence of CcpA
from L. plantarum was used as a starting sequence, as well
as the N-terminal (first 90 residues; DNA binding
domain) and C-terminal (other residues; inducer binding
domain) sequence. To restrict the size of the final collec-
tion, only Firmicutes genomes were analyzed. The exam-
ined species included well-studied organisms such as B.
subtilis, L. lactis and S. thermophilus (see Additional file 1
for a complete list of analyzed genomes). To improve the
potential for functional identification the genome
sequences of several E. coli strains and Salmonella species
were also included. A striking feature of the NJ tree of the
Firmicutes LacI-family TF homologs was that the represen-
tation of the 'early' branching events came out very unre-
liable, as signified by the extremely low bootstrap support
(several values were as low as 1). In contrast, most
branches related to supposed more recent evolutionary
events had high bootstrap values in the NJ-tree and, as a
result, the LacI-family TF homologs could be separated
reliably into groups of orthologous sequences (see Addi-
tional files 4 and 5). The set of homologs identified by us
was compared to the entries in the PFAM database [96].

- Definition of functional equivalents (Figure 7 4,5)
Orthologous clusters can often be further subdivided to
obtain putative Groups of Orthologous Functional Equiv-
alent s or GOOFEs. The homogeneity of the sequence
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The TF-specific operator motif identification workflowFigure 7
The TF-specific operator motif identification workflow. 1) First a particular TF-family was selected and 2) a prominent repre-
sentative of that family was chosen. 3) The related sequence was used to search the genome of a particular species for intra-
species homologs. This search was iterated until no new sequences are recovered. A high e-value cut-off was employed to 
ensure the recovery of all homologs. The sequences were aligned and a NJ-tree was generated. Both the alignment and the NJ-
tree were used to determine the family or sub-family boundaries. 4) The procedure was repeated to retrieve all inter-species 
homologs and the general features of the intra-species homologs were used to determine the sequences that were taken into 
consideration. Orthologous relations between sequences were established on basis of clustering in the NJ-tree and a sufficient 
bootstrap support (in green) for the clustering. In the case of Lp_0172 and Lp_0173 the orthologous clusters are color-coded 
in brown and orange, respectively, and the other TFs of L. plantarum are indicated in red. 5) The genomic context of the vari-
ous orthologs was inspected (legend bottom left) and in case clear differences existed, the orthologous groups were sub-
divided into different Groups of orthologous functional equivalents (GOOFEs), as illustrated. Then, upstream regions of the 
conserved gene(s) in context were selected and inspected for potential regulatory sequences (the selected regions are indi-
cated by colored triangles). The potential regulatory sequences were compared and those that showed similar features were 
selected. In fact, only those sequences that showed the highest conservation were selected to determine a specific operator 
motif. In the case of Lp_0172 and Lp_0173, a 'CcpA-like' operator motif was found up to 3 times in the upstream regions. The 
sequences that were selected to determine the Lp_0172 and Lp_0173 specific operator motifs are displayed (Px indicates the 
relative position of the selected sequence with respect to other similar sequences and relative to the translation start). 6) The 
selected sequences were used to create a GOOFE specific operator motif. The thus identified specific motifs related to the 
orthologous groups containing Lp_0172 and Lp_0173 demonstrate that the division into GOOFEs was essential to arrive at 
highly specific operator motifs. Although the motifs within both orthologous groups are highly similar, they differ distinctly in 
one position depending on the GOOFE. In the case of the TFs orthologous to Lp_0172, the motifs are strikingly different at 
position +5, with a fully conserved guanine in the GOOFE containing Lp_0172 and a fully conserved thymidine in the other. 
And in the case of the TFs orthologous to Lp_0173 the motifs are strikingly different at position -5, with a fully conserved thy-
midine in the GOOFE containing Lp_0173 and a fully conserved adenine in the other. remark: The gene/protein identifiers in 
the figure are derived from the ERGO resource [86]. A conversion to other identifiers can be found in [Additional file 2]. The 
functional annotation of the depicted genes were taken from the in-house annotation database of L. plantarum WCFS1 ([38] 
and C. Francke unpublished results) and the ERGO resource. See [Additional file 9] for a detailed description of the functional 
annotation in L. plantarum.

[1000]

[996]
LPL03470

LJO00856
LAC01378

BS03412
BCA03501

LSE00407
LPL03479

PEP00413
LPL03488
LBE01856

GKA02189
BS03020

LMO01029
LJO01265

LAC01400
LMO00857

GKA03317
BCA00312

[15]

[9]

[392]
LBE01394

PEP00436
LPL03661

LSE01531
LMO01993

BAN05325
BS01083

GKA01943

[14]

[46]

[1000]

LPL00173
LAC01766
LJO00210
LSE00631
LMO02127

BS03458
BCA01029

BCA01157

[856]

[911]
LMO00535

LPL02602
LSE01999

BS04081
LMO02735

BAN01280
BAN01407
BS01388

BAN02917
BS01056
BAN05973

BAN01998
BCA01555

LSE01294
LPL03221
LSE01604

[999]

LJO00491
LAC00414

LMO01598
PEP01697
LSE00755
LPL02256
LBE01171

BCA02746
GKA02852
BS02968
BAN00266

GKA02157

[138]

BS02209
LBE00448
LBE00112

LBE02108
BCA03338
GKA01984

[338]

LJO00744
LAC00476
BAN03545
LSE01485

LMO00733
BCA03102
PEP01237
LPL00188
LAC00382

LJO00517
BS03586

GKA03273
BAN03180
BCA03529

LJO01260
LAC01384

[19]

BCA03582
BAN03010

BCA03744
BCA03458

BCA03453[996] LPL03531
LPL03625
LBE02142

[754]
LPL00172

PEP00537
LBE00363

BCA04003
BAN04855

GKA00750
LMO00031
LMO02840

BCA00300
LBE00151

BS01238
LMO01726

BCA03362

1) Select TF family

LacI

2) Select sequence

CcpA (N-term)

LP_2256  1e-62 LacI
LP_0188 4e-19 LacI
LP_3221 6e-17 LacI
LP_3661 1e-16 LacI
LP_2602 4e-15 LacI
LP_0173 4e-14 LacI
LP_0172 6e-12 LacI
LP_3625 3e-08 LacI
LP_3531 3e-06 LacI
LP_3479 3e-06 LacI
LP_3470 4e-06 LacI
LP_3488 1e-04 LacI
LP_3558 3e-02  GntR

3) Search homologs
intra-species iterative

4) Search Homologs
inter-species iterative
Align and Check
Create NJ-tree

6) Define Motifs
and Search the Genome

5) Define GOOFEs based on Synteny
and Select Upstream Regions

P2 TTGATAACGGTAACAA

P2 TTGATACCGGTAACAG

P2 TTGATACCGCTAACAT

Lb.johnsonii

Lb. acidophilus

Lb.casei P2 TTGATAACGGTAACAA

P2 TTGATACCGGTAACAG

P2 TTGATACCGCTAACAT

TTGATAACGGTAACAA

TTGATACCGGTAACAG

TTGATACCGCTAACAT
1766

0210

0631 OG:0173
GOOFE2

P2 TTGTTATCGGTAACAT

P2 CTGTTATCGGTAACAA

P2 CTGTTAACGTTAACATLb. plantarum

L. monocytogenes

B. subttilis

P2 TTGTTATCGGTAACAT

P2 CTGTTATCGGTAACAA

P2 CTGTTAACGTTAACAT

TTGTTATCGGTAACAT

CTGTTATCGGTAACAA

CTGTTAACGTTAACAT

01720173

3458

2127
OG:0173

GOOFE1

P2 ACGCAAACGCTTGCATLb.plantarum P2 ACGCAAACGCTTGCATACGCAAACGCTTGCAT
1729

OG:0172
GOOFE1P2 AAGCAAGCGTTTGCAC

P2 GCGCAATCGGTTGCATLb. brevis

P. pentosaceus P2 AAGCAAGCGTTTGCAC

P2 GCGCAATCGGTTGCAT

AAGCAAGCGTTTGCAC

GCGCAATCGGTTGCAT
0363

0537 0536

0365

P2 TTGTAACCGATTTCAT
P1 GTGCAAACGATTTCAC
P3 GCGCAAACGTTTTCAT
P1 ATGCAAACGTTTTCAA
P2 GTGCAATCGTTTTCAT
P1 GCGCAAACGTTTTCCT

B. anthracis

B. clausii

Gb. kaustophilus

P2 TTGTAACCGATTTCAT
P1 GTGCAAACGATTTCAC
P3 GCGCAAACGTTTTCAT
P1 ATGCAAACGTTTTCAA
P2 GTGCAATCGTTTTCAT
P1 GCGCAAACGTTTTCCT

TTGTAACCGATTTCAT
GTGCAAACGATTTCAC
GCGCAAACGTTTTCAT
ATGCAAACGTTTTCAA
GTGCAATCGTTTTCAT
GCGCAAACGTTTTCCT

4003

4855

0750

OG:0172
GOOFE2

OG:0173
GOOFE2

OG:0173
GOOFE1

OG:0172
GOOFE1

OG:0172
GOOFE2

LacI-TF

hydrolase
kinase/phosphorylase
other sugar-related

transport

ABC

GPH proton symport

catabolism of carbohydrates

transcription

functional categories



BMC Genomics 2008, 9:145 http://www.biomedcentral.com/1471-2164/9/145
alignment (as indicated by conserved stretches of residues
and the absence of large gaps or inserts), a high bootstrap-
value at the branching point that separates the ortholo-
gous cluster from the other sequences (Figure 7 4), and
most importantly, a clear difference in conserved gene-
context within the group were used to evaluate the neces-
sity of such sub-division (Figure 7 5). In the case of many
of the LacI-family TFs of L. plantarum, the subdivision into
GOOFEs resulted in clearly distinct operator motifs even
within an orthologous group (as illustrated in Figure 7).
The protein sequences, alignments and trees can be found
in Additional files 1, 2, 3, 4, 5.

- Selection of upstream regions containing putative operators (Figure 
7 5)
The observation that most genes encoding TFs seem to be
associated on the genome with the genes whose transcrip-
tion they control may guide the selection of upstream
regions. The upstream regions of the conserved operons
within a GOOFE were used to search putative operator
sites (selected regions (see Additional file 6)). Only, in
case the TF encoding gene lay solitary on the genome the
upstream regions of the TFs from one GOOFE were used,
based on the notion that autoregulation is a common fea-
ture of many TFs.

- Motif definition (Figure 7 6)
Potential TF binding regions on the DNA (i.e. operators)
were searched automatically in the selected set of
upstream regions (300 bases) using MEME. As motif pre-
diction tools often produce multiple motifs including
many false positives, an alignment of the regions was
made and the observed conservations were compared to
the automatically recovered motifs to remove most false
positives. The final collection of motifs was then com-
pared within the complete TF-family and the TF-specific
motifs were defined based on conserved features, like
characteristic residues, spacing and motif length. The LacI-
family TFs are known to form functional dimers and as a
consequence the reported binding sequence motifs for
these proteins are palindromes of lengths varying between
10 and 16 basepairs [55,57,81]. Therefore MEME was
tuned to find inverted repeats (-pal option) with a maxi-
mum width of 20 bases and the detection of 4 different
motifs with zero or one occurrence per sequence (-ZOOPS
option). The resulting motifs were compared and for each
set of upstream regions (related to a certain TF) an opera-
tor region of 16 ('CcpA-like') or 17 ('EbgR-like') bases was
defined.

- Identification of putative TF binding sites
A specific operator and a position-specific scoring matrix
were created for each TF by application of MEME to the
defined operator regions. To avoid base preferences in the
scoring, a background file in which the probability of

finding an A, T, C or G at a certain position at random was
set at 0.25. The final position-specific scoring matrices
were used as input for an automated genome-wide motif
search using MAST. Two additional criteria were used to
filter out potential false positives. Firstly, the vast majority
of LacI operators that have been identified to date can be
found in the range of -250 to +50 nucleotides from the
translation start, with no instances further upstream
[21,23]. Therefore, identified sites located more than 250
nucleotides upstream and more than 50 nucleotides
downstream of the translation start site were not consid-
ered. Secondly, all sites that deviated at more than two
positions in the central 14 nucleotides with respect to the
operators in the vicinity of the LacI-family TFs, were not
considered. The tables that resulted from the MAST search
have been deposited in Additional file 8.

Prediction of the inducer of TF activity
A bootstrapped NJ-tree was generated on basis of a multi-
ple sequence alignment of all LacI-family TF homologs of
L. plantarum, together with orthologous sequences for
which experimental confirmation about the nature of the
inducer could be retrieved. TFs were considered equiva-
lent in case they were clearly orthologous (strong boot-
strap support), were syntenous and provided the
alignment was homogeneous (i.e. the absence of gaps and
several clear conservations).

Reconstruction of the mode of regulation
In principle, TFs can act both as transcriptional activator
and as repressor depending on the position of the opera-
tor relative to the promoter, upstream or inside/down-
stream, respectively [18,25,58,97]. To resolve whether the
TF acts as an activator or repressor, phylogenetic foot-
prints were made for various upstream regions containing
an operator and its position relative to that of the poten-
tial promoter was determined. In case the alignment was
not clear, the predicted operators were used as an anchor
to realign the flanking regions for promoter detection.

Determination of relative mRNA levels for the LacI-family 
TFs
Absolute expression data was obtained from 35 independ-
ent micro-array experiments with custom Agilent oligo-
based arrays of L. plantarum WCFS1 (this yielded 70 semi-
independent datasets). The experimental conditions
tested varied from stress to over-expression of certain met-
abolic genes to growth on different oligosaccharides (D.
Molenaar, unpublished data; see also [17]). The raw data
were adapted as follows. The absolute signals of the spots
related to individual proteins were averaged and then the
signals were ranked independently for the two individual
channels. Per experiment and per channel, the 50 lowest
signals were discarded and the signals of the 200 proteins
ranked lowest in the remaining list were averaged. The
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average was interpreted as basal signal and subtracted
from the signals related to the LacI-family TFs. Finally, the
resulting signals were made relative by dividing all signals
by the highest signal displayed by a LacI-family TF repre-
sentative.
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