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Introduction
Proliferative diabetic retinopathy (PDR) is a type 
of diabetic retinopathy (DR) which is refers to a 
retinal vascular disorder that occurs as a complica-
tion of diabetes mellitus (DM) and has been shown 
to be a frequent microvascular complication of 
DM and the most common cause of blindness in 
the working-age population.1,2 PDR refers to DR 

with retinal neovascularization, which is a severe 
stage in the course of DR. According to a global 
epidemiological survey, the overall prevalence of 
DR was 34.6%, and the overall prevalence of PDR 
was 6.81%.3 The clinical features of PDR include 
neovascularization, vitreous hemorrhage, fibrovas-
cular proliferation, vitreous organization and, in the 
most severe cases, tractional retinal detachment 
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Abstract
Purpose: In this study, we aimed to investigate the differences in the intrinsic functional 
connectivity (iFC) of the primary visual cortex (V1), based on resting-state functional magnetic 
resonance imaging (rs-fMRI), between patients with proliferative diabetic retinopathy (PDR) 
and healthy controls (HCs).
Methods: In total, 26 patients (12 males, 14 females) with PDR and 26 HCs (12 males, 
14 females), matched for sex, age, and education status, were enrolled in the study. All 
individuals underwent rs-fMRI scans. We acquired iFC maps and compared the differences 
between PDR patients and the HCs.
Results: The PDR group had significantly increased FC between the left V1 and the right 
middle frontal gyrus (RMFG), and significantly reduced FC between the left V1 and the cuneus/
calcarine/precuneus. In addition, the PDR patients had significantly increased FC between the 
right V1 and the right superior frontal gyrus (RSFG), and significantly reduced FC between the 
right V1 and the cuneus/calcarine/precuneus. The individual areas under the curve (AUCs) of 
FC values for the left V1 were as follows: RMFG (0.871, p < 0.001) and the cuneus/calcarine/
precuneus (0.914, p < 0.001), while the AUCs of FC values for the right V1 were as follows: 
RSFG (0.895, p < 0.001) and the cuneus/calcarine/precuneus (0.918, p < 0.001).
Conclusions: The results demonstrated that, in PDR patients, altered iFC in distinct brain 
regions, including regions related to visual information processing and cognition. Considering 
the rise in the diabetes mellitus incidence rate and the consequences of PDR, the results 
could provide promising clues for exploring the neural mechanisms related to PDR and 
possible approaches for the early identification of PDR.
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and blindness.4 It has been confirmed in previous 
studies that vascular endothelial growth factor 
(VEGF) is associated with PDR.5,6 VEGF expres-
sion is induced by high glucose levels and hypoxia, 
and VEGF stimulates angiogenesis, increases col-
lateral vessel formation, and increases microvascu-
lature permeability.7,8 Generally, auxiliary 
examinations for PDR include optical coherence 
tomography, multifocal electroretinograms, and 
visual evoked potential assessments. Although 
neuroimaging-based diagnosis is not widely used 
for detecting PDR, neuroimaging-based investiga-
tion of PDR-related brain processes is a new aspect 
of visual neuroscience that may provide clues for 
exploring cerebral alterations related to DM-related 
diseases. Resting-state functional magnetic reso-
nance imaging (rs-fMRI) is a technique for investi-
gating anatomical and functional alterations in 
specific brain areas. It relies on cerebral blood flow 
and metabolism analysis. It has been applied and 
developed in eye diseases such as amblyopia, exo-
tropia, and glaucoma to evaluate changes in brain 
activity.9–11 Seed-based functional connectivity 
(FC) analysis is a sensitive and efficient method 
that has been extensively used in rs-fMRI analyses. 
The primary visual cortex (V1) is situated in the 
occipital lobe, and it is the first and simplest region 
of the visual cortex that participates in perceptual 
activities. It receives visual input from the lateral 
geniculate nucleus, performs initial integration, 
and then delivers the information to other areas of 
the visual cortex for complex processing. Visual 
impairment is a common symptom in patients with 
DR. Previous studies have demonstrated that 
abnormal spontaneous FC is observed in patients 
with DM or DR.12,13 However, the intrinsic FC 
(iFC) alterations of the V1 in patients with PDR 

have rarely been reported. Thus, the objective of 
this study was to compare the FC of V1 and mul-
tiple cortical regions between PDR patients and 
healthy controls (HCs) using the seed-based FC 
method. This study might provide a more precise 
and exhaustive view of V1 FC in PDR patients, 
further helping to explore the cerebral manifesta-
tions of visual impairment.

Materials and methods

Participants
In total, 26 individuals with PDR (12 males and 
14 females) were recruited. The inclusion criteria 
for PDR patients were: (a) at least one PDR char-
acteristic, such as preretinal hemorrhage, vitreous 
hemorrhage, and neovascularization in the fun-
dus; (b) imaging examinations showing signs of 
PDR; (c) fundus fluorescein angiography indicat-
ing signs of PDR (Figure 1); and (d) no other 
ocular diseases in bilateral eyes.

We also recruited 26 HCs (12 males and 14 
females), matched for sex, age, and education sta-
tus, were enrolled in this study. The inclusion cri-
teria for HCs were: (a) no ocular disease history 
(DR, dry eye, strabismus, amblyopia, etc.); (b) 
able to undergo magnetic resonance imaging 
(MRI) scanning; (c) no addiction to drugs or 
alcohol; and (d) no psychiatric or neurological 
disorders.

The study was approved by the Medical Ethics 
Committee of the First Affiliated Hospital of 
Nanchang University (approval number: cdyfy 
2016023). The research abided by the Declaration 
of Helsinki. All participants took part voluntarily, 
signed informed consent forms, and understood 
the objective and risks of the study.

MRI parameters
MRI scanning was carried out with a 3-Tesla MRI 
scanner (Trio, Siemens, Munich, Germany). 
Rs-fMRI data were acquired in 8 min. High-
resolution T1-weighted images were acquired with 
a three-dimensional (3D) spoiled gradient recalled-
echo pulse sequence. All the functional images, 
including images of the whole cerebrum were 
obtained.14 rs-fMRI data acquisition lasted for 
8 min, and 240 resting-state volumes were acquired 
using the following parameters: repetition time 
(TR) = 2000 ms; echo time (TE) = 40 ms; flip 

Figure 1.  Example of PDR based on fundus colorized 
photography and FFA.
(A) Colorized image of the fundus of an eye with PDR.  
(B) FFA of the same eye.
FFA, fundus fluorescein angiography; PDR, proliferative 
diabetic retinopathy.
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angle = 90°; field of view (FOV) = 240 mm × 240 mm; 
matrix = 64 × 64; and slice thickness = 4 mm with a 
1 mm gap. Each brain volume included 30 axial 
slices. High-resolution T1-weighted images for each 
subject were acquired with a 3D MRI sequence, and 
the parameters were as follows: TR = 1900 ms; 
TE = 2.26 ms; flip angle = 9°; FOV = 240 mm × 240 mm; 
matrix = 256 × 256; number of sagittal slices = 176; 
and slice thickness = 1 mm.

fMRI data processing
The statistical parametric map 8 (SPM8, http://
www.fil.ion.ucl.ac.uk/spm) and the rs-fMRI Data 
Analysis Toolkit (REST, http://www.restfmri.
net) were used to process the qualified data, while 
unqualified data were excluded. After excluding 
the first 10 time points, the remaining 230 vol-
umes were to be analyzed. Head movement of 
greater than 2 mm maximum displacement in any 
of the x, y, or z directions or of greater than 2° 
angular rotation in any axis were excluded. The 
preprocessing steps are illustrated as follows: (1) 
the first ten time points were trimmed off due to 
the signal reaching equilibrium; (2) the remaining 
230 volumes of functional BOLD images were 
corrected for slice timing effects, motion cor-
rected and realigned. fMRI scans with more than 
2 mm maximum displacement in any direction or 
more than 2° angular motion were discarded; (3) 
spatial normalized with re-sampling to 3-mm iso-
tropic voxels. After smoothing with a 6-mm full 
width half maximum Gaussian kernel, the linear 
trend, the bandpass temporal filtering (0.01–
0.08 Hz), and the covariates were then removed, 
including head motion parameters, whole brain, 
white matter, and cerebrospinal fluid signal. 
These details of preprocessing steps are presented 
in our previous study.10

Seed-based FC analysis
FC analyses were performed, with the regions of 
interest (ROIs) being selected based on a pub-
lished literature by Li et al.15 We chose the center 
of V1 as the seed point, the Montreal Neurological 
Institute (MNI) V1 coordinates were –8, –76, 10 
(left) and +7, –76, 10 (right), and the diameter of 
the ROI sphere was 10 mm (approximately 27 
cubic voxels). Pearson correlation coefficients 
between the average time series of the PDR and 
the time series of all other cerebrum voxels were 
calculated. The differences in the FC between the 
two groups were compared using two-sample 

t-tests. The minimum cluster size necessary to be 
considered relevant is 26. A p < 0.01 for multiple 
comparisons, using the Gaussian random field 
correction (voxel-level 0.005, cluster-level 0.05), 
and the threshold of voxel-wise level of multiple 
comparisons, was considered to be statistically 
significant. 

Statistical analysis
SPSS v20.0 (IBM Corp, Armonk, NY, USA) was 
used to compare the demographic and clinical 
data between PDR patients and HCs. Both two-
sample t-test (for age and weight) and the Chi 
square test (for gender and handedness) were 
used, and p < 0.05 was deemed to be statistically 
significant.

A receiver operating characteristic (ROC) curve 
analysis was used to distinguish between PDR 
patients and HCs using the mean FC values for 
distinct cerebrum areas. The relationships 
between the mean FC values for distinct cere-
brum areas and the manifestations in the PDR 
group were analyzed using Pearson correlation 
coefficients. A p < 0.05 was deemed to indicate a 
statistically significant difference.

Results

Demographic and clinical data
In total, 26 PDR patients (12 males, 14 females; 
mean age: 55.53 ± 5.83 years) and 26 HCs (12 
males, 14 females; mean age: 54.34 ± 5.79 years) 
were included in the study. There were no signifi-
cant differences in age (p = 0.871) or weight 
(p = 0.912) between the two groups. We observed 
significant differences in best-corrected visual 
acuity (BCVA)-right (p = 0.012) and BCVA-left 
(p = 0.016) between the PDR group and HCs. 
More details are shown in Table 1.

FC differences
Compared with the HCs, the PDR group had sig-
nificantly higher FC between the left V1 and the 
right middle frontal gyrus (RMFG; BA 10), and 
significantly decreased FC between the left V1 
and the cuneus/calcarine/precuneus (BA 10) 
(Figure 2, Table 2). In addition, the PDR patients 
had significantly higher FC between the right V1 
and the right superior frontal gyrus (RSFG; BA 
10), and significantly decreased FC between the 
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Table 1.  Demographics and clinical measurements of PDR and HC groups.

Condition PDR HC t p-value

Male/female 12/14 12/14 N/A > 0.99

Age (years) 55.53 ± 5.83 54.34 ± 5.79 0.086 0.871

Weight (kg) 57.53 ± 9.12 58.82 ± 10.82 0.091 0.912

BMI 23.64 ± 2.54 22.96 ± 2.23 0.088 0.891

HbA1c (%) 6.04 ± 0.54 4.43 ± 0.32 2.974 0.011

Handedness 26R 26R N/A >0.99

Duration of PDR (days) 264.23 ± 71.82 N/A N/A N/A

Best-corrected Va-right eye 0.23 ± 0.11 1.16 ± 0.41 –0.812 0.012

Best-corrected Va-left eye 0.19 ± 0.07 1.17 ± 0.51 –0.775 0.016

IOP-R (mmHg) 17.21 ± 4.21 17.06 ± 4.32 0.062 0.729

IOP-L (mmHg) 19.65 ± 4.82 18.82 ± 4.77 0.081 0.742

Independent t-tests comparing the two groups (p < 0.05 represented statistically significant differences). Data shown as 
mean standard deviation or n.
BMI, body mass index; HC, healthy control; IOP, intraocular pressure; L, left; N/A, not applicable; PDR, proliferative 
diabetic retinopathy; R, right. 

Figure 2.  Group differences in FC of the left V1 between PDR patients and HCs.
(A and B) Significant differences in FC of the left V1 were observed. The red regions (the RMFG) indicate higher FC values. 
The blue regions (the cuneus/calcarine/precuneus) indicate lower FC values. The significance level was set at voxel level 
p < 0.01, Gaussian random field corrected. (C) Group differences in FC of the left V1 between PDR patients and HCs.
FC, functional connectivity; HC, healthy control; PDR, proliferative diabetic retinopathy; RMFG, right middle frontal gyrus.
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Table 2.  Brain regions with significant differences in FC between PDR patients and HCs.

Conditions R/B Brain regions BA MNI coordinates Peak 
voxels

t-value

  X Y Z  

ROI in left V1

1 R Middle frontal gyrus 10 36 39 30 57 3.9464

2 B Cuneus/Calcarine/Precuneus 18/19 12 –78 12 15 –5.4776

ROI in right V1

3 R Superior Frontal Gyrus 10 12 9 60 49 4.0876

4 B Cuneus/Calcarine/Precuneus 18/19 –3 –72 9 989 –6.149

The statistical threshold was set at voxel with p < 0.01 for multiple comparisons using Gaussian random field corrected.
B, both; BA, Brodmann area; FC, functional connectivity; HC, healthy control; MNI, Montreal Neurological Institute; PDR, 
proliferative diabetic retinopathy; R, right.

Figure 3.  Group differences in FC of the right V1 between PDR patients and HCs.
(A and B) Significant differences in FC of the right V1 were observed. The red regions (the RSFG) indicate higher FC values. 
The blue regions (the cuneus/calcarine/precuneus) indicate lower FC values. The significance level was set at voxel level 
p < 0.01, Gaussian random field corrected. (C) Group differences in FC of right V1 between PDR patients and HCs.
FC, functional connectivity; HC, healthy control; PDR, proliferative diabetic retinopathy; RSFG, right superior frontal gyrus.
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right V1 and the cuneus/calcarine/precuneus  
(BA 10) (Figure 3, Table 2). There were no sig-
nificant correlations between the mean FC values 
for distinct cerebrum areas and their manifesta-
tions in PDR the group (p > 0.05).

ROC curve analysis
To verify whether differences in FC values 
could be used as diagnostic biomarkers to dif-
ferentiate the PDR group from the HCs, an 
ROC curve analysis was performed to analyze 
the mean FC values for specific brain regions. 
The individual areas under the curve (AUCs) of 
FC values for the left V1 were as follows: RMFG 
(0.871, p < 0.001) and the cuneus/calcarine/
precuneus (0.914, p < 0.001) (Figure 4A), while 
the AUCs of FC values for the right V1 were as 
follows: RSFG (0.895, p < 0.001) and the 
cuneus/calcarine/precuneus (0.918, p < 0.001) 
(Figure 4B).

Discussion
The results demonstrated that spontaneous brain 
activities of specific regions in PDR patients were 
different compared with those in HCs. The PDR 
patients exhibited significantly increased FC 
between the left V1 and the RMFG, and signifi-
cantly decreased FC between the left V1 and the 
cuneus/calcarine/precuneus (Figure 5). In addition, 

the PDR patients exhibited significantly increased 
FC between the right V1 and the RSFG, and sig-
nificantly decreased FC between the right V1 and 
the cuneus/calcarine/precuneus (Figure 6).

PDR is a late stage of DR, with severe clinical 
features. In addition to typical clinical features 
such as neovascularization, vitreous hemorrhage, 
and fibrovascular proliferation. Previous studies 
have reported that some DR patients suffer cogni-
tive impairment.16,17 The middle frontal gyrus, 
located between the inferior and superior frontal 
sulci in front of the precentral gyrus, constitutes 
almost one-third of the frontal lobe in humans.18 
The frontal eye field is situated around the inter-
section of the middle frontal gyrus and the pre-
central gyrus. Several studies have reported that 
the middle frontal gyrus is associated with visual 
processing and visual attention.19,20 Cui et  al. 
found that type 2 DM (T2DM) patients had 
increased FC in the middle frontal gyrus in the 
anterior subnetwork.21 In addition, several stud-
ies involving patients with retinal detachment and 
macular hole have reported precise frontal eye 
field activation in these patients,22,23 which sug-
gests that there may be correlations between brain 
region alterations and clinical features of PDR.

The superior frontal gyrus is located in the supe-
rior part of the prefrontal cortex and mainly con-
sists of Brodmann area (BA) 6, 8, 9, and 12.24 It 

Figure 4.  ROC curve analysis of the mean FC values for altered brain regions.
(A) The area under the ROC curve for the left V1 was 0.871 for RMFG (p < 0.001; 95% CI: 0.737–1.000) and 0.914 for the 
cuneus/calcarine/precuneus (p < 0.001; 95% CI: 0.813–1.000). (B) The area under the ROC curve for the right V1was 0.895 for 
RSFG (p < 0.001; 95% CI: 0.778–1.000) and 0.918 for the cuneus/calcarine/precuneus (p < 0.001; 95% CI: 0.825–1.000).
B C/C/P, both the cuneus/calcarine/precuneus; CI, confidence interval; FC, functional connectivity; RMFG, right middle 
frontal gyrus; ROC, receiver operating characteristic; RSFG, right superior frontal gyrus.
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is generally responsible for a series of brain 
functions including cognitive processing and 
motor control.25–27 Because of the similarity in 
anatomy and physiology between retinal vessels 
and cerebral microvessels, clinically, DR is con-
sidered to represent diabetic encephalopathy.28 
There is a consensus that DM is an independent 
risk factor for Alzheimer’s disease, white matter 
degeneration, and other diseases.29 According to 
a cross-sectional study in the United Kingdom, 
many T2DM patients exhibit a decrease in 
cognitive function when they first go for a 
consultation.30 Coincidentally, clinical investiga-
tions have shown that PDR is associated with cog-
nitive dysfunction such as impaired memory and 
learning ability.31,17 It may be valuable to detect 
and explore cognitive impairment in patients with 
DR, as DR is a common complication of DM.

In previous DM-related fMRI studies, research-
ers showed that the cerebrum structure and FC 
values were abnormal in T2DM patients, which 
might be correlated with cognitive impair-
ment.32 Peng et al. showed that T2DM patients 
with microangiopathy had a higher amplitude of 
low-frequency fluctuation (ALFF) values in cer-
ebrum areas which are associated with cogni-
tion, including the frontal lobe.33 In addition, 
Liu et  al. revealed that T2DM patients with 
mild cognitive impairment had significantly 
increased regional homogeneity in the RSFG.34 

In the present study, the PDR patients had 
higher FC between the right V1 and the RSFG 
compared with the HCs. We speculated that 
this might represent a compensatory mecha-
nism, with FC enhancements to compensate for 
decreases in other brain regions. A similar 
hypothesis was put forward in a previous study.35 
In addition, it can be inferred that visual impair-
ment and cognitive dysfunction might be related 
to the altered FC.

The cuneus is a small wedge-shaped area of the 
cerebral cortex. It has an essential role in the vis-
ual pathway, being involved in spatial location. It 
has been reported that the cuneus interacts with 
V1 to encode visual information to the extrastri-
ate cortices.36,37 The precuneus is located in the 
dorsal region of the posteromedial parietal lobe. It 
is known as an essential region associated with 
memory, spatial function, and navigation.38,39 
The calcarine is situated below the parietooccipi-
tal sulcus and, functionally, it belongs to the vis-
ual center and visual cortex.40 Several functional 
studies have revealed that these brain regions are 
altered in ophthalmological diseases and DM. 
Huang et  al. reported a significant reduction of 
brain neural homogeneity in the cuneus in 
patients with retinal detachment.23 Similarly, 
acute open globe injury patients exhibited a 
reduction of brain neural homogeneity in the 
cuneus.41 Xia et al. revealed that the ALFF value 

Figure 5.  FC results of the left V1 in the PDR 
group. Compared with the HCs, the FC of the PDR 
group increased in the following region: 1 - RMFG 
(t = 4.0876), but decreased in the following regions: 2, 
3, and 4 - cuneus/calcarine/precuneus (t = –6.149).
The sizes of the spots denote the degree of quantitative 
changes.
FC, functional connectivity; HC, healthy control; PDR, 
proliferative diabetic retinopathy; RMFG, right middle frontal 
gyrus.

Figure 6.  FC results of right V1 in the PDR group. 
Compared with the HCs, the FC of the PDR group 
increased in the following region: 1 - RSFG 
(t = 3.9464), but decreased in the following regions:  
2, 3, and 4 - the cuneus/calcarine/precuneus  
(t = –5.4776).
The sizes of the spots denote the degree of quantitative 
changes.
FC, functional connectivity; HC, healthy control; PDR, 
proliferative diabetic retinopathy; RSFG, right superior 
frontal gyrus.
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decreased in both the precuneus and the cortex 
related to vision in T2DM patients, which con-
firmed that there are abnormal spontaneous 
activities in distinct cerebrum regions in these 
patients.42 A clinical study of patients with retinal 
degeneration found that the calcarine showed sig-
nificant atrophic changes.43 Based on the results 
of the above studies and the present study, the FC 
decrease between the bilateral V1 and the cuneus/
calcarine/precuneus might suggest functional 
deficiency in PDR patients.

The FC method has been widely utilized in 
patients with ophthalmological diseases (Table 
3) and has good prospects regarding its future 
applications and development. In this study, the 
mean FC values of specific ROIs were analyzed 
using ROC curves. ROC curve analysis is an 
effective statistical method for differentiating 
patients from HCs. It has been widely applied in 
medical research due to its specificity and sensi-
tivity. The AUC values, which denote accuracy, 
of all cerebrum regions (including the RMFG, 
RSFG, and cuneus/calcarine/precuneus) were 
>0.8, and some of them reached 0.9, which indi-
cates that the accuracy was excellent (Figure 4). 
Although the ROC-curve shows that resting-
state V1 functional connectivity differentiates 
between PDR patients and controls, future stud-
ies need to be performed to show if these meas-
ures can also be used to different T2DM patients 

without PDR from those with PDR and T2DM 
patients with background DR from those patients 
with PDR. 

There are still several limitations in this study. 
First, the number of subjects was relatively small, 
which may influence the validity of the results. 
Increasing the sample size may improve the valid-
ity of the study. Second, PDR represents a late 
stage of DR rather than a specific symptom. We 
did not subdivide the PDR patients based on 
their symptoms, which may have added uncer-
tainty to the results.

Conclusion
In conclusion, this study showed altered iFC in 
distinct brain regions, including regions related to 
visual information processing and cognition, in 
PDR patients. Considering the rise in the DM 
incidence rate50 and the consequences of PDR, 
the results could provide promising clues for 
exploring the neural mechanisms related to PDR 
and possible approaches for the early identifica-
tion of PDR.
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Table 3.  FC method applied in ophthalmological diseases.

Author Disease The brain regions responding to the disease

Yan et al.44 Strabismus Right parietal lobe, left middle frontal gyrus, left superior frontal gyrus, right cerebellum, 
left interior frontal gyrus, etc.

Dai et al.45 Open-angle 
glaucoma

Right inferior temporal, left fusiform, left middle occipital, right superior occipital, left 
postcentral, etc.

Wang et al.46 Amblyopia Inferior temporal/fusiform gyrus, parieto-occipital, prefrontal cortices, dorsal inferior 
parietal lobe, etc.

Zhai, et al.47 High myopia Inferior temporal gyrus, supramarginal gyrus, rostrolateral prefrontal cortex, etc.

Zheng et al.48 Optic neuritis Lingual gyrus, cingulate gyrus, supramarginal gyrus, right precuneus, left inferior 
parietal lobe, etc.

Li et al.49 Angle-closure 
glaucoma

Cuneus, calcarine, lingual gyrus, left temporal-parietal region, right inferior parietal lobe, 
etc.

Zhu et al.10 Comitant exotropia Left lingual gyrus/cerebellum posterior lobe, right middle occipital gyrus, left precentral 
gyrus/postcentral gyrus, etc.

FC, functional connectivity.
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