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MicroRNAs (miRNAs) are small (~ 22 nucleotide) noncoding RNAs that play pivotal roles in regulation of gene
expression. The value of miRNAs as circulating biomarkers is now broadly recognized; such tissue-specific
biomarkers can be used to monitor tissue injury and several pathophysiological conditions in organs. In
addition, miRNA profiles of normal organs and tissues are important for obtaining a better understanding of
the source of modulated miRNAs in blood and how those modulations reflect various physiological and
toxicological conditions. This work was aimed at creating an miRNA atlas in rats, as part of a collaborative
effort with the Toxicogenomics Informatics Project in Japan (TGP2). We analyzed genome-wide miRNA
profiles of 55 different organs and tissues obtained from normal male rats using miRNA arrays. The work
presented herein represents a comprehensive dataset derived from normal samples profiled in a single study.
Here we present the whole dataset with miRNA profiles of multiple organs, as well as precise information on
experimental procedures and organ-specific miRNAs identified in this dataset.

Design Type(s) microRNA profiling by array design • organism part comparison design

Measurement Type(s) microRNA profiling assay

Technology Type(s) DNA microarray
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Sample Characteristic(s) Rattus norvegicus • liver • kidney • lung • spleen • pancreas •
duodenum • jejunum • ileum • caecum • colon • rectum • y
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Background & Summary
MicroRNAs (miRNAs) are small ( ~ 22 nucleotide) noncoding RNAs that play pivotal roles in regulation
of gene expression; miRNAs bind via complementary base-pairing to target transcripts to repress
translation or promote mRNA degradation. Major miRNAs are highly conserved across species, allowing
translation of biomarkers to the clinic. The machinery for miRNA-mediated gene regulation is conserved
from plants to humans, and miRNAs are encoded by their respective genes. As with other regulatory
molecules, miRNAs are frequently subject to changes in expression level due to a large range of
physiological processes, such as development, immune responses, metabolism and diseases, as well as
toxicological outcomes1. Mounting evidence indicates that miRNAs are frequently overexpressed or
downregulated as a result of cancer, obesity, diabetes, inflammation, neurological disorders,
cardiovascular diseases or autoimmune diseases2–7. Previous studies have shown that distinct miRNA
signatures can be assigned to particular organs and tumor types8. For example, miR-21 is ubiquitously
expressed and upregulated in various types of cancer, including lymphoma, lung, prostate and colorectal
cancers among others9. Furthermore, tumor cells have been shown to release tumor-specific miRNAs
into systemic circulation. Because of the fundamental roles played by miRNAs in cellular functions, the
potential for miRNAs as novel therapeutic targets is now widely recognized. Several candidate therapeutic
miRNAs have progressed into clinical and preclinical development; for example, antisense miR-122 is
being developed as a treatment for hepatitis C virus, miR-208/499 for chronic heart failure, miR-195 for
myocardial infarction and miR-34 and let-7 for cancer10,11. However, serious obstacles obstructing the
development of miRNA-based therapies remain, including lack of tissue specificity and risks of systemic
toxicity. Characterizing miRNA expression profiles of normal organs and tissues may improve our
understanding of the etiology of diseased organs and of organ- and tissue-specificity of miRNAs, and the
success rate of development of new miRNA-based therapeutics.

Additionally, miRNAs have the potential to be useful biomarkers for monitoring physiological
conditions and tissue injury. Upon tissue injury, miRNAs are released into systemic circulation or other
body fluids; upon release, these miRNAs can be detected in small-volume samples via specific and
sensitive quantitative real-time PCR. The precise mechanisms underlying the remarkable stability of
miRNAs in the RNase-rich environment of blood are not well understood; nevertheless, miRNAs persist
and are remarkably stable in blood; and these miRNAs can persist in an encapsulated state in exosomes
or in protein complexes with carriers such as Argonaute 2 and Nucleophosmin or the High Density
Lipoprotein12. Moreover, several studies have successfully identified circulating miRNA-based
biomarkers; for example, Mitchell et al.13 found that miR-141 was highly elevated in serum from
patients with prostate cancer and hypothesized that this miRNA may be useful as a diagnostic marker.
Similarly, Wang et al.14 found that miR-122a, which is specifically expressed in the liver, was circulating
systemically in mice with acetaminophen- (APAP-) induced hepatotoxicity; the authors reported that
miR-122a and miR-192 were detected in plasma as early as the point when elevated alanine
aminotransferase activity was found evident. Laterza et al.15 also reported that plasma miRNA
measurements could be useful for monitoring tissue injury in the liver, muscle and brain. Even in clinical
research, plasma miR-122a was significantly elevated in APAP-induced hepatitis patients16. These reports
clearly indicate that circulating organ-specific miRNAs can serve as useful biomarkers for tissue injury
and disease status in various organs. The organ-specificity of circulating miRNAs, or in other words, the
detailed tissue distribution of miRNAs, is important information to be used in obtaining biomarkers for
organ toxicity, although desirable properties of biomarkers vary with intended use. In addition, miRNA
profiles of normal organs and tissues are important for gaining a better understanding of the source of
modulated miRNAs in blood and in gaining an understanding of how those modulations reflect various
physiological and toxicological conditions.

To date, organ-specific miRNA profiles have been reported for several animal species, including human,
mouse and rat17–20. However, the amount of data currently available is still inadequate, since there are only
limited datasets with profiles in a limited number of organs. The main objectives of our data analysis were
(i) to establish the validity of this dataset and (ii) to demonstrate organ-specific miRNAs identified in this
dataset. In this report, we present a large-scale reference dataset constituting genome-wide miRNA profiles
for 55 normal rat organs or tissues. The validity of this dataset was confirmed by comprehensive statistical
analysis. We ultimately identified several organ-specific miRNAs in rats. These organ-specific miRNAs can
potentially be used as biomarkers for identifying the origin of metastatic tumors and for monitoring
toxicity in targeted organs. Furthermore, establishing combinations of organ-specific miRNA measure-
ments may be a novel biomarker for monitoring simultaneous impairment in multiple organs. Our data
also support the hypothesis that specificity of miRNA expression is conserved among different species,
since the majority of organ-specific miRNAs identified in this rat study were also confirmed as organ-
specific in humans. The value of miRNAs as novel therapeutic targets and circulating biomarkers to
monitor tissue injury and several pathophysiological conditions in organs is now broadly recognized. In the
course of development of miRNAs for practical use as targeted therapeutics and biomarkers, there is no
doubt about the importance of open access large-scale datasets for a free miRNA atlas for normal organs/
tissues and comparative data analysis. The work presented herein represents a comprehensive dataset
derived from normal samples profiled in a single study. We believe that our dataset will be of particular
value to both basic and translational scientists in biological and biomedical sciences, especially for novel
target discovery and biomarker identification.
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Methods
Animal experiments
For each miRNA microarray experiment, 9-week-old male Sprague-Dawley rats were obtained from
Charles River Japan, Inc. (Kanagawa, Japan). After a 7-day quarantine and acclimatization period, 10-
week-old animals were used (N= 6). The animals were individually housed in stainless-steel cages in an
animal room set to the following conditions: 12 h (7:00–19:00) light phase; ventilation rate, 12/h;
temperature, 20 °C–26 °C; and relative humidity, 35–75%. Each animal had free access to water and pellet
diet (CRF-1, sterilized by radiation, Oriental Yeast Co., Ltd., Tokyo, Japan). Each animal was anesthetized
with ether. The animals were divided into 2 groups to compare the effects of peripheral blood cells in
organs; 3 animals were perfused with saline to remove blood from all organs, while the remaining 3
animals that were not perfused were subjected to collection of only the heart (atrium and interventricular
septum), kidney, liver and lung. All organs evaluated in this study are listed in Table 1 (available online
only). Experimental protocols were reviewed and approved by the Ethics Review Committee for Animal
Experimentation of the National Institute of Health Sciences.

RNA extraction and miRNA microarray analysis
RNA was prepared using the miRNeasy kit (QIAGEN, Hilden, Germany), according to the
manufacturer’s instructions. RNA was quantified using a DU-7400 spectrophotometer (Beckman
Coulter, Brea, CA) and quality was monitored with the Agilent 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA). Cyanine-3 (Cy-3) labeled RNA was prepared from 0.1 μg RNA using the miRNA
Complete Labeling and Hyb Kit (Agilent Technologies), according to the manufacturer’s instructions.
The entire volume of Cy3-labeled RNA was incubated at 100 °C for 5 min in a 45 μl reaction volume
containing 1x Agilent blocking agent, Hybridization Spike-In and Hi-RPM Hybridization Buffer. Upon
completion of this incubation, samples were hybridized to an 8 ×15 k customized Agilent Rat miRNA
microarray containing both miRBase 15.0 and 16.0 probes for 20 h at 55 °C on a rotating rack in an
Agilent hybridization oven. After hybridization, microarrays were washed for 5 min at room temperature
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Figure 1. Effect of circulating blood on miRNA expression in organs. Arrows indicate blood specific

miRNAs; red arrows: miR-451, blue arrows: miR-144. Horizontal axis: Perfusion (-), vertical axis: Perfusion

(+). Correlation coefficient (R2); (a) Liver: 0.9998, (b) Kidney: 0.9960, (c) Lung: 0.9956, (d) Heart, atrium:

0.9988, (e) Heart, interventricular septum: 0.9994.
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Figure 2. Principal component analysis (PCA). (a) PCA for all organ miRNAs. Spot colors represent broad

types of organs; blue: nervous system, red: intestines, green: smooth or skeletal muscles, pink: lymphoid or

hematopoietic system, light blue: reproductive system. Eigenvalues for each component: 29.1% (PC1),

11.4% (PC2); 8.1% (PC3), 6.7% (PC4), 5.0% (PC5). (b) PCA for digestive organs, nervous system or muscles.

Eigenvalues for each component: (i) 37.2% (PC1), 10.8% (PC2); (ii) 35.7% (PC1), 13.2% (PC2); (iii) 31.0%

(PC1), 16.4% (PC2).
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with GE Wash Buffer 1 (Agilent Technologies) and then for 5 min at 37 °C with GE Wash buffer 2
(Agilent Technologies); slides were then dried immediately. Immediately after this washing and drying
step, slides were scanned using an Agilent DNA Microarray Scanner (G2565AA) at the following settings:
one-color scan for 8 × 16 k array slides, scan area, 61 × 21.6 mm; scan resolution, 5 μm; dye channel,
green; and extended dynamic range scan mode (Hi= 100%, Lo= 5%).

Microarray data analysis
Expressionist analysis software Ver. 7.6 (Genedata AG, Basel, Switzerland) was used for normalization,
principal component analysis (PCA) and hierarchical clustering. First, all signal intensities were scaled to
the 75th percentile of the median of the dynamic target value for each array using the central tendency
normalization method. Next, the following two statistical parameters were calculated for each probe:
(i) P-value of the Shapiro-Wilk test with Bonferroni correction (R software) and (ii) maximal signal
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Figure 3. Two-dimensional hierarchical clustering analysis based on the expression profiles of the 128
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intensity. Probes were then filtered by a P-value of o0.05 and a maximal signal intensity of >100. To
identify organ-specific miRNAs, expression profiles of filtered probes were further analyzed by model-
based clustering using the ‘mclust’ R package (http://cran.r-project.org/web/packages/mclust/index.html).
For this analysis, a histogram was created to determine the distribution of expression values among
different organs for each gene. For multiple distributions, the presence of an isolated peak was considered
attributable to organ-specific expression of miRNAs. Genes with isolated peaks consisting of less than 37
microarrays (20% of all microarrays) in the histogram were selected as candidate miRNAs that were
specifically expressed in one or a few organs.

Data Records
Microarray data are available in the NCBI Gene Expression Omnibus (GEO), accession GSE52754 (Data
Citation 1). This accession contains matrix files of normalized miRNA expression data used in this report
and raw data files generated from Agilent microarray systems as .gz files.

Technical Validation
miRNA microarray experiments
In this study, microarray experiments were performed according to the manufacturer’s instructions, and
the quality of each experiment was assessed in QC reports generated from the Agilent microarray
systems.

Possible effects of peripheral blood cell-derived miRNAs
To evaluate the possible effects of peripheral blood cell-derived miRNAs on the miRNA expression
profiles of organs, two different sampling conditions, with or without perfusion, were compared to assess
effects on miRNA expression profiles in four organs (heart, kidney, liver and lung). As shown in Figure 1,
blood-cell–specific miRNAs (e.g., miR-451 and miR-144)21 were clearly evident in nonperfused samples,
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but not in perfused samples. On the other hand, for each organ, miRNA profiles for perfused samples
were highly correlated with those for nonperfused samples (R2>0.995). These data support the hypothesis
that there are no distinct differences in miRNA profiles between these major organs and peripheral blood
cells with some exceptions, such as miR-451 and miR-144, and that expression profiles for the majority of
miRNAs were not markedly affected by remaining peripheral blood. Moreover, our data showed that
miR-451 and miR-144 were specifically expressed in hematopoietic tissues e.g., spleen and bone marrow
(refer to the original dataset for details). Therefore, microarray data obtained from nonperfused samples
were analyzed in combination with those from perfused samples when generating the final
comprehensive dataset.

Principal component analysis (PCA)
PCA was performed to comprehensively compare miRNA expression profiles among all organs in the
entire experimental dataset (Figure 2a). Along the principal component (PC) 1 axis, which accounts for
29.1% of all variation, the clusters of signals from nervous system (brain, spinal cord, optic nerve and
sciatic nerve; shown in blue colors), pituitary gland and adrenal gland samples were clearly separated
from intestine samples (shown in red), whereas along the PC2 axis (11.4%), muscle (shown in green)
samples were clearly separated from nervous system and intestine samples. Along the PC3 axis (8.1%),
the clusters of signals from lymph and hematopoietic tissue (shown in pink) samples were clearly
separated from those of other samples. Similarly, along the PC4 axis (6.7%) and PC5 axis (5.0%), the
clusters of signals from pancreas and lung samples, and those from reproductive organ samples, were
clearly separated from others. A tendency towards densely clustered signals from triplicate samples of the
same organ was observed in PCA results. Additional information and eigenvalues of PC1 to PC5 axes are
summarized in Tables 2 and 3 (available online only).

Furthermore, miRNA microarray data obtained from digestive organs, the nervous system and
skeletal/smooth muscles were extracted from the whole dataset and subjected to system-specific PCA
(Figure 2b). In the intestinal-specific subanalysis, clusters of signals from upper digestive organ
(esophagus and stomach) samples were clearly separated from those of lower digestive organs (small and
large intestine) along PC1 (37.2%), whereas along the PC2 axis (10.8%), those from small and large
intestine samples were further divided into each organ by functional anatomy of the digestive system. In
the nervous system subanalysis, a clear separation of clusters of signals were observed along both PC1
(35.7%) and PC2 (13.2%); those from cerebrum samples were clearly separated from ischial nerve
samples along PC1, and those from the spinal cord were separated from optic nerve samples along PC2
(13.2%). Skeletal/smooth muscles were separated into four clusters: skeletal muscles, smooth muscles
(blood vessel), smooth muscles (bladder and stomach) and others (esophagus, tongue and skin) (31.0%
for PC1 and 16.4% for PC2). Overall, PCA successfully showed the similarity in gene expression profiles
among functionally similar organs. These results provided evidence that the microarray data were of high
enough quality to assess similarities and differences among miRNA profiles from different organs and
tissues. In addition, the global miRNA expression profiles for these 55 normal organs included high-
quality, reliable data that reflected the biological function of each organ.

Organ specific miRNA selection
To identify organ-specific miRNAs, all probes with any detectable signal were further filtered by a
statistical analysis with criteria described in the Methods section; 296 probes met these criteria and were
further analyzed using model-based clustering. In the model-based clustering, 128 probes were identified
as miRNAs that were specifically expressed in one or more organs; further details on the statistical
parameters calculated are available in Table 4 (available online only). Figure 3 shows a 2-dimensional
hierarchical clustering diagram of groups of organs; the clustering was based on the expression profiles of
the 128 filtered probes. Triplicate samples of the same organ were densely clustered; moreover,
functionally similar organs were closely clustered to each other. Among these clusters, several miRNAs
that were specifically expressed in specific organ(s) were successfully identified. Expression profiles of
several representative organ-specific miRNAs are summarized (Figure 4 and Table 5 (available online
only)). As shown in Table 5, more than half of these miRNAs were expressed in the corresponding
human organs/tissues22–31.

Technical validity and limitation of microarray analysis
Microarray technology has become a crucial tool for large-scale and high-throughput measurement.
Non-specific hybridization or cross-hybridization is a common concern when interpreting microarrays,
particularly with closely related gene family members having highly similar sequences. However, in such
cases cross-hybridization is unavoidable since designing appropriate, highly specific, probes is not easy.
Advances in microarray technology have successfully reduced, but not completely eliminated, cross-
hybridization between the same subfamilies of miRNAs32. Therefore, attention should be paid to
interpreting data from genes with highly similar sequences particularly in a microarray dataset similar to
the present data. Recently, RNA-sequencing (RNA-seq) technology has emerged as a powerful tool for
transcriptomics. This new technology is expected to be a useful tool for miRNA expression analysis.
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Usage Notes
Since a large amount of numerical data is produced with microarray analysis, sophisticated
bioinformatics approaches are required to analyze and interpret the results. A great number of statistical
algorithms for filtering differentially expressed genes are available through the BioConductor project
website. In addition, there are several software packages available that combine visualization with
statistical analysis, such as Genedata Expressionist (Genedata), GeneSpring (Agilent Technology),
Spotfire DecisionSite (Spotfire), TIBCO Spotfire (TIBCO Software Inc.) and ArrayTrack (Tong et al.33).

References
1. Stefani, G. & Slack, F. J. Small noncoding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9, 219–230 (2008).
2. Farazi, T. A., Hoell, J. I., Morozov, P. & Tuschl, T. MicroRNAs in human cancer. Adv. Exp. Med. Biol. 774, 1–20 (2013).
3. Jordan, S. D. et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose
metabolism. Nat. Cell Biol. 13, 434–446 (2011).

4. Lu, T. X., Munitz, A. & Rothenberg, M. E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35
expression. J. Immunol. 182, 4994–5002 (2009).

5. Nelson, P. T., Wang, W. X. & Rajeev, B. W. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol. 18,
130–138 (2008).

6. Urbich, C., Kuehbacher, A. & Dimmeler, S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc.
Res. 79, 581–588 (2008).

7. Stanczyk, J. et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis
Rheum. 58, 1001–1009 (2008).

8. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).
9. Jazbutyte, V. & Thum, T. MicroRNA-21: from cancer to cardiovascular disease. Curr. Drug Targets 11, 926–935 (2010).

10. Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013).
11. Srivastava, A., Suy, S., Collins, S. P. & Kumar, D. Circulating MicroRNA as biomarkers: An update in prostate cancer. Mol. Cell.

Pharmacol. 3, 115–124 (2011).
12. Cortez, M. A. et al. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8, 467–477 (2011).
13. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105,

10513–10518 (2008).
14. Wang, K. et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl Acad. Sci. USA 106,

4402–4407 (2009).
15. Laterza, O. F. et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin. Chem. 55, 1977–1983 (2009).
16. Starkey Lewis, P. J. et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54,

1767–1776 (2011).
17. Miska, E. A. et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5, R68 (2004).
18. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).
19. Wang, Y. et al. Identification of rat lung-specific microRNAs by micoRNA microarray: valuable discoveries for the facilitation of

lung research. BMC Genomics 8, 29 (2007).
20. Hua, Y. J. et al. Identification and target prediction of miRNAs specifically expressed in rat neural tissue. BMC Genomics 10,

214 (2009).
21. Dore, L. C. et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl Acad. Sci. USA 105,

3333–3338 (2008).
22. Bottoni, A. et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in

pituitary adenomas. J. Cell. Physiol. 210, 370–377 (2007).
23. Liang, Y. An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer. BMC Med.

Genomics 1, 61 (2008).
24. Smirnova, L. et al. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 21, 1469–1477 (2005).
25. Tian, L., Huang, K., DuHadaway, J. B., Prendergast, G. C. & Stambolian, D. Genomic profiling of miRNAs in two human lens

cell lines. Curr. Eye Res. 35, 812–818 (2010).
26. Jenkins, R. H., Martin, J., Phillips, A. O., Bowen, T. & Fraser, D. J. Transforming growth factor β1 represses proximal tubular cell

microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding. Biochem. J. 443, 407–416 (2012).
27. Nielsen, S. et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J. Physiol. 588,

4029–4037 (2010).
28. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).
29. Sharbati, S. et al. Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics 11, 275 (2010).
30. Szafranska, A. E. et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic

ductal adenocarcinoma. Oncogene 26, 4442–4452 (2007).
31. Sluijter, J. P. et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte

progenitor cells. Arterioscler. Thromb. Vasc. Biol. 30, 859–868 (2010).
32. Wang, H., Ach, R. A. & Curry, B. Direct and sensitive miRNA profiling from low-input total RNA. RNA 13, 151–159 (2007).
33. Tong, W. et al. ArrayTrack—supporting toxicogenomic research at the U.S. Food and Drug Administration National Center for

Toxicological Research. Environ. Health Perspect. 111, 1819–1826 (2003).

Data Citation
1. Minami, K. & Uehara, T. Gene Expression Omnibus GSE52754 (2013).

Acknowledgements
This work was conducted as part of a collaborative effort with the Toxicogenomics Informatics Project
in Japan (TGP2; starting from 2007 and ending in 2012), which includes the National Institute of
Biomedical Innovation (NIBIO), the National Institute of Health Science (NIHS) and several Japanese
pharmaceutical companies. This work was supported in part by H14-001-Toxico and H19-001-Toxico
grants from the Japanese Ministry of Health, Labour and Welfare.

www.nature.com/sdata/

SCIENTIFIC DATA | 1:140005 | DOI: 10.1038/sdata.2014.5 8



Author Contributions
K.M. and T.U. designed the study and wrote the paper. Y.M. carried out the statistical data analysis.
A.H. conceived the study. K.O., M.K. and A.O. assisted interpretation of analysis results and discussion.
H.Y., Y.O. and T.U. supervised the study and project.

Additional information
Tables 1–5 are only available in the online version of this paper.

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Minami, K. et al. miRNA expression atlas in male rat. Sci. Data 1:140005
doi: 10.1038/sdata.2014.5 (2014).

This work is licensed under a Creative Commons Attribution 3.0 Unported License. The
images or other third party material in this article are included in the article’s Creative

Commons license, unless indicated otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

Metadata associated with this Data Descriptor is available at http://www.nature.com/sdata/ and is released
under the CC0 waiver to maximize reuse.

www.nature.com/sdata/

SCIENTIFIC DATA | 1:140005 | DOI: 10.1038/sdata.2014.5 9


	miRNA expression atlas in male�rat
	Background & Summary
	Methods
	Animal experiments
	RNA extraction and miRNA microarray analysis

	Figure 1 Effect of circulating blood on miRNA expression in organs.
	Figure 2 Principal component analysis (PCA).
	Microarray data analysis

	Figure 3 Two-dimensional hierarchical clustering analysis based on the expression profiles of the 128 filtered probes.
	Data Records
	Technical Validation
	miRNA microarray experiments
	Possible effects of peripheral blood cell-derived miRNAs

	Figure 4 Expression profiles of organ-specific miRNAs identified in this study.
	Principal component analysis (PCA)
	Organ specific miRNA selection
	Technical validity and limitation of microarray analysis

	Usage Notes
	REFERENCES
	This work was conducted as part of a collaborative effort with the Toxicogenomics Informatics Project in Japan (TGP2; starting from 2007 and ending in 2012), which includes the National Institute of Biomedical Innovation (NIBIO), the National Institute of
	ACKNOWLEDGEMENTS
	Design Type(s)microRNA profiling by array design; organism part comparison�designMeasurement Type(s)microRNA profiling�assayTechnology Type(s)DNA microarrayFactor Type(s)organism part; saline perfusionSample Characteristic(s)Rattus norvegicus; liver; kidn
	Additional information


