Hindawi Publishing Corporation

Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 141363, 11 pages
http://dx.doi.org/10.1155/2015/141363

Research Article

KIR Genes and Patterns Given by the A Priori Algorithm:
Immunity for Haematological Malignancies

J. Gilberto Rodriguez-Escobedo,l Christian A. Garcia-Sepﬁlveda,2

and Juan C. Cuevas-Tello'

"Facultad de Ingenieria, Universidad Auténoma de San Luis Potosi, Avenida Dr. Manuel Nava No. 8,

Zona Universitaria, 78290 San Luis Potosi, ZC, Mexico

2Laboratorio de Genémica Viral y Humana, Facultad de Medicina, Universidad Autonoma de San Luis Potosi,
Avenida Venustiano Carranza No. 2405, Colonia Filtros las Lomas, 78210 San Luis Potosi, CP, Mexico

Correspondence should be addressed to Juan C. Cuevas-Tello; cuevastello@gmail.com

Received 27 May 2015; Revised 5 August 2015; Accepted 9 August 2015

Academic Editor: Lei Chen

Copyright © 2015 J. Gilberto Rodriguez-Escobedo et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Killer-cell immunoglobulin-like receptors (KIRs) are membrane proteins expressed by cells of innate and adaptive immunity.
The KIR system consists of 17 genes and 614 alleles arranged into different haplotypes. KIR genes modulate susceptibility to
haematological malignancies, viral infections, and autoimmune diseases. Molecular epidemiology studies rely on traditional
statistical methods to identify associations between KIR genes and disease. We have previously described our results by applying
support vector machines to identify associations between KIR genes and disease. However, rules specifying which haplotypes are
associated with greater susceptibility to malignancies are lacking. Here we present the results of our investigation into the rules
governing haematological malignancy susceptibility. We have studied the different haplotypic combinations of 17 KIR genes in 300
healthy individuals and 43 patients with haematological malignancies (25 with leukaemia and 18 with lymphomas). We compare two
machine learning algorithms against traditional statistical analysis and show that the “a priori” algorithm is capable of discovering
patterns unrevealed by previous algorithms and statistical approaches.

1. Introduction

One goal in systems biology, along with functional genomic
(Human Genome Project) analysis and physiology (Human
Physiome Project), is to provide personalized medicine in a
practical, clinically useful way. The digital genome and envi-
ronmental signals are two fundamental types of biological
information that dictate whether an individual adopts a nor-
mal or diseased phenotype. Therefore, functional genomics
data can help diagnose disease and guide therapy [1].

Several cancer research initiatives employing genomic
information focus mainly on DNA microarray data in the
search for biomarkers using tens of thousands of genetic
polymorphisms [2]. However, after recent discoveries relating
to KRAS gene mutations in cancer patients, novel research
strategies are focusing on circulating tumour DNA (ctDNA)
and to the way that it might allow for a closer surveillance of

the clinical evolution of cancer in certain types of patients [3].
Several diseases have been studied in systems biology; this
paper focuses on haematological malignancies (leukaemia
and lymphomas). Contrary to DNA microarray data and
ctDNA, this paper studies the impact of specific innate
immunity genes with disease occurrence or protection.
Traditionally, hypothesis driven approaches based on
current knowledge have been used to uncover associations
between a small number of genetic traits and disease occur-
rence or disease progression. Genome-wide analysis studies
(GWAS) have rapidly become powerful tools for the analysis
of tens of thousands and sometimes millions of genetic mark-
ers and of their association with complex diseases. In the last
15 years, several GWAS have demonstrated the importance
that immune and nonimmune gene polymorphisms have at
determining an individual’s capability to mount an immune
response against infectious pathogens, residual leukaemia,
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antileukaemia drug metabolism, and haemopoietic stem
cell transplantation (HSCT) outcome. However, only a few
studies have addressed the importance of analysing the full
context of innate immunity genes and of their interplay with
the adaptive immune system with regards to leukaemias and
lymphomas. In more recent years network-assisted analysis
(NAA) of GWAS data has demonstrated enormous power for
the study of various human diseases or traits [4-7].

A small subset of CD8 lymphocytes and Natural Killer
(NK) cells are represented by the Killer-Cell Immunoglob-
ulin-like receptors (KIR), and they are key participants of
immune responses to tumours. KIR genes, in comparison
to genes of the adaptive immune system, are genetically
predetermined and remain unchanged throughout life [8, 9].
Nowadays, 17 KIR genes have been discovered, which exhibit
allelic polymorphism [10], forming a cluster in the locus
19q13.4. The KIR genes are physically contiguous strings,
known as haplotypes [11, 12]. The variability in KIR genotype
is such that most pairs of unrelated human individuals
have different KIR genotypes, so the unique feature of the
human KIR system is the representation of two distinctive
groups of haplotypes (A and B), and many haplotypes having
presence and absence of genes and variants are known [13].
A KIR haplotype is composed of two motifs, centromeric
and telomeric. The KIR haplotype motifs are cA0l, cBOl,
cB02, ¢B03, tA0l, and tB01 [11, 12]. The KIR haplotypes of
the great majority of individuals contain the four frame-
work genes KIR3DL3, KIR3DP1, KIR2DL4, and KIR3DL2
[11, 14].

KIR genes encode for two (2D) or three (3D) extracellular
domain membrane bound proteins capable of transducing
activating (S) or inhibitory (L) signals on binding of their
cognate ligands. It is the balance and integration of these sig-
nals that modulates NK cell cytotoxicity and cytokine release.
The haplotypes of group A are more important because
they have simple and constant gene content, dominated by
inhibitory genes (L). On the other hand, haplotypes of group
B have variable and greater gene content, involving both
inhibitory and activating receptors [11]. NK cells were initially
identified by their ability to spontaneously kill tumour cells
without prior sensitisation [15-17]. Historical studies of the
immunogenetic factors that determine clinical outcome in
patients subjected to HSCT for haematological malignancies
were the first to highlight the clinical relevance of KIR genes
in antitumour responses [18].

The first study to suggest such an association described
a potent graft-versus-leukaemia effect arising from predicted
NK cell alloreactivity in the Graft-versus-Host direction
amongst patients subjected to HSCT for leukaemias [19].
Many other studies published since then have described KIR
gene associations with antitumour effects and posttransplant
clinical endpoints [20-26]. In addition, NK cell antitumour
activity has been demonstrated in vitro against a wide
variety of haematological malignancies [18, 27]. In all, these
findings support the notion that KIRs allow NK cells to play
an important role at determining susceptibility to certain
haematological tumours [28-30].

Previous findings based on our data employing multi-
variate analysis of KIR carrier frequencies with a traditional
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statistical comparison (contingency tables using Pearson’s or
Fishers’ exact test [31]) revealed only that KIR2DL2 was more
frequent amongst patients with haematological malignancy
in comparison to the healthy donors (p < 0.0001). Decision
trees (ID3 algorithm [32]) generated at 50% and 75% training
data also provided support the importance of KIR2DL2 [33].
Other findings produced with the ID3 algorithm on our
similar data suggest a protective effect for (i) cB03 motif
(KIR2DL3, KIR2DL5, KIR2DS5, KIR2DP1, and KIR2DL1
genes) in agreement with KIR3DS1-2DL5-2DS5-2DS1 geno-
type with protection from Hodgkin’s lymphoma [34]; (ii)
KIR3DSI gene (only provided a protective effect when
observed in the absence of KIR2DL2 or KIR2DL5 genes) as
suggested previously [25, 34, 35]; and (iii) KIR2DS1 when
present together with KIR2DL2, KIR2DS2, and KIR2DL3 but
in the absence of KIR3DLI [33].

Nevertheless, the ID3 algorithm failed to find associations
related to the KIR2DS3, as described previously by others
researchers [35-37]. Neither KIR2DL1 nor KIR2DL3 are on
their own important factors in the ID3 decision processes
[33]. One reason is that the ID3 algorithm is based only
on entropy of information, which could not identify other
patterns with this measure of information. Genes KIR2DLI,
KIR2DL3, KIR2DL5, and KIR2DS3/S5 were also present
in our patients in haplotype motifs other than the classic
cA01 (or KIR2DL1 and -2DL3) and ¢BO01 (for the KIR2DL1,
KIR2DLS5, KIR2DS3, and KIR2DS5), as suggested for certain
Hodgkin’s lymphomas [38]. Differences in patient demo-
graphics, clinical management, KIR typing method, and the
preferred transplant modality have largely contributed to the
heterogeneity of the KIR gene associations that have been
described across the literature.

In this paper, we further study the a priori algorithm on
the same dataset in an effort to discover novel associations
not identified by the ID3 algorithm. The a priori algorithm
is an algorithm that belongs to the family of data mining
algorithms in the field of machine learning and artifi-
cial intelligence [39-41]. Regarding classification algorithms,
previous research has already described the potential that
support vector machines (SVM) have [33], as well as that
of other state-of-the-art classification algorithms including
Deep Neural Networks and Convolutional Neural Networks
[42]. Moreover, research on classification algorithms is also
focusing on creating an ensemble of classifiers such as
LibD3C [43]. However, these algorithms are deficient at
finding association rules and defining them, so more research
is needed. As our work with KIR and haematological malig-
nancies represents an imbalanced classification problem [44],
the a priori algorithm was considered as an interesting and
informative approach for work with this dataset. The main
contributions of this paper are (i) we follow a data mining
methodology to study associations between KIR genes and
disease; (ii) the novel application of the a priori algorithm to
identify associations between KIR genes and haematological
malignancies; (iii) we found novel associations not detected
before by the ID3 algorithm (see Section 3) (iv) we apply
an improved version of the ID3 algorithm, known as J48, so
one can validate that the results of the a priori algorithm are
novel.
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TaBLE 1: Clinical data for the haematological cohort.

n %

Gender

Male 23 53

Female 20 46
Diagnosis

Chronic myeloid leukaemia 25 58

Hodgkin’s lymphoma 18 42
B symptoms

Present 30 70

Absent 13 30
ECOG*

0 3 7

1 16 37

2 20 46

3 3 7

4 1 2

*Eastern Cooperative Oncology Group (ECOG).

2. Materials and Methods

2.1. Study Population. Samples belonging to the Mexican
Reference Genomic DNA Collection (MGDC-REF), which
includes 300 unrelated blood donors, were used as healthy
controls for this study. This Mexican mestizo reference pop-
ulation included 135 (45%) males and 165 (55%) females aged
between 19 and 38 years (median of 24) of which 75% were
residents of the city of San Luis Potosi and 25% were residents
of rural areas of this Mexican state. These DNA samples were
extracted from blood-bank discarded leukocyte concentrates
referred to us by Hospital Central “Dr. Ignacio Morones
Prieto” according to previously published protocols [45]. A
more detailed description of the KIR features present in this
reference population is given in the original publication [46].
In addition, 43 DNA samples obtained from patients with
haematological malignancies (25 with leukaemia and 18 with
lymphomas) referred to us by the Haematology Department
of Hospital Central “Dr. Ignacio Morones Prieto” were
included as representatives of a diseased study group. More
information for the haematological cohort is given in Table 1.
All samples were provided to us in accordance with state and
national ethics regulations and lacking personal identifying
information so as to ensure patient/donor confidentiality.

2.2. KIR Genotyping and Encoding. KIR gene content was
determined using a locally developed sequence specific
priming polymerase chain reaction (SSP-PCR) genotyping
technique capable of detecting the presence or absence of
each of the 17 genes [46]. This SSP-PCR approach did not
enable us to distinguish between KIR2DL5A and KIR2DL5B
nor the centromeric/telomeric localisation of genes. PCR
amplicons were resolved in 1.5% agarose gels and digitally
documented after ethidium bromide staining. Genotypes
having KIR2DL2, KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3,
KIR2DSS5, or KIR3DSI1 were considered to have at least one

group B haplotype. Genotypes having KIR2DL3, KIR2DP],
KIR2DLI, KIR3DLI, and KIR2DS4 in the absence of any
group B haplotype gene were classified as homozygous for
group A haplotypes. Genotypes having all group A haplotype
genes with at least one group B defining gene were considered
heterozygous for groups A and B haplotypes. Centromeric
and telomeric KIR haplotype motifs were deterministically
inferred for the 300 samples after manually comparing their
genotyping profile to that of the previously described KIR
haplotype motifs based on criteria published previously by
Pyo etal. [11]; see also Table 1[46]. Similarly, KIR gene content
haplotypes were inferred for the eleven most frequent geno-
types observed in our population (present in >1% of our study
population) based on Pyo’s criteria [11]. As our genotyping
approach does not resolve cis and trans relationships between
genes, other haplotype motifs and/or haplotype combina-
tions cannot be ruled out. Figure 1 provides overall classical
KIR haplotype, haplotype motif, and extended haplotype
frequencies for both study cohorts as provided by our online
tool KIRHAT (KIR gene Haplotype Analysis Tool (KIRHAT)
available through http://www.genomica.uaslp.mx).

Since KIR haplotype motifs can be inferred from
genotyping results as described with greater detail in the
original publication [11] and with the fact that the KIR
haplotypes of the great majority of individuals contain the
four framework genes KIR3DL3, KIR3DP1, KIR2DL4, and
KIR3DL2 [11, 14]. Then, we only focus on the following
12KIR genes: KIR2DL1, KIR2DL2, KIR2DL3, KIR2DLS5,
KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5,
KIR2DP1, KIR3DLI, and KIR3DSI1.

KIR gene encoding strings included information for the
12 genes for each of the 343 samples, stored in rows; see
Table 2. Additionally, we have included a health status vari-
able (C, known as class), which was =1 in samples obtained
from individuals having a haematological malignancy and 0
in healthy donors, as shown in the last column of Table 2.

2.3. Traditional Statistical Tests. KIR gene carrier frequen-
cies were calculated by direct counting of the number of
individuals bearing a genetic trait. KIR gene and haplotype
carrier frequency comparisons between healthy controls and
diseased patients employed a two-sided Pearson’s y* or
Fisher’s exact test, significance being established at p < 0.05.
This test is also known as 2-way contingency table analysis
[31].

2.4. J48 Algorithm. The ID3 algorithm was originally intro-
duced by Quinlan in 1983, and it is used for automatic rule
generation in expert systems [32]. ID3 is also employed
as a data mining tool to generate decision trees by using
information entropy. Improved versions of ID3 include C4.5
and C5 algorithms. The J48 algorithm belongs to this class of
algorithms for generating C4.5 decision trees [47].

2.5. A Priori Algorithm. This algorithm is used to find
association rules given a dataset [39, 48]. A rule has two main
components: the if and then part and the antecedent and the
consequent part, respectively. We are going to use the symbols
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TaBLE 2: Study population; for visualization purposes, we only show the first five rows (disease, C = 1) and the last three rows (healthy, C =
0). Note that the last column corresponds to the class. Boxes with the mark v indicate the presence of the gen (1), otherwise the absence (0).

Id 2DLI 2DL2 2DL3 2DL5 2DSI 2DS2 2DS3 2DS4 2DS5 2DPI  3DL1  3DSI  Disease (class—C)
1 Y v v v Y Y 1
2 v v v v v 1
3 v v v v v 1
4 v v v Y v 1
5 v v v v v Y v v v 1
341 Y Y Y Y Y 0
342 Y Y Y Y Y 0
343 v v v Y Y Y 0

Healthy unrelated individuals
Haplotype frequency
A,— I 34.22% (n = 103)
B,— I14.95% (n = 45)
AB
A Hp I—
B Hp I 65.78% (n = 197)

50.83% (n = 153)

Haplotype motif frequency

cA01
cB01(s3) IEM10% (n = 30)
cBO1(s5) I 15% (n = 46)
cBO1 I 25% (1 = 76)
cBO2 N 39% (n = 118)
cBO03(s3) M 12% (n = 37)
cB03(s5) N 34% (n = 101)
cB03 I 46% (n = 138)
tAO1
tBO1(s3) M 10% (n = 31)
tBO1(s5) NN 36% (n = 109)
tBO1 I 17 % (n = 140)

Extended haplotype frequency

cAO01[tAO1

cAO1|tBO1 | 36% (1 = 107)
cBO1[tAO] [ 17% (n = 52)
cBO1[tBO1 | 17% (n = 50)
cB02|tA01 34% (n = 103)
cB02[tBO1 | 20% (n = 59)
cBO3[tAO] G 34% (1 = 102)

85.05% (n = 256)

90% (n = 271)

91% (n = 275)

84% (n = 252)

Haematological malignancy cohort

I 13.64% (n = 6)
I 25.00% (n = 11)
61.36% (n = 27)

I
I 7 5.00% (1 = 33)
I 86.36% (n. = 38)

89% (n = 39)
W5% (n=2)

I 16% (1 = 7)

I 20% (n = 9)

I 48% (n = 21)

7% (n=3)
I 36% (n = 16)
I 43% (n = 19)

5% (n=2)
I 27% (n = 12)
I 32% (n = 14)

82% (n = 36)

73% (n = 32)
I 32% (n = 14)
I 16% (n = 7)
I 16% (n=7)
I 39% (n = 17)
I 6% (n=7)
N 36% (n = 16)

FIGURE 1: KIR gene features present in the healthy unrelated donor and haematological malignancy cohorts. KIR haplotype. A,—corresponds
to group A homozygous haplotypes, whereas A Hp includes both homozygous and heterozygous group A haplotypes (vice versa for B). cB01
haplotypes having KIR2DS3 but not KIR2DS5 are indicated as “cB01(s3),” vice versa for those containing KIR2DS5 instead of KIR2DS3. The
same applies to ¢B03 and tB01 categories. Combinations of centromeric and telomeric motifs that are thought to be very likely occurring
based on Pyo’s 2010 criteria [11] have been included at the bottom of the figure as extended haplotypes.

==> or = to separate those components of a rule. When
several variables are involved within the if part, we consider
the logical operator and (inclusive).

2.5.1. A Toy Example for the A Priori Algorithm. Before a
formal explanation of the algorithm is given, a toy example
with two genes (variables) is given. Let us consider only
two genes (gl, g2, 0 indicates absence of gene while 1
indicates presence) and the clinical outcome (class 0 for
healthy subjects and 1 for diseased); see Table 3. One can
clearly see that only the cooccurrence of both genes leads to a
diseased phenotype in this example while other combinations

of the genes lead to a normal phenotype. In this specific
case, the underlying behavior is best described by the AND
operator (A), in logic, where the performance is given by a
truth table; see Table 3.

Based on this simple example, we then proceed to create
an artificial dataset; see Table 4.

The dataset in Table 4 simulates 20 individuals, with only
two genes (gl and g2), and one class (C). If we apply a
statistical analysis, we obtain the statistically significant p
values of cross-tabulation comparison (shown in Figure 2(a)).
Likewise, by applying the J48 algorithm a pruned tree (given
in Figure 2(b)) is generated detailing associations rules along
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J48 tree

A priori rules
(1)IF g1 = 0 THEN C = 0 (12)
(2)IF g2 = 0 THEN C = 0 (8)
(3)IFC = 1 THEN g1 = 1 (6)

(4)IFC=1THEN g2 =1 (6)

(5)IF gl =0Ag2=0THENC=0(6
(6)IFg2=1AC=0THEN g1 =0(6

)

)

9 7 gig? o o (7)TE gl =0A g2 = 1 THEN C = 0 (6)

(8)IF g2 = 1 AC=1THEN g1 = 1 (6)

pvalue  0.00033 0.0168 776 / \ (9)IF gl = 1AC=1THEN g2 = 1 (6)
X 12.8 5.7142 20 co C_y | (OIFgl=17g2=1THENC=1(6)
(I1)IFgl =1Ag2=0THEN C=0 (2)

(a)

(b) (c)

FIGURE 2: Results from the example. (a) Statistical test. (b) J48 pruned tree. (c) Rules given by the a priori algorithm.

TaBLE 3: Truth table, AND operator (A).

gl g2 C (class)
0 0 0
0 1 0
1 0 0
1 1 1

TABLE 4: This table contains 20 records; there are two variables (g1
and g2); the class C also represents 0 when the donor is healthy and
1 diseased.

# gl g2 C (Class)
1 1 1 1
2 0 0 0
3 0 1 0
4 1 1 1
5 0 0 0
6 1 0 0
7 0 1 0
8 1 1 1
9 0 0 0
10 0 1 0
11 1 1 1
12 0 0 0
13 1 0 0
14 0 1 0
15 0 1 0
16 1 1 1
17 1 1 1
18 0 0 0
19 0 1 0
20 0 0 0

with a summary of those rules generated by the a priori
algorithm (given in Figure 2(c)).
From this example, we can observe the following.

(1) Statistical Analysis. Here we show both univariate and
multivariate statistical analyses. The column glg2 combines

the two variables g1 and g2. Since we apply the AND operator
for combining variables, the data of the column glg2 and C
(Class) are the same. Therefore, the smallest p value is for the
combined variable g1g2. However all p values are lower than
our threshold (p < 0.05), so the results for all variables are
statistically significant (or correlated). This is all we can infer
from this simple statistical analysis.

(2) J48. The decision tree generated by the J48 algorithm
agrees with the statistical analysis; the most important vari-
able is g1, because it is at the first level of the tree. Moreover,
it tells us that if the variable g1 is 0, then variable C is also 0.
Still, it tells us that if variable g1 is 1, then we need to look at
variable g2 to decide the value for C.

(3) A Priori Algorithm. This algorithm gives us the total of
rules that can be inferred from the dataset in Table 3, which is
all possible combinations among variables including the class
variable (C). Besides, it also gives the most important rules,
the first ones; that is, g1 = 0 => C = 0. This rule agrees with
the statistical analysis and the J48 decision tree. The number
(12), that is, the frequency, within the first rule, indicates how
many times this rule applies in the whole dataset. Moreover,
we can ask the algorithm to mine for class association rules,
as we are only interested in rules where the class (C) appears
as the consequent part of the rule:

(1) IF g1 = 0 THEN C = 0 (12)

(2)IFg2=0THEN C =0(8)

(3)IFgl=0 A g2=0THENC =0 (6)

(4)IFgl=0 A g2=1THENC =0(6)

(5)IFgl=1 A g2=1THENC =1 (6)

(6)IFgl=1 A g2=0THENC =0 (2).
If one observes these 6 rules, apart from the two first rules,
they show the full performance of the AND operator, as
shown in the truth table; see Table 3. It also tells us that if

gl = 0 then C = 0, regardless of the value of g2, and the
same happens when g2 = 0. Finally, this result captures the
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for (k =2;L;_, # {};k + +) do begin
Vtransaction ¢ € D do begin
Vcandidates ¢ € C, do
end

end
Answer = U, L,

L, = {largel _itemsets} count item frequency
C,. = apriori_gen(L,_,); this function generate new candidates
C, = subset(Cy, t); this function generate candidates in transaction ¢
c. count + +; determine support

L, = {c € C | c. count > min sup} create new set

PSEUDOCODE 1

main rule, which establishes the only case when C = 1; that
is,gl =land g2 = 1.

2.5.2. Formal Definition of the A Priori Algorithm. Let us
define formally the a priori algorithm, so I = {i},1,,i3,...,1,,}
is a set of binary attributes called items. D € [P(I) is a
set of transactions, where P denotes the power set of I,
that is, all subsets of I. For example, the power set of S =
{a,b} is P(S) = {{},{a}, {b},{a,b},{b,a}}. We are looking
for implications, rules, of the form X = Y, where X ¢
LLY ¢ I,and X NY = ¢. We measure the quality of
the rule by the following: (i) the support is the number of
transactions where the antecedent of the rule is present, that
is, supp(X) = |X]|/|Dl; (ii) the confidence measures the
strength of the rule, and this measure is based on the support,
where confidence(X = Y) = supp(X UY)/supp(X) = | X U
Y|/1X]; (iii) the correlation of a rules is based on probabilities,
where correlation(X = Y) = P(X UY)/P(X)P(Y) (39, 48].

The pseudocode of the a priori algorithm [39, 48] is
shown in Pseudocode 1.

2.5.3. Our Model. For our dataset of 12KIR genes with the
information of the 343 donors, as illustrated in Table 2, we
use a set I = {i},i,,13,...,i13} with 13 items. The first twelve
items represent the KIR genes, where i; = 1 if the gene is
present, and i; = 0 if it is not. The item i, corresponds to
the class (C), where 0 indicates when the donor is healthy
and 1 when the donor has some hematological malignancy
(disease). The set D corresponds to the 343 donors; we are
interested in association rules of the form

(ij=Vj)/\(ik=Vk)/\"'/\(il=Vl)=>C, (1)
where v}, vy, ..., v, are the values of each item (0 or 1) and C
denotes the class. Also the set {i, iy, ..., i;} € I, where j # k #

et L

2.6. Weka. The software that we use for our experiments is
called Weka (http://www.cs.waikato.ac.nz/~ml/weka/index
.html) [49]. It is open source software under the GNU general
public license. The motivation of this software project is the
invention and application of machine learning methods, so

FIGURE 3: J48 decision tree.

computer programs can automatically analyze large datasets.
The results of these machine learning algorithms, in partic-
ular data mining algorithms, can be used to automatically
make predictions or help people make decisions faster and
accurately [49]. Weka contains a collection of machine
learning algorithms for data mining tasks, in our case the J48
and a priori algorithm; see Figures 2 and 3. The algorithms
can either be applied directly to a dataset through a graphical
user interface (known as GUI) or called from your own Java
code [49].

3. Results and Discussion

We use the programming language GNU Octave for perform-
ing both univariate and multivariate statistical analysis [50];
we employ a 2-way contingency table analysis [31]. We also
use the Weka software to perform our experiments with J48
and the a priori algorithm. We then feed the J48 and the
a priori algorithms with the dataset shown in Table 2, that
having 12 KIR genes along with the class variable (healthy and
disease donors) for 343 patients (samples).
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TABLE 5: Univariate statistical analysis.

2DL1 2DL2 2DL3 2DL5 2DS1 2DS2 2DS3 2DS4 2DS5 2DP1 3DL1 3DS1

pvalue  0.752 0.0000087 0.467 0.214 0.421 0.271 0.131 0.199 0.946 0.921 0.042 0.888

Xz 0.100 19.764 0.530 1.547 0.649 1.213 2.281 1.649 0.005 0.010 4.128 0.020

TABLE 6: Multivariate statistical analysis; here we show only the variable combinations associated to the haplotype cA01[tA0L. Boxes with the
mark v indicate that the variable is part of the variable combination; otherwise it is not taken in account.

# 2DL1 2DL2 2DL3 2DL5 2DS1 2DS2 2DS3 2DS4 2DS5 2DP1 3DL1 3DS1 p value X2
1 v v v v v v 0.00036 12.7
2 v v v v v Y Y 0.01918 5.4
3 v v v v Y Y v 0.00053 11.9
4 v v v v v Y v 0.00022 13.5
5 v v v v v v Y 0.00002 17.4
6 Y v v v v Y v Y 0.04289 4.09
7 v v v v v Y v Y 0.01918 5.4
8 v v v v v v v v 0.00574 7.6
9 v v v v v Y Y Y 0.01918 5.4
10 v v v Y v v Y v 0.00213 9.4
11 Y v Y v v v Y v 0.00246 9.1
12 Y Y Y v v v v Y Y 0.04289 4.09
13 v v v Y v Y Y v Y 0.04289 4.09
14 Y v Y v v v Y v Y 0.01918 5.4
15 Y Y v v v v v v Y 0.00574 7.6
16 Y v v Y v v v Y v Y 0.04289 4.09

3.1. Statistical Analysis Results. The results of the univariate
statistical analysis are in Table 5. The significant results (p <
0.05) are only for KIR2DL2 and KIR3DLI. There are neither
motifs nor haplotypes associated to these two genes.

Traditional statistical comparison of KIR gene carrier
frequencies (2 x 2 tables using Fishers’ exact test) showed that
KIR2DL2 was more frequent amongst the haematological
malignancy cohort in comparison to the healthy individuals
(77.8% versus 40.3%, resp.; p < 0.0001), Group A homozygos-
ity was less frequent (11.1% versus 32%, resp.; p < 0.0044)
and A,B heterozygous haplotypes were more frequent (86.7%
versus 58.7%, resp.; p < 0.0002). This finding is interesting as
KIR2DL2 is in tight linkage disequilibria (LD) with another
gene, KIR2DS2. Both KIR2DL2 and KIR2DS2 are thought
to bind HLA-C allotypes having CI group specificity. Nev-
ertheless, KIR2DL2 is an inhibitory protein whereas 2DS2
is activating. All genotyping reactions were carried out in
triple, with further confirmatory runs if required. In addition,
all genotyping was done at the same lab. As such, we are
certain that this lack of LD is not related to technical issues.
However, we cannot rule out that this might be the result
of genotyping allele-dropout (failure to amplify a KIR2DS2
allele particularly common in the leukaemia cohort) or
of cross-hybridization of 2DL2 oligonucleotides with other
genes. This last possibility is unlikely as this genotyping
approach has been previously validated and this finding does
not occur in the healthy donor cohort.

For the multivariate statistical analysis, we take into
account all 12KIR genes variables. Therefore, we have
Y2 ('2) = 4083 combinations. From these set of com-
binations, if we set our threshold to p < 0.05 then
we obtain 336 significant variable combinations. There are

only 16 variable combinations associated to the haplotype
cAO01[tA0]; see Table 6. If we set p < 0.0001, then we
obtain only 35 significant variable combinations and only
one variable combination is associated to the haplotype
cAO1|tAO], that is, the variable combination #5 in Table 6.
From the multivariate statistical analysis, the best variable
combination is for KIR2DL1, KIR2DL2, KIR2DL3, KIR2DLS5,
KIR2DS4, KIR2DP1, and KIR3DLI; p value = 0.00002.

3.2. J48 Algorithm Results. In Figure 3, we show the results of
the J48 algorithm. The only case when the donor is associated
to a hematological malignancy (disease; C = 1) is when
the gen KIR2DL2 is present (=1), KIR2DS2 is absent (=0),
and KIR2DS4 is present (=1). There are not any motifs and
haplotypes associated with this decision tree.

3.3. A Priori Algorithm Results. The a priori algorithm gen-
erates a total of 71,006 rules, taking in account only the rules
where the class (C) appears at the consequent part of the rule,
and there are only 12,052 rules associated to C = 1 (disease).
In Table 7, we show only the first rules as generated by the
a priori algorithm (where C = 1). The first 24 rules (out of
12,052) are more important because they are more frequent
than the others. In Table 7, the frequency means that these
rules are satisfied for 10 donors out of 43; that is, this pattern
is present in 23% of the disease donors.

Because the variability in KIR genotype is such that most
pairs of unrelated human individuals have different KIR
genotypes, the unique feature of the human KIR system is
the representation of two distinctive groups of haplotypes
(A and B) [11]. Therefore, the more relevant rule given by
the a priori algorithm, in Table 7, is the rule Id = 1870 (2DLI1
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TABLE 7: Rules generated by the a priori algorithm represented in tabular form. This figure contains only 24 rules with frequency 10, where

the class =1 (C).

# Id KIR2DL1 KIR2DL2 KIR2DL3 KIR2DL5 KIR2DS2 KIR2DS4 KIR2DP1 KIR3DL1 Frequency
1 1476 2DL2 =1 2DL5 =1 2DS2=0 2DS4 =1 10
2 1477 2DL2 =1 2DL5 =1 2DS2=0 3DL1=1 10
3 1528 2DL1=1 2DL2 =1 2DL5=1 2DS2=0 2DS4 =1 10
4 1529 2DL1=1 2DL2 =1 2DL5=1 2DS2=0 3DL1=1 10
5 1558 2DL2 =1 2DL3 =1 2DL5 =1 2DS2=0 2DS4 =1 10
6 1559 2DL2 =1 2DL3 =1 2DL5=1 2DS2=0 3DL1=1 10
7 1560 2DL2 =1 2DL5 =1 2DS2=0 2DS4 =1 2DP1 =1 10
8 1561 2DL2 =1 2DL5 =1 2DS2=0 2DS4 =1 3DL1=1 10
9 1562 2DL2 =1 2DL5 =1 2DS2=0 2DP1=1 3DL1=1 10
10 1651 2DL1=1 2DL2 =1 2DL3 =1 2DL5 =1 2DS2=0 2DS4 =1 10
11 1652 2DL1=1 2DL2 =1 2DL3 =1 2DL5 =1 2DS2=0 3DLI=1 10
12 1653 2DL1=1 2DL2 =1 2DL5 =1 2DS2=0 2DS4 =1 2DP1=1 10
13 1654 2DL1=1 2DL2 =1 2DL5=1 2DS2=0 2DS4 =1 3DL1=1 10
14 1655 2DL1=1 2DL2 =1 2DL5 =1 2DS2=0 2DP1 =1 3DL1=1 10
15 1681 2DL2 =1 2DL3 =1 2DL5 =1 2DS2=0 2DS4 =1 2DP1=1 10
16 1682 2DL2 =1 2DL3 =1 2DL5=1 2DS2=0 2DS4 =1 3DL1=1 10
17 1683 2DL2 =1 2DL3 =1 2DL5 =1 2DS2=0 2DP1 =1 3DL1=1 10
18 1684 2DL2 =1 2DL5 =1 2DS2=0 2DS4 =1 2DP1=1 3DLI=1 10
19 1784 2DL1=1 2DL2 =1 2DL3 =1 2DL5=1 2DS2=0 2DS4 =1 2DP1=1 10
20 1785 2DL1=1 2DL2 =1 2DL3 =1 2DL5=1 2DS2=0 2DS4 =1 3DL1=1 10
21 1786 2DL1=1 2DL2 =1 2DL3 =1 2DL5 =1 2DS2=0 2DP1=1 3DL1=1 10
22 1787 2DL1=1 2DL2 =1 2DL5 =1 2DS2=0 2DS4 =1 2DP1=1 3DL1=1 10
23 1806 2DL2 =1 2DL3 =1 2DL5=1 2DS2=0 2DS4 =1 2DP1=1 3DL1=1 10
24 1870 2DL1=1 2DL2 =1 2DL3 =1 2DL5=1 2DS2=0 2DS4 =1 2DP1=1 3DL1=1 10

=1, 2DL2 =1, 2DL3 =1, 2DL5 =1, 2DS2 = 0, 2D&84 =1,
2DP1 =1, 3DL1 = 1 ==> Class = 1). This rule refers to the
haplotype cA01[tA01 [11], which is strongly inhibitory and
then tolerates the tumors. In addition to this haplotype, two
more inhibitory genes 2DL2 and 2DL5 are also present in this
rule (which are part of the haplotype cB03), and the activating
gen KIR2DS2 is absent. This association has been suggested
for certain Hodgkin’s lymphomas [38].

Moreover, it is clear, from Table 7, that the first 23 rules
are a subset of the main rule (Id = 1870), the new discovered
pattern. In fact, all of them have the same frequency. In other
words, the first 23 rules are derivations from the rule #24 (Id =
1870); for example, the toy example shown above for the AND
operator has theruleIF gl =0 A g2 = 0THEN C = 0, so the
rules IF g1 = 0 THEN C = 0 and IF g2 = 0 THEN C = 0 are
a subset of the previous rule. From Table 7, we can also infer
that the genes KIR2DSI, KIR2DS3, KIR2DS5, and KIR3DSI1
are somehow irrelevant, since they do not appear in any of
these 24 rules.

Some researchers have reported some associations related
to KIR2DS3 [35-37]. The rules shown in Table 7 (Class = 1)
are only associated to disease (C = 1) with the absence of
KIR2DS3. However, neither the J48 decision tree (Figure 3)
nor the main rules generated by the a priori algorithm
(Table 7) found some association between KIR2DS3 and
disease.

3.4. Statistical Analysis versus the A Priori Algorithm. The
unique feature of the human KIR system, which is not
mirrored in other higher primates, is the representation of

haplotypes (A and B). The haplotypes are present in all the
>150 human populations studied [4]. Therefore, the associa-
tion between haplotypes and disease is more important than
only KIR genotype and disease.

In Table 8, we show the comparison between the multi-
variate statistical analysis and the a priori algorithm results.
Table 8(a) shows the contingency table for the statistical
analysis, and we can observe that this variable combination
is associated to 18 disease donors (41%) of our study pop-
ulations, although it is also associated to 46 healthy donors
(15%). On the other hand, in Table 8(b), the contingency table
for the rule found by the a priori algorithm shows that the rule
is associated to 10 disease donors (23%), but it is not associ-
ated to any healthy donor. In other words, this rules is unique
since it is only associated to disease donors. In fact, the p
value and the y* value show that the result is more statistically
significant for the rule found by the a priori algorithm.

4. Conclusions

We studied a population of 300 healthy donors and 43 donors
with haematological malignancies. The J48 algorithm and the
univariate statistical analysis did not find any associations
between haplotypes and disease. The multivariate analysis
found 336 statistically significant variable combinations asso-
ciated with the haplotype cA01[tA0L (p < 0.05). From these
set of combinations there is only one variable combination
associated to this haplotype with p < 0.0001 (see #5 in
Table 6). This variable combination is associated to both
disease and healthy donors (see Table 8). On the other hand,
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TABLE 8: Statistical analysis of 2-way contingency tables. (a) This
table corresponds to the variable combination #5 in Table 6. (b) This
table corresponds to the rule Id = 1870 in Table 7.

(a) Multivariate statistical analysis

Disease Healthy
Disease 18 25
Healthy 46 254
p value = 0.00002; y* = 174.

(b) A priori algorithm

Disease Healthy
Disease 10 33
Healthy 0 300

pvalue = 0.0; x* = 71.86.

the a priori algorithm was able to discover a unique pattern
through the rule Id = 1870. This pattern is more statistically
significant than the variable combinations found by the
multivariate statistical analysis (see Table 8). Moreover, the
rule Id = 1870 is only associated to disease donors. In contrast,
the variable combination found by the multivariate analysis is
associated to both healthy and diseases donors. The rule Id =
1870 not only refers to the haplotype cA01|tA0l, which is a
predominantly inhibitory haplotype. This rule also refers to
the genes KIR2DL2 and KIR2DL5, which are also inhibitory
but not present in this haplotype which can be thought of
more likely to tolerate tumours in our study population (with
strict absence of KIR2DS2), that is, Mexican mestizos of
San Luis Potosi State. This pattern was not discovered with
previous studies on the same study population [33]. The
methodology proposed in this paper provides a new insight
into the analysis of datasets that allow researchers to find
biomarkers for cancer and other diseases. Although the size
and heterogeneity of our study cohort together with the lack
of HLA typing data limits the clinical inferences that can
be made from our results, it sets an example for a different
way of analysing the clinical and functional relevance of
complex genetic systems. Despite this, our methodology is
able to discover patterns unseen for statistical analysis and
decision trees generated by ID3 or J48 algorithms. The huge
amount of rules generated by the a priori algorithm involves
a data mining work to obtain the relevant rules. We found
that the best performance is when a lower bound support is
set to zero in combinations with a configuration that allows
us to select rules only when the class is equal to one. The
disadvantage of the a priori algorithm is that it requires huge
computational resources (memory and processing). More
research is needed to speed this algorithm up, and this may be
the reason that this algorithm is not used in bioinformatics. A
dataset with 23 variables is intractable for the Weka software
with a personal computer. However, the dataset studied in
this paper is able to run in the Weka software using a
personal computer with a processor Intel Core i7 with 2.3 Ghz
speed and 3 Gb memory. Undergoing investigations by our
research group include the study of a dataset with KIR and
HLA information of 413 HIV donors against our reference

population of 300 healthy donors. We found that datasets
with less 13 variables can be analysed on a personal computer
regardless of the number of donors. Alternatively, there is
commercial software to execute the a priori algorithm on a
given dataset such as STATISTICA [51]; this software can
manage more than 13 variables, but it also demands high
computational resources.
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