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Vitamin D deficiency is a candidate risk factor for a range of adverse health outcomes. In a

genome-wide association study of 25 hydroxyvitamin D (25OHD) concentration in 417,580

Europeans we identify 143 independent loci in 112 1-Mb regions, providing insights into the

physiology of vitamin D and implicating genes involved in lipid and lipoprotein metabolism,

dermal tissue properties, and the sulphonation and glucuronidation of 25OHD. Mendelian

randomization models find no robust evidence that 25OHD concentration has causal effects

on candidate phenotypes (e.g. BMI, psychiatric disorders), but many phenotypes have (direct

or indirect) causal effects on 25OHD concentration, clarifying the epidemiological relation-

ship between 25OHD status and the health outcomes examined in this study.
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In recent decades, there has been considerable interest in the
links between vitamin D concentration and general health.
While classically linked to bone disorders, there is growing

evidence to suggest that suboptimal vitamin D status may be a
risk factor for a much wider range of adverse health outcomes1.
Vitamin D, the sunshine hormone, is the precursor of a seco-
steroid transcription regulator that operates via a nuclear recep-
tor, and like other steroid hormones, exerts transcriptional
control over many regions of the genome across many different
tissues. In environments with access to adequate sunshine,
ultraviolet radiation on the skin converts a precursor of choles-
terol to vitamin D3. This is then further converted to 25-
hydroxyvitamin D3 (25OHD; used in assays of general vitamin D
status), and then to the active hormone 1,25-dihydroxyvitamin
D3 (1,25OHD) in a variety of tissues. Some foods and vitamin D
supplements also contribute to vitamin D levels. Definitions of
vitamin D deficiency (e.g., <25 nmol L−1 of 25OHD) are pre-
dominantly based on bone health2—according to these defini-
tions, vitamin D deficiency is common in many countries,
regardless of latitude and economic status3.

Environmental factors such as season of testing and latitude
contribute substantially to the serum concentration of 25OHD
(lower in winter/spring; lower at higher latitudes)1. With respect
to the genetic architecture of 25OHD, twin and family studies
have reported a wide range of heritability estimates (from 0%4 to
90%5). A recent multivariate twin study demonstrated that
approximately half of the total additive genetic variation in
25OHD may reflect genetic variation in skin colour and sun
exposure behaviour6. Genome-wide association studies (GWAS)
have identified common single-nucleotide polymorphisms
(SNPs) located in biologically plausible genes7. The largest GWAS
to date (N= 79,366) reported six significant loci, which include
GC (the vitamin D-binding protein gene), the DHCR7/NADSYN1
region (DHCR7 is involved in a conversion of a 25OHD pre-
cursor molecule to cholesterol) and CYP2R1 and CYP24A1 genes
(which encode enzymes involved in 25OHD metabolism8). In
total, common SNPs explain 7.5% (standard error (s.e.) 1.9%) of
the variance of 25OHD8.

Here, we conduct a GWAS of 25OHD based on the large UK
Biobank (UKB) sample9 and conduct a suite of post-GWAS
analyses to aid interpretation of the results (Fig. 1). We present
models that explore the genetic or causal relationship between
body mass index (BMI) and 25OHD (high BMI is associated with
lower 25OHD concentration in observational studies10). Because
we have an interest in the association between 25OHD and
psychiatric disorders11, we use Mendelian randomisation meth-
ods to investigate the bidirectional association between 25OHD
and psychiatric disorders, as well as with a wider range of traits
and diseases. In addition, we present a GWAS to identify loci
associated with variance in 25OHD (i.e., variance quantitative
trait locus (vQTL) analysis) which can identify putative genotype
environment interactions without prior identification of the
environmental effect12. We identify 143 independent loci in 112
1-Mb regions associated with 25OHD concentration, and our
findings implicate genes involved in lipid metabolism, dermal
tissue properties and conjugation of 25OHD. We find no
robust evidence that 25OHD concentration has causal effects on
candidate phenotypes. However, we show that many
phenotypes have (direct or indirect) causal effects on 25OHD
concentration.

Results
25OHD phenotype. In total, 417,580 European UKB participants
had both measures of vitamin D 25OHD and genome-wide
genotypes (“Methods”). The distribution of 25OHD

concentration, in keeping with expectation, is right skewed
(Supplementary Fig. 1a), and showed the expected seasonal
fluctuation (Supplementary Fig. 1b–d), with median, mean and
interquartile range of 47.9, 49.6, 33.5–63.2 nmol L−1 (Supple-
mentary Table 1). Covariates of age, BMI, genotyping batch,
assessment centre, month of testing, supplement intake and the
first four ancestry principal components (PCs), but not sex, were
all significantly associated with 25OHD (Supplementary Table 1).
Month of testing accounts for 14% of the variance of 25OHD.
Subsequent analyses use 25OHD after rank-based inverse-normal
transformation (RINT), unless otherwise stated.

Heritability and SNP-based heritability. Our UKB sample
included a set of 58,738 individuals related with coefficient of
relationship (r) > 0.2 to at least one other person in the set (all
relatives), from whom we estimate the heritability of 25OHD to
be 0.32 (s.e.= 0.01) with little evidence for inflation from
shared family environment (Fig. 2; Supplementary Fig. 2,
Supplementary Data 1, Supplementary Note 1). The SNP-based
heritability estimate (ĥ2SNP), which captures the genetic con-
tribution from common (minor allele frequency or MAF > 0.01)
variants, was 0.13 (s.e.= 0.01) (see Supplementary Fig. 2,
Supplementary Data 1 for a comparison of ĥ2SNP estimated from
various methods). ĥ2SNP was significantly higher (P= 1.5 × 10−3;
Z-test difference between two estimates, H0:difference= 0)
when estimated only from individuals measured for 25OHD in
summer months (June to October) compared with those mea-
sured in winter months (December to April) (0.19, s.e.= 0.02
vs. 0.10, s.e.= 0.02) (Fig. 2), as found for estimates of twin
heritability6. The genetic correlation between the seasons was
0.80 (s.e.= 0.11), not significantly different from 1. The pro-
portion of SNPs estimated to have an effect on the trait
(polygenicity parameter) using the SBayesS method13 was 0.8%
or 9000 SNPs of the ~1.1 million HapMap3 panel14 common
SNPs (Supplementary Table 2), much lower than estimates for
most complex traits13. The SBayesS S parameter, which
describes the effect size–MAF relationship, was estimated
as −0.78 (s.e.= 0.04; Supplementary Table 3), consistent with a
model of negative selection on the genetic variants associated
with 25OHD levels (the magnitude of S is higher than those of
most complex traits studied13). Estimation of ĥ2SNP partitioned
into ten components based on five MAF bins (each median split
by linkage disequilibrium score) did not provide strong evi-
dence for an increased role for less common variants, given the
s.e. of estimates (Supplementary Fig. 3). Despite a strong phe-
notypic association between 25OHD and BMI of −0.76 nmol
L−1 per BMI unit (−0.036 RINT(25OHD) standard deviation
(SD) units per BMI unit, linear regression P < 2.2 × 10–16) and a
phenotypic correlation of −0.17 (Supplementary Table 1), the
estimates of heritability (both family and SNP-based) were
hardly impacted when BMI was included as a covariate
(Supplementary Fig. 2).

Genome-wide association study (GWAS) analysis. Given the
potential for collider bias from using a heritable trait as a cov-
ariate15, we conducted GWAS for 25OHD with and without BMI
as a covariate. We also used mtCOJO16 to estimate the 25OHD
SNP effects conditioning on those estimated for BMI from UKB
data17, a summary-data-based conditional analysis approach that
was shown in simulations to be robust to collider bias when
conditioning on a correlated trait16. Results were comparable
across the three levels of BMI adjustment (Supplementary
Data 2), so we report those with no correction for BMI, using
results from all three analyses when this aids interpretation of the
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Analyses using individual-level data

Phenotype descriptive analysis Genotypes

• Extract vitamin D from UK Biobank (data field 30890)

• Assess phenotype distribution and seasonal fluctuations

• Apply rank-based inverse-normal transformation

• Assess covariate effects

• Assess relationship with BMI

• Genotype data QC

• GWAS (with and without BMI adjustment)

• Season-stratified GWAS

• Conditional and joint (COJO) analysis

• Meta-analysis with SUNLIGHT consortium GWA results

• vQTL GWAS

• GxE analysis with season

• Heritability – 58K UKB have family member ≥ 2nd degree
  GREML SNP-based heritability

• Out-of-sample prediction

Analyses using GWAS summary statistics

SNP-based Heritability Annotation Cross-trait analysis

•   SBayesR
•   SBayesS

•   LDSC

• FUMA
• SMR

–eQTLs from blood, skin, liver & brain

    – Partitioned by functional annotation (enhancer, promoter, etc)
    – Partitioned by cell-type annotation

• Genetic correlations

• Mendelian Randomisation analyses

– 2-sample MR for significant MR
results

– GSMR

Fig. 1 Outline of key analytic steps described in this study. BMI body mass index, eQTL expression quantitative trait locus, FUMA functional mapping and
annotation23, GREML69 genomic relationship restricted maximum likelihood68, GSMR generalised summary-based MR, GWAS genome-wide association
study, GxE genotype-by-environment interaction, LDSC linkage disequilibrium score regression, MR Mendelian Randomisation, SMR summary-based
MR26, QC quality control, UKB UK Biobank, vQTL variance quantitative trait locus12.

Heritability SNP-based heritability

rg = 0.8

s.e. = 0.11

14

30

P+T, P-value thresholds applied to GWAS summary statistic

30

16
13

26

7

23

5

18

5

16 15 15 14

43

21

34

22

38

3 3

Out-of-sample prediction

Polygenic risk prediction using different SNP sets and SNP effect size estimates.

Dark coloured bars in each pair are for the UKB replication sample (N=1632)

and light coloured bars are for the QIMR Australian replication sample (N=1632)
0.3

0.2

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

±1
.9

6S
E

0.1

0.0

GREM
L

SBay
es

R

Sum
m

er

W
int

er P<5
E-0

8

P<1
E-0

5

P<0
.0

01

P<0
.0

1

P<0
.0

5
P<0

.1

P<0
.5

P<1

COJO

SBay
es

R

SBay
es

S

Fig. 2 Heritability, SNP-based heritability and variance explained in out-of-sample prediction. Heritability (left panel) and SNP-based heritability (middle
panel) estimates and the variance explained in out-of-sample prediction (right panel). Heritability and SNP-based heritability estimates are presented with
95% confidence interval. GCTA-GREML was used to estimate heritability from a UKB subset that included all pairs of individuals related with coefficient
of relationship > 0.2 (N= 58,738 relatives). GCTA-GREML was used to estimate SNP-based heritabilities labelled GREML summer or winter using samples
of ~50 K participants randomly drawn from the UKB. The SBayesR SNP-based heritability is estimated from the GWAS summary statistics (N= 417,580).
In out-of-sample prediction into the QIMR and the UKB replication (UKBR) samples, polygenic risk scores (PRS) calculated by the standard P-value
threshold method (P+ T) were outperformed by using SNP effect estimates calculated from GWAS summary statistics using the SBayesR or SBayesS
methods. Bars of the same colour used the same methodology (noting that SBayesR generates an estimate of SNP-based heritability as well as SNP effect
sizes in prediction analysis). The numbers on top of the bars are −log10 P-value of the regression of 25OHD on 25OHD PRS. COJO conditional and joint, rg
genetic correlation, s.e. standard error.
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results. While there is some debate about the clinical threshold for
vitamin D deficiency (25 nmol L−1 or 30 nmol L−1 serum con-
centration)1,2, we chose the more conservative threshold of 25
nmol L−1. We conducted analyses bisecting 25OHD into a binary
trait (less than 25 nmol L−1, 25 nmol L−1 or greater), but the
results were consistent (given the expected reduced power) with
our reported results treating 25OHD as a quantitative trait
(Supplementary Note 2).

A total of 8,806,780 SNPs with MAF > 0.01 were tested in the
GWAS analysis. Of these, 18,864 were genome-wide significant
(GWS; P < 5 × 10−8). To identify independently associated loci,
we applied the GCTA–COJO method18 to the GWAS summary
statistics using LD between SNPs estimated from a UKB subset
(“Methods”), and identified 143 independent loci (including one
on chromosome X) (Fig. 3; Supplementary Data 3) in 112 1-Mb
regions. Of these, 15 loci were low-frequency variants (MAF <
0.05), and 106 regions had no previously identified associations.
All six loci reported in previous vitamin D GWAS8,19,20 were
replicated in our study. While recognising that the COJO method
cannot distinguish between SNPs in perfect LD, we note that
within the 143 COJO independent variants: (a) 14 were non-
synonymous variants that alter protein coding (NRIP1, DSG1,
TM6SF2, PLA2G3, GCKR, APOE, PCSK9, SEC23A, FLG, NPHS1,
SDR42E1, CPS1, ADH1B, UGT1A5), and (b) 9 were annotated to
include small insertion/deletions. A summary of the results is
provided in Fig. 4, but are discussed later.

Summary statistics from the SUNLIGHT consortium8 were
available for 2,579,297 SNPs, and the genetic correlation estimate
with UKB results was not significantly different from 1 (r̂g = 0.92,
s.e.= 0.06). Meta-analysis with our UKB GWAS results after
imputation21 of the SUNLIGHT summary statistics (Supplemen-
tary Methods) (6,912,294 overlapping SNPs) identified 15,154
GWS variants, 150 GCTA–COJO independent SNPs (Supple-
mentary Methods, Supplementary Data 2). Of these, 91 were
within 1-Mb regions also identified in the UKB alone as GWS.
Given that the meta-analysis only increased the total number of
significant loci by seven, and given our preference not to include
BMI as a covariate, we continued with the UKB-only results for
our downstream analyses. See Supplementary Note 3 for further
details.

Replication and out-of-sample genetic risk prediction. Of the
143 genome-wide significant COJO SNPs, 135, 135 and 108 were
found in the QIMR (N= 1632), UKBR (N= 1632) and

SUNLIGHT (N= 79,366) consortium replication samples,
respectively (Supplementary Data 3; Supplementary Note 3). Of
these, 92 (68%, P= 6.7 × 10−6), 97 (72%, P= 7.5 × 10−8) and 89
(82%, P= 5.3 × 10−13) had the same sign of association test
statistic as in the UKB discovery sample (P-values from the
binomial test with null hypothesis of random sign). The pairwise
correlations between allele effect size estimates in the different
cohorts were all highly significant, ranging from 0.44 between
QIMR and UKBR and 0.91 between UKB and SUNLIGHT.
Polygenic score prediction into the QIMR sample using SNP
effects estimated in the UKB and the standard P-value thresh-
olding method explained a maximum of 7.5% of the variance in
RINT (25OHD residuals after regression on covariates) (Fig. 2;
Supplementary Table 4) (linear regression P= 3.7 × 10−31, at P-
value threshold of P < 5 × 10−8). When the polygenic scores were
derived from SNP weights from COJO or SBayesR applied to the
GWAS summary statistics13,22, the prediction variance was
higher 10.5% and 9.6%, respectively (Fig. 2; Supplementary
Table 4). In the UKBR sample, the P-value thresholding method
explained a maximum of 4.3% of variance (P= 3.2 × 10−17, at P-
value threshold of P < 1 × 10−5), while scores using the COJO
SNP weights explained 3.6% of the variance (P= 1.6 × 10−14)
and those using SBayesR SNP weights explain 5.5% of the var-
iance (P= 5.7 × 10−22, Fig. 2; Supplementary Table 4).

Functional mapping and annotation of GWAS. To annotate
the 25OHD GWAS, we first used the FUMA online pipeline23.
Gene-set analyses showed that the top four pathways were
related to glucuronidation, ascorbate and aldarate metabolism
and uronic acid metabolism (Supplementary Data 4, 5). Kera-
tinisation was the top Gene Ontology (GO) biological processes
identified. Based on 53 tissue types from GTEx v624, the top
tissues for differentially expressed genes identified in the GWAS
were liver, brain and skin (sun exposed, and non-sun exposed;
Supplementary Data 6). Partitioned SNP-based heritability
analysis25 using cell-type-specific annotations identified five cell
types (hepatocytes, two types of liver cells, skin cells and blood
cells) at the nominal significance level of 0.05 (Supplementary
Data 7), but none remained significant after correction for
multiple testing (stratified LD score regression P (PLDSC) <
2.4 × 10−4). In partitioned SNP-based heritability analysis using
SNP annotation to 53 functional categories25, 11 passed mul-
tiple testing significance threshold (PLDSC < 9.4 × 10−4; Sup-
plementary Data 8) with a mix of annotations including
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Fig. 3 Manhattan plot of the 25OHD GWAS in the UK Biobank. Manhattan plot showing the −log10 P-values from the fastGWA62 association test of
25-hydroxyvitamin D (25OHD) with genome-wide SNPs. Red dots represent independent variants identified as genome-wide significant with conditional
and joint analysis (COJO18) applied to the GWAS summary statistics. The horizontal axis shows each chromosome, with 23 representing the X
chromosome. The vertical axis is restricted to −log10 P-values < 150. Five COJO SNPs were associated at P < 1 × 10−150 (four on chromosome 11 and one
on chromosome 4; Supplementary Data 3) and have approximate locations represented by three red triangles at the top edge of the plot.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15421-7

4 NATURE COMMUNICATIONS |         (2020) 11:1647 | https://doi.org/10.1038/s41467-020-15421-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


transcription factor binding sites and transcription start sites
(notable because vitamin D operates via a nuclear receptor,
which binds to vitamin D response elements), as well as a role
for repressed sites, conserved regions, enhancer and coding
regions and histone modification marks.

To identify 25OHD SNP associations with statistical evidence
consistent with a causal/pleiotropic association via gene expres-
sion, we used summary-data-based Mendelian randomisation
(SMR)26 using the 15,504 gene probes with significant cis-eQTLs
identified from whole blood eQTLGen data27. After Bonferroni
correction, we found 112 significantly associated gene expression
probes (PSMR < 3.2 × 10−6, i.e., 0.05/15,504, being the total
number of probes tested in SMR analysis; Supplementary Data 9,
Supplementary Fig. 4; full details of the SMR analyses can be
found on https://cnsgenomics.com). These results are discussed
in detail in Supplementary Note 4, and add weight to the
hypothesis that the SMR-identified eQTL variants may be
causally related to 25OHD concentrations.

Putative causal relationships with other traits. First, we inves-
tigated the relationship between 25OHD and BMI. The LDSC28

genetic correlation estimated from 25OHD and BMI GWAS
summary statistics was −0.17 (s.e.= 0.03) (Supplementary Fig. 2,
Supplementary Data 10). Bidirectional Mendelian randomisa-
tion16 analysis provided strong support for the hypothesis that
high BMI is causal for low 25OHD (bBMI.25OHD=−0.130; s.e.=
0.005; PGSMR= 4.7 × 10−162; based on 1020 BMI-associated SNP
instruments), with no support for a causal effect of vitamin D on
BMI (b25OHD.BMI= 0.008; s.e.= 0.006; PGSMR= 0.20; based on
210 vitamin D-associated SNPs) (these results were confirmed by
other MR methods29; Supplementary Table 5). Notably, the
HEIDI-outlier test in the GSMR analyses excluded 70 BMI and 67
25OHD SNP instruments, whose combination of SNP effect sizes
likely reflects a pleiotropic relationship or confounding. Using the
SNPs excluded by the HEIDI-outlier test, the estimates were
bBMI.25OHD= 0.17 (s.e.= 0.0182; PGSMR= 1.2 × 10−20) and
b25OHD.BMI=−0.15 (s.e.= 0.017, PGSMR= 2.7 × 10−18). Hence,

Skin properties

Lipid and lipoprotein pathways

Selected loci of interest and putative mechanism related to Vitamin D pathways

• NRIP ns: nuclear protein that interacts with nuclear receptors such as the vitamin D receptor

• SEC23Ans:  vesicle formation in endoplasmic reticulum

• NPHS1ns: ultrafilter associated with exclusion of albumin and plasma macromolecules from
  urinary excretion. This may influence the excretion of the vitamin D binding protein, which
  will impact on the functional half-life of 25 hydroxyvitamin D

• ADH1A, ADH1Bns: members of alcohol dehydrogenase family – metabolizes hydroxysteroids

• ALDH1A2x2: aldehyde dehydrogenase enzyme

• GC x2: vitamin D binding protein — a highly polymorphic binding/transport protein that extends
  the functional half-life of 25 hydroxyvitamin D 

• SULT21A: conjugates sulphur containing molecule to 25 hydroxyvitamin D (to produce 25-
  hydroxyvitamin D-3-sulfate) which can lead to excretion and/or recycling

• UGT1A4, UGT1A5 ns, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, (UGT2B29P3077bp):
conjugates glucuronide molecule to 25 hydroxyvitamin D which can lead to excretion and/or
recycling

• SDR42E1ns: short-chain dehydrogenase/reductase involved in the metabolism of steroids

• EXOC4: exocyst formation required for docking on plasma membrane

CYP450 and steroid-related
enzymes

HALx2, KLK10, FLGns, FLG-AS1x3, POU2F3, PADI1, DSG1ns

PCSK9ns, DOCK7, CELSR2, LIPC,
GALNT2, ABCA1, DGAT2, CETP, APOEns

APOC1, PLAG2G3ns, (AKR1A679bp),
(APOB28030bp), (CETP1234bp), (LIPG2495bp),
(LDLR9504bp)

HSD17B1, CYP2R1x2, (CYP7A19464bp),
(CYP26A12077bp), (HSD3B18358bp),
(CYP24A1274bp)*

a

b c

Fig. 4 Summary of selected variants associated with 25OHD in the UK Biobank. Top panel shows loci associated with skin integrity, lipid and lipoprotein
pathways and CYP450 and steroid-associated enzymes. Lower panel shows selected variants and putative mechanisms related to 25-hydroxyvitamin
D (25OHD) concentration. For selected inter-genic loci, the nearest (upstream or downstream) gene is shown in brackets. The distance between the loci
and the nearest gene is shown in base pairs. *CYP24A1 was also the closest gene for an additional three inter-genic loci with distances between
32,865–55,282 base pairs. ns non-synonymous variant, x2 or x3 two or three loci found within the gene. We note that nearest gene annotation should be
interpreted recognising that these are not proof of a causal relationship between the associated SNP and expression of the gene (none-the-less supporting
evidence for causal relationships is given by the SMR analyses for some loci).
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despite the clear evidence for a causal relationship between high
BMI and low 25OHD, the biological relationship between these
traits is more complex.

Next, we estimated genetic correlations (rg) between 25OHD
and 746 traits with GWAS summary statistics available in LD
Hub30, and we used LDSC to estimate rg between 25OHD and 18
traits (including six psychiatric disorders) with GWAS summary
statistics that are more recent than those included in LD Hub.
Although many of the traits are highly correlated, we use a
Bonferroni correction for 764 tests as the threshold for discussion
of rg. The LDSC regression intercepts were close to zero,
suggesting no sample overlap (Supplementary Data 10), except
for LD Hub traits derived from UKB analyses, where the
intercept, as expected from theory, equates to the phenotypic
correlation. We found significant associations between
25OHD and a range of brain-related phenotypes (including
autism spectrum disorder, intelligence31, major depression,
bipolar disorder and schizophrenia; Supplementary Fig. 5).
Notably, the most significant rg were with cognitive-associated
traits—for example, a negative correlation (r̂g =−0.24, s.e.=
0.03, PH0:rg=0= 1.6 × 10−14) with intelligence. There was
also a significant negative rg with hours spent using a computer
(̂rg =−0.22, s.e.= 0.03, PH0:rg=0= 5.1 × 10−15). These findings
may be mediated by an association between higher intelligence
and behaviour associated with less exposure to bright sunshine
(and thus, lower 25OHD). Of note, behaviours associated with
outdoor activity (duration of walks, duration of vigorous activity)
were positively associated with 25OHD, while phenotypes related
to chronic disability were negatively associated with 25OHD.

Next, we investigated if some of the significant genetic
correlations could be explained by causal relationships using
bidirectional GSMR models—here a more complex pattern of
association emerged (Fig. 5; Supplementary Data 11). We found
no evidence for putative causal effects between 25OHD and other
traits; GSMR analyses without the HEIDI-outlier filtering step
(Fig. 5a) suggest strong pleiotropy for some traits, such as
dyslipidemia, coronary artery disease, intelligence and educa-
tional attainment. Finally, we examined the reciprocal relation-
ship—if variants associated with a range of traits were
directionally associated with 25OHD. Regardless of the use of
HEIDI filtering, and often regardless of adjustments for BMI, we
found evidence consistent with increased risk of several traits or
disorders being causal (directly or indirectly) with lower 25OHD
concentrations (Fig. 5b). This was the case for intelligence,
dyslipidemia, major depression, bipolar disorder, type 2 diabetes
and schizophrenia. The findings might suggest these traits or
disorders are associated with behaviours that lead to reduced
production of 25OHD (e.g., less outdoor activity and physical
activities). The GSMR findings were also checked with the
portfolio of MR methods implemented in the two-sample MR
(2SMR) software29 (Supplementary Data 12).

Gene–environment interplay. We conducted a genome-wide
vQTL analysis, as implemented in OSCA12 to identify SNPs
associated with variance in 25OHD (not RINT-transformed).
Such associations can reflect genotype-by-environment interac-
tion in the absence of measurement, or indeed knowledge, of the
interacting environmental risk factor12. Using data from 318,851
unrelated individuals of European ancestry, we tested 6,098,063
variants with MAF > 0.05, and identified 4008 GWS vQTLs, of
which 25 were independent (LD r2 < 0.01, 5-MB window), and
several were in genes with previously described links to vitamin
D-related pathways (e.g., GC, UGT2B7, SEC23A, SULT2A1,
KLK10, NADSYN1). Of the 25 independent vQTLs, 23 were also
QTLs (identified as genome-wide significant in the GWAS

analysis) while the two non-QTL loci were still associated at
PGWAS < 10−5 (Supplementary Data 13). One was in the POR
gene, which encodes a cytochrome p450 oxidoreductase that
donates electrons from NADPH to cytochrome P450 enzymes
(encoded by CYP450 genes), which are involved in vitamin D
metabolism32. Variants in POR have previously been associated
with coffee intake33. The other exclusive vQTL (rs1030431) is
12,126 bp upstream from UBXN2B; the SNP is significantly
associated with gall bladder diseases and lipid metabolism traits
in the UKB34.

An environmental factor with known association with 25OHD
is the season of testing. To investigate if the associations between
the vQTLs and the phenotypic variance of 25OHD reflected
gene–environment (GxE) interactions with season of blood draw,
we performed a GxE analysis with season (winter vs. summer). Of
6,098,063 variants tested (MAF > 0.05), 1127 had a GWS (P < 5 ×
10−8) interaction with season, and 1120 (99%) were also GWS in
the vQTL analysis. From the 1127 GWS interactions, five were
independent (LD r2 < 0.01, window 5Mb) and were located in
regions that have well-known vitamin D-related genes in
chromosomes 11 (e.g., CYP2R1 region) and 14 (e.g., SEC23A)
(Supplementary Data 14). Notably, of the 20 vQTL loci without
significant GxE with season, at least half showed no evidence at
all for GxE with season (Supplementary Fig. 6), so these variants
are candidates for GxE with other environmental factors.

Discussion
We have identified 143 loci associated with 25OHD concentra-
tion. Recognising that only six associated loci had been reported
to date, these discoveries provide important insights into pre-
viously unknown or poorly understood vitamin D-related path-
ways, and substantially increase our knowledge of the genetic
correlates of 25OHD compared with previous studies7 (Fig. 4).
First, the three most associated loci, all identified in previous
studies8, are noteworthy (chr4:rs1352846, chr11:rs116970203 and
chr11:rs12794714, all with association test P < 1.0 × 10−400, all
with their minor allele reducing 25OHD). rs1352846 (MAF=
0.29 (G)) is in the GC locus8,20, which encodes a protein syn-
thesised in the liver that binds to, and transports vitamin D and
its metabolites. rs116970203 is a low-frequency variant (MAF=
0.03 (A)) located in intron 11 of the PDE3B gene. It is also a
perfect proxy for rs117913124 (LD r2= 1), a low-frequency
synonymous coding variant in CYP2R1, which was previously
reported to associate with 25OHD19. Another CYP2R1 synon-
ymous variant was also identified (rs12794714; MAF= 0.42 (A)).
CYP2R1 encodes a crucial hepatic enzyme involved in the
hydroxylation of vitamin D to 25OHD. Given the complexity of
the association pattern observed in chromosome 11, we con-
firmed the independence of the COJO identified variants using
individual-level data (Supplementary Table 6). In line with pre-
vious findings19, the two-way conditional analysis showed that
the effect of the low-frequency SNP (rs116970203 or
rs117913124) and common SNP (rs12794714 or rs10741657)
were largely independent.

Our findings provide convergent evidence that genes related to
lipid- and lipoprotein-related pathways influence 25OHD con-
centration. In particular, we confirm a unidirectional relationship
between SNP instruments that influence higher BMI and lower
25OHD concentration, but not the reciprocal relationship. This
relationship exists against a background of a highly inter-
correlated pattern of relationships between genes that influence
both 25OHD and a wide range of lipid-related metabolic phe-
notypes. There were variants within genes with well-described
functions related to lipid and lipoprotein-related pathways35 (e.g.,
PCSK9, DOCK7, CELSR2, GALNT2, ABCA1, DGAT2, CETP,
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APOE, APOC1, PLA2G3). In addition, several inter-genic loci had
closest upstream or downstream genes of interest to lipid and
lipoprotein pathways (AKR1A, APOB, CETP, LIPG, LDLR).
Variants in these genes influence overall lipid concentrations,
including the concentration of 7-dehydrocholesterol in the skin.
We identified a locus (chr11:rs12803256) in an uncharacterised
RNA gene (FLJ42102) 11,057 base pairs upstream from DHCR7.
This region has been identified in previous GWAS studies, and
DHCR7 is a strong candidate gene because of its known role in
the conversion of 7-dehydrocholesterol in the skin to pre-vitamin
D3. We note that the broad region on Chr11 containing DHCR7
and NADSYN1 included several loci of interest according to both
GCTA–COJO and SMR analyses—this complex area warrants
additional research.

The GWAS uncovered a range of previously unreported find-
ings, indicating that properties of the skin not related to pig-
mentation are associated with 25OHD concentration. While it is
well known that individuals with darker skin tend to have lower

25OHD (related to the melanin content in the skin blocking
UVB)1, our findings provide evidence that SNPs associated with
genes that influence dermal development (e.g., PADI)36 and
integrity (e.g., FLG; FLG-AS1, POU2F3, KLK10, DSG1)37,38 are
also associated with 25OHD status. It has been suggested that
variants in the FLG gene may have evolved in order to optimise
25OHD production at high latitude39,40. HAL (histidine ammo-
nia-lyase) codes for an enzyme that deaminates L-histidine to
trans-uronic acid. The top SNP in this region (rs10859995) is
within an intron of this gene. The gene is expressed in the skin,
and is upregulated during keratinocyte differentiation41. It has
been demonstrated that trans-urocanic acid in the stratum cor-
neum can absorb UVB42 and can reduce the production
25OHD43. The MAGMA gene-set analysis23 also showed that
variants associated the uronic acid pathways were significantly
overrepresented in our findings (Supplementary Data 5). The
concentration of trans-uronic acid varies widely between indivi-
duals43,44, but is not related to skin colour/pigmentation44. It is
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Fig. 5 Mendelian randomisation analysis estimates from GWAS results from 25OHD and selected phenotypes. Bidirectional Generalised Summary-data
level Mendelian Randomisation (GSMR) between 25-hydroxyvitamin D (25OHD) concentrations and selected phenotypes, by three types of adjustments
for body mass index (BMI) and with/without HEIDI filtering of pleiotropic loci. Panel a shows the estimate of the causal effect estimate (b̂xy ; dots), and
95% confidence intervals (bars), of 25OHD concentration on selected phenotypes. b̂xy (and respective P-values) was obtained with the generalised
summary-data-based Mendelian randomisation (GSMR) method16. Negative b̂xy indicates that variants associated with increased 25OHD concentration
were associated with a smaller value/reduced risk for the phenotypes of interest. Panel b shows the estimate of the causal effect (and 95% confidence
intervals) of the same selected phenotypes on 25OHD concentration. Results are presented with (upper half) and without (lower half) filtering of
pleiotropic associations with the heterogeneity in dependent instruments (HEIDI) test, respectively. The numbers above each effect size indicate the
number of SNP instruments used in each analysis. For each set of analyses, we show GWAS results: (i) without adjustment for body mass index (BMI), (ii)
with BMI included as a covariate and (iii) conditioned on BMI using mtCOJO16. The GMSR estimates and 95% confidence intervals are shown in three
colours according to the P-value thresholds: grey (non-significant; PGSMR > 0.05), yellow (nominally significant; PGSMR < 0.05) and red (significant after
Bonferonni correction for multiple testing; PGSMR < 0.003). All b̂xy , respective standard errors and P-values can be found in tabular form in Supplementary
Data 11.
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important to note that our sample was restricted to Europeans,
and analyses included 40 ancestry PCs as covariates, four of
which were strongly associated with 25OHD (Supplementary
Table 1). If these PCs capture variants related to skin colour
within Europeans, these variants are less likely to be identified in
our analyses. FUMA analyses did not identify an over-
representation of variants known to be related to skin colour in
our GWAS.

Our study expands the range of enzymes implicated in the
synthesis and breakdown of vitamin D-related molecules. These
include genes from the hydroxysteroid 17-beta dehydrogenase
family (HSD17B1, HSD3B1), a family of short-chain dehy-
drogenases/reductases, which are involved in steroidogenesis and
steroid metabolism. CYP2R1 is a key regulator of 25OHD status,
via hepatic conversion of vitamin D to 25OHD—two loci were
found within this gene. Other members of this large family of
enzymes associated with 25OHD concentrations include
CYP7A1, CYP26A1 and CYP24A1.

We identified many variants within genes related to the
modification of lipophilic molecules (including seco-steroids,
such as 25OHD and related species). Associated regions on
chromosomes 2 and 4 include enzymes in the UDP-
glucuronosyltransferase family, which are critical in the glucur-
onidation pathways. The involvement of these genes in the
degradation and potential conjugate recycling of 25OHD has
recently been described45,46. We identified variants in the
SULT21A gene, which encodes the enzyme responsible for the
sulphonation of 25OHD46,47. Our findings provide support for
the hypothesis that these mechanisms influence 25OHD con-
centration. We identified variants in the SLCO1B1 gene, which
encodes a transmembrane receptor that mediates the sodium-
independent uptake of numerous endogenous compounds,
including sulfated steroid molecules48. It is not known if this
mechanism is involved in the uptake of the sulphated 25OHD. It
has been proposed that vitamin D may undergo conjugate cycling
(e.g., bidirectional conversion between 25OHD and 25OHD-
sulphate)49. A proportion of the total 25OHD may exist in the
sulphated form, which could act as circulating reservoir for later
de-sulfation in peripheral tissues. In addition, conjugated versions
of 25OHD with glucuronide45 and sulfate46 have both been
detected in bile, which suggests enterohepatic mechanisms may
provide another reservoir that buffers total 25OHD reserves. The
findings also have implications for how to assay total 25OHD
reserves. Current extraction and assay techniques used to quan-
titate 25OHD are not optimised for sulphonated or glucur-
onidated species of 25OHD, thus total 25OHD status may not
accurately reflect the contribution of these conjugated species. In
addition, these mechanisms would contribute to the functional
half-life of 25OHD, and thus influence vitamin D status during
periods of reduced exposure to bright sunshine (e.g., during
winter). Finally, variants in a range of previously unreported
enzymatic pathways were also associated with 25OHD con-
centration (e.g., short-chain dehydrogenase/reductase, aldehyde
dehydrogenase, alcohol dehydrogenase).

The large sample size afforded by the UKB sample provides a
thorough description of the genetic architecture of 25OHD. The
SNP-based heritability (which captures the contribution to var-
iation between people associated with common DNA variants)
estimated in the UKB was 0.13 (95% CI: 0.12–0.14), which means
that all genotyped/imputed variants with MAF > 0.01 explain
about 41% of the heritability estimated from close relatives (i.e.,
0.13/0.32, SNP-based heritability/heritability, Fig. 2). The 143 loci
represent only 112 1-Mb regions, with six of the 1-Mb regions
harbouring four loci each. The final set of 143 loci was achieved
by applying the COJO (conditional and joint) algorithm onto the
GWAS summary statistics using the linkage disequilibrium

structure to account for the correlation structure between SNPs.
Two regions on chromosome 11 are particularly complex, Sup-
plementary Data 3). Polygenic score predictor using SNP effect
weights estimated in the UKB explained up to 10.5% and 5.7% of
variance (after accounting for covariates) in independent samples
QIMR and UKB. Aside from sampling differences, the higher
variance explained in the Australian QIMR sample is in line with
the higher heritability estimated from family data (QIMR 0.50
(95% CI: 0.38–0.64) vs 0.32 (95% CI: 0.30–0.34) estimated in the
UKB. One explanation for the difference is that the QIMR
samples were predominantly recruited at latitude 27° S; at this
latitude, there is sufficient UVR to allow for vitamin D synthesis
throughout the year.

We also identified 25 independent SNPs associated with var-
iance in 25OHD—these are putative GxE loci. While five of these
have strong evidence of interacting with season of measurement,
at least ten are GxE candidates with yet-to-be-identified envir-
onmental risk factors, and search of published GWAS results for
association with these SNPs (i.e., PheWAS34) may help with this
prioritisation (Supplementary Data 13). In summer months, the
mean 25OHD concentrations are higher, and a larger proportion
of the variance could be attributed to genetic factors in summer
compared with winter (SNP-based heritability of 0.19, s.e.= 0.02,
vs 0.10, s.e.= 0.02, Pdifferent= 1.5 × 10−3), and this reflected an
increase in genetic variance rather than a decrease in residual
variance (Supplementary Data 1). However, the genetic correla-
tion from summer and winter SNP effect sizes was not sig-
nificantly different from 1. Five loci were identified as significant
in GxE analysis with season, and for two the direction of effect
was reversed (Supplementary Data 14). The vitamin D phenotype
is an interesting one to explore from the perspective of GxE as
seasonal fluctuations provide a natural experiment to dissect
components of the genetic architecture that influence synthesis
(i.e., inflow) and excretion (i.e., outflow) of 25OHD-related
pathways.

In the UKB participants, high BMI is associated with reduced
25OHD concentration, in keeping with a large body of observa-
tional epidemiology50. However, we did not find statistical evi-
dence in support of a causal role for the 25OHD level on BMI. In
contrast, there was evidence for pleiotropic effects of SNPs on the
two traits as well as for high BMI being causal (directly or
indirectly) for low 25OHD. Genetic correlations were significant
between 25OHD concentration and a range of phenotypes
(Fig. 5). However, in robust directional models, we found no
evidence in support of a causal role for 25OHD concentration on
these traits. Of interest, we found evidence that higher intelligence
and an increased risk of several psychiatric disorders may cause
reduced 25OHD concentrations. With respect to intelligence, this
would be consistent with previous links between intelligence and
years of education leading to working indoors, and subsequent
lower concentrations of 25OHD51. One of our motivations for
undertaking this study was to investigate the hypothesis of a
causality relationship between 25OHD and psychiatric dis-
orders52. The Mendelian randomisation analyses conducted here
do not support a causal role for 25OHD levels and these dis-
orders, and hence the reported epidemiological associations could
reflect confounding and/or reverse causation. Vitamin D defi-
ciency is common in those with established psychiatric disorders,
as a consequence of reduced outdoor behaviour53. It is feasible
that the observed association between 25OHD concentration in
blood spot samples taken at birth with later-life increased risk of
schizophrenia11,54 could be confounded by outdoor behaviour of
mothers, which may be correlated with the mother’s genetic lia-
bility to schizophrenia. While we find no evidence to support the
hypotheses that variants associated with low 25OHD concentra-
tions were associated with any of the selected phenotypes, we note
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that there is a linearity assumption in our Mendelian randomi-
sation analyses. In other words, if only very low concentrations of
25OHD are associated with adverse outcomes, then this non-
linear exposure-risk association may not be confidently detected
(see Supplementary Note 2 for further discussion). As the genetic
architecture of the broad range of vitamin D-related phenotypes
becomes better understood, issues related to potential threshold
effects (e.g., disease-specific thresholds for clinical deficiency)
should be re-examined.

We have identified 143 loci associated with 25OHD con-
centration, and have provided new directions for vitamin D
research. In particular, our findings suggest that pathways related
to sulphonation and glucuronidation warrant closer scrutiny—for
example, there may be a case to measure these modified species of
25OHD and related molecules in order to better understand
vitamin D status. Our studies based on Mendelian randomisation
do not support hypotheses that vitamin D concentration is
associated with a broad range of candidate phenotypes, in par-
ticular, psychiatric disorders. The findings provide insights into
the physiology of vitamin D and the relationship between 25OHD
status and health.

Methods
The UK Biobank sample. The UK Biobank (UKB) is a large population cohort
with phenotype, genotype and clinical information on more than 502,000 indivi-
duals (age range from 40 to 69 years old). Participants were registered with the
National Health Service, and lived ~25 miles from one of the 22 recruitment
centres across the UK9. Participants were recruited between 2006 and 2010.
Informed consent was obtained by UK Biobank from all participants, and the study
was approved by the North West Multicentre Research Ethnics Service Committee.
The participants of the study were not representative of the original sampling
frame, with evidence of a healthy volunteer bias55.

Genotype data were quality-controlled and imputed to the Haplotype Reference
Consortium (HRC)56 and UK10K57 reference panels by the UKB group58. We
extracted variants with minor allele count (MAC) > 5 and imputation score >0.3 for
all individuals, and converted genotype probabilities to hard-call genotypes using
PLINK2 (--hard-call 0.1)59. Then, we excluded variants with genotype missingness
>0.05, Hardy–Weinberg equilibrium test P > 1 × 10−5, and minor allele frequency
(MAF) < 0.01. In total, 8,806,780 variants (hereafter SNPs, but could include small
insertion/deletions (INDELS)), including 260,713 SNPs in the X chromosome,
were available for analysis.

Individuals of European ancestry were identified by projecting the UKB sample
to the first two principal components (PCs) of the 1000 Genome Project (1KGP60),
using Hap Map 3 (HM3) SNPs with MAF > 0.01 in both data sets. European
ancestry was assigned based on >0.9 posterior probability of belonging to the 1KGP
European reference cluster.

Assessment of 25-hydroxyvitamin D concentration. Vitamin D 25OHD levels
were measured in blood samples collected at two instances: the initial assessment
visit, conducted between 2006 and 2010, and a repeat assessment visit, conducted
between 2012 and 2013. The Diasorin Liason®, a chemiluminescent immunoassay
(CLIA) was used for the quantitative determination of 25OHD. The assay measures
total 25OHD concentration (i.e., 25OHD3 and 25OHD2). Participants with
25OHD concentrations below or above the validated range for the assay (10–375
nmol L−1) were excluded. The average within-laboratory coefficient of variation
(CV) (and standard deviation) ranged from 5.04 (4.73) to 6.14 (2.21)61.

Of 502,536 UKB participants, 449,978 (90%) had vitamin D 25OHD levels (data
field 30890) measured, mostly from the initial assessment visit (448,376, 99.6%).
Our analyses were limited to the 417,580 individuals of European ancestry with
25OHD concentrations available, of whom 318,851 are unrelated (gcta --rel-cut-
off 0.05).

Genome-wide association study (GWAS) analysis. Figure 1 provides a graphical
summary of the GWAS and post-GWAS analyses detailed below. To identify
genetic variants associated with 25OHD levels, we performed a linear mixed model
GWAS implemented in fastGWA62. fastGWA is a tool implemented in GCTA63

for mixed linear model (MLM)-based GWAS. It uses a sparse genomic relationship
matrix (GRM) to account for genetic structure within the cohort, making it a
resource-efficient method for the analysis of large data sets like the UK Biobank62.
The sparse GRM was generated for UKB individuals of European ancestry using
HapMap3 SNPs.

We applied a rank-based inverse-normal transformation (RINT) to the
phenotype (vitamin D 25OHD levels) and fit age at time of assessment, sex,
assessment month, assessment centre, supplement-intake information, genotyping

batch and the first 40 ancestry PCs as covariates in the model (see Supplementary
Methods for more details).

To identify independent associations, we a conducted a conditional and joint
(COJO; gcta --cojo-slct) analysis18 of the GWAS results, accounting for the
correlation structure between SNPs within a 10-Mb window (COJO default
parameter) and using a random subset of 20,000 unrelated Europeans from the
UKB as linkage disequilibrium (LD) reference. For comparison, we used PLINK1.9
(--clump)64 to identify regional lead SNPs for genome-wide significant index
variants (--clump-p1 5e-8) and variants were clumped with this lead SNP if they
were located less than 10Mb (--clump-kb 10000) away from, and with r2 > 0.01
(--clump-r2 0.01) with the index variant. To identify previously unreported
associations, we a conducted a COJO analysis that conditioned (gcta --cojo-cond)
on the six loci previously reported as genome-wide significant (rs2282679,
rs10741657, rs12785878, rs10745742, rs8018720, rs6013897)8,20,65.

Meta-analysis. The largest GWAS for 25OHD to date, from the SUNLIGHT
consortium8, used BMI as a covariate, hence we also generated UKB results
including BMI in the model and used those for meta-analysis. In addition, the UKB
GWAS results used for meta-analysis differed from the reported GWAS results in
that 25OHD levels were natural-log transformed, and supplement intake was not
included as a covariate. Before meta-analysis, we imputed the SUNLIGHT sum-
mary statistics (2,579,297 SNPs) with ImpG66. After data management, we used a
sample size-based approach67 to perform the meta-analysis (Supplementary
Methods) on 6,912,294 SNPs that were shared between the data sets.

Relationship between vitamin D and body mass index traits. High BMI is
associated with lower concentrations of 25OHD10. For this reason, previous GWAS
of 25OHD have included BMI as covariate in their analyses8. However, given that
BMI is a highly heritable trait, covariate adjustment can induce collider bias15 and
affect downstream analyses. To better understand the relationship between 25OHD
and BMI, we estimated the phenotypic and genetic correlation between them and
used generalised summary-data-based Mendelian randomisation (GSMR)16 to test
for statistical evidence for putative causal effects between the two traits. We con-
firmed through simulation that the MR regression statistic is not biased by sample
overlap (Supplementary Note 5). SNP instruments were selected with the default
settings of the built-in GSMR clumping step (which is less stringent than used in
our clumping protocol because GSMR accounts for residual correlation between
SNP instruments). In addition, we conducted a multi-trait conditional and joint
(mtCOJO) analysis16 to condition the 25OHD GWAS results on BMI GWAS
summary statistics generated with the UKB17, an approach that was shown in
simulations to be robust to induced collider bias when conditioning on a correlated
trait16. A random subset of 20,000 unrelated individuals of European ancestry from
the UKB was used as LD reference in the mtCOJO analysis.

Heritability and SNP-based heritability. Our UKB sample included a set of
58,738 individuals who were related with coefficient of relationship (r) > 0.2 to at
least one other person in the set (all relatives). Among these, there was a set
including all pairs with 0.4 < r < 0.6 (1st degree), and a set including all pairs with
0.2 < r < 0.3 (2nd degree). We used these sets to estimate heritability of RINT
(25OHD) levels (gcta --reml). To estimate SNP-based heritability, we drew a
random subset (N ~ 50,000), selected so that no pair of individuals had r > 0.05. We
used a model that fits a single random genetic effect with a single genomic rela-
tionship matrix (GRM) constructed from all SNPs68, and also a GREML-LDMS
model69 that fits ten random genetic effects and hence ten GRM (gcta --reml
--mgrm). The ten GRM were constructed from SNPs annotated to five MAF
(0.01–0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4 and 0.4–0.5) bins each divided into two by
median LD score of the SNPs within the bin. The LD score of a SNP is a measure of
the common genetic variation tagged by a SNP. The sum of the estimates for each
MAF-LD bin is an estimate of the total SNP-based heritability. Under a neutral
model, each of the five MAF bins is expected to explain 20% of the variance.
Analyses were conducted with and without BMI as a covariate, and genetic cor-
relation between 25OHD and BMI was estimated in a bivariate GREML analysis
(gcta --reml-bivar). In addition, we estimated the genetic correlation and the
genetic variance explained by 25OHD levels assessed in summer and winter (see
definitions in vQTL and seasonal analysis section below), using bivariate GREML.
Heritability and SNP-based heritability estimated as part of the GWAS analysis
using fastGWA are also reported. Finally, we estimated SNP-based heritability by
LD score regression28 (software default settings for European ancestry samples),
SBayesR13 and SBayesS13 from GWAS summary statistics. From SBayesS, we also
estimate the polygenicity (π) and selection (S) parameters.

Replication and out-of-sample genetic risk prediction. We used the QIMR
Brisbane-based twin and family sample (N= 1632 unrelated)6 for replication
analyses. Samples were collected between May 1992 and January 2014, mostly from
South–East Queensland (latitude 27° S). At this latitude, there is sufficient UVR to
allow for vitamin D synthesis throughout the year70. Legal guardians gave written,
informed consent prior to inclusion and testing. Studies were approved by the
Human Research Ethics Committee of the QIMR Berghofer Medical Research
Institute. Additional details of this study are provided elsewhere (25OHD assay

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15421-7 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1647 | https://doi.org/10.1038/s41467-020-15421-7 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


methods6 and genotyping on HumanCoreExome-12v1-0_C or
IlluminaHuman610W-Quad bead chip and quality control71). Genotypes were
imputed to phase 3 version 5 of the 1000 Genomes Build37 (hg19)21. The phe-
notype analysed was RINT(25OHD) pre-regressed on sex, age, month of collection,
ten ancestry PCs and imputation batch. Association analysis was conducted in
PLINK for the genome-wide significant COJO SNPs from the UKB analysis. We
tested for the same sign of effect size between the UKB and the QIMR results. Next,
using the sample, we conducted polygenic score analyses. Using only SNPs present
in the Brisbane cohort, we selected independently associated SNPs from the UKB
cohort in order to conduct standard P-value thresholding PRS analysis, choosing a
range of P-value thresholds (P < 5 × × 10−8, P < 1 × 10−5, P < 0.001, P < 0.01, P <
0.05, P < 0.1, P < 0.5, P < 1) and calculating polygenic scores for each individual in
the QIMR cohort. We also calculated polygenic scores from SNP weights estimated
by COJO72, SBayesR22 and SBayesS13. The Bayesian methods better account for the
complex relationship between strength of association of, and correlation between,
SNP effect sizes. For each set of polygenic scores, we estimated the proportion of
variance explained by the scores in linear regression. We repeated these analyses in
a sample of 1632 individuals selected from the UKB, whose PC1 value was just
outside our cut-off for white European (referred to as the UKBR sample; Sup-
plementary Methods).

Functional mapping and annotation of GWAS. We conducted a number of
analyses to annotate the 25OHD GWAS results. First, we used the FUMA online
pipeline23 to obtain gene-based, gene-set and tissue-specific annotations. Second,
we used functional annotations provided in the LDSC software to partition SNP-
based heritability into 53 functional categories25. Annotations included elements,
such as UCSC, UTRs, promoter and intronic regions, conserved regions and
functional genomic annotations constructed using ENCODE73 and Roadmap
Epigenomics Consortium data74. Third, we assessed the SNP-based heritability
enrichment associated with different cell types. Specifically, we applied LDSC
analysis to the GWAS summary statistics using scores associated with cell-type-
specific expression (as provided in the LDSC software)75.

To help prioritise putative causal genes with expression underlying 25OHD levels,
we used the summary-data-based Mendelian randomisation method (SMR)26. SMR
integrates GWAS and eQTL (expression quantitative trait loci, SNPs associated with
gene expression) results with the aim of identifying pleiotropic or causal associations
between a trait of interest and gene expression. We used eQTLs derived by the
eQTLGen consortium from gene expression in whole blood27, using the a large
sample for blood eQTLs (N= 31,684), identifying 15,504 genome-wide significant
eQTLs. In general, SNPs controlling variation in one tissue are found to control
variation in other tissues76, hence using a large eQTL dataset is the most powerful
approach. Moreover, blood is a relevant tissue for vitamin D-related gene
transcription77. Other relevant tissues are the liver, skin and, given our hypotheses
about the relationship between 25OHD and psychiatric disorders, the brain. To
capture tissue-specific eQTLs in these tissues, we used GTEX eQTL data sets, despite
the fact that these data sets are much smaller than the eQTLGen sample (sun-
exposed skin, N= 369; non-sun-exposed skin, N= 335; liver, N= 153; 16 brain
regions, N between 80 and 154). In addition, we used eQTLs identified in pre-frontal
cortex (N= 1866) from the PsychENCODE project78, and foetal brain samples (N=
120) from O’Brien et al.79. SMR significant results were declared at PSMR < 0.05/M
per tissue, where M is the number SMR tests performed (i.e., the number of gene
probes tested for the tissue, Supplementary Data 9). While significant SMR test
results implicate a role for the eQTL gene, SNPs passing the conservative SMR
heterogeneity in dependent instruments (HEIDI) test (PHEIDI > 0.05) have robust
support for the direct causal or pleiotropic relationships of the trait-associated SNPs
influencing gene expression.

Genetic correlations and putative causal relationships with other traits.
Published epidemiological studies have provided an extensive set of hypotheses
about causal relationships between vitamin D and a range of phenotypes80,
including psychiatric and brain-related disorders81 including intelligence31. To
characterise the relationship between vitamin D and psychiatric traits, we con-
ducted two sets of analyses. First, we used bivariate LD score regression28 to
estimate the genetic correlation between vitamin D and psychiatric traits using the
GWAS summary statistics generated with the UKB dataset and GWAS summary
statistics that are available for attention deficit/hyperactivity disorder (ADHD)82,
Alzheimer’s disease (AD)83, major depression (MD)84, schizophrenia (SCZ)85,
bipolar disorder (BIP)86 and autism spectrum disorder (ASD)87. In addition, we
obtained genetic correlation estimates between vitamin D and 746 traits available
through the LD Hub database30. Second, we conducted generalised summary
Mendelian randomisation (GSMR) analyses16 to assess if there was any statistical
evidence that observed correlations could be explained by a causal relationship for
seventeen traits (Fig. 5). GSMR analyses were conducted as described above (see
“Relationship between vitamin D and body mass index traits” section), with sig-
nificance declared at 0.05/18= 0.003. For any significant associations observed
with GSMR, we confirmed our conclusions using the two-sample MR (2SMR)
method29, which implements a range of MR models that can adjust for the
potential influence of pleiotropy (MR Egger, weighted mean, inverse variance
weighted, simple mode and weighted mode).

Proxy-environment vQTL and seasonal analysis. 25OHD concentration is
known to be affected by season of measurement, but other environmental factors
may also impact 25OHD measures. We conducted a genome-wide vQTL analy-
sis12, an approach to detect presence of genotype-by-environment interaction in
the absence of measurement or knowledge of the interacting environmental risk
factor, to identify SNPs associated with variance in 25OHD. Specifically, we used
the Levene’s median test implemented in OSCA88. Following the guidelines of
Wang et al.12, we (1) adjusted 25OHD levels for selected covariates (see below), (2)
removed outliers more than 5 SD from the mean and (3) standardised the residuals
to have mean 0 and variance 1. Each step was performed within one of eight groups
defined based on sex (male vs. female) and supplement intake (none, other, vitamin
D or missing). This approach removed both the mean effect of covariates and the
mean and variance differences between gender and supplement- intake groups,
while retaining other distributional properties of the measure. Covariates included
in the phenotype pre-regression were age at assessment, assessment month,
assessment centre, genotyping batch and the first 40 PCs. To avoid spurious
associations due to coincidence of low-frequency variants with phenotype out-
liers12, this analysis was restricted to SNPs with MAF > 0.05. To identify near-
independent vQTLs, we clumped the vQTL GWAS results with PLINK1.9
(--clump) as above, using a 5 Mb window as recommended12.

To assess if significant vQTL associations reflected a GxE with season of testing,
we conducted season-stratified GWAS and compared the results with the vQTL
GWAS results. Specifically, we stratified the UKB cohort into two groups after
visual inspection of the mean 25OHD concentrations per month (Supplementary
Fig. 1b). We defined two discrete time periods in order to retain the maximum
sample size, but optimise comparisons between months with higher and lower
mean 25OHD concentrations: (a) Winter—individuals assessed Dec-Apr (N=
162,591), and (b) Summer—individuals assessed Jun-Oct (N= 177,082).
Individuals with vitamin D levels assessed in the months of May and November
were not included in these analyses. The two season-stratified GWAS (winter and
summer) were conducted as the main GWAS (i.e., linear mixed model
implemented in fastGWA, with the same covariates included in the model). In
addition, we conducted a GxE analysis using PLINK1.959 (--gxe) to include an
interaction term with season of blood draw. For this analysis, the phenotype
(25OHD levels) was processed as described for the vQTL analysis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Genome-wide association summary statistics generated with the three levels of BMI
correction (i.e., with and without BMI as covariate, and conditioned on BMI) are
available for download from https://cnsgenomics.com/content/data. Results for the UKB
GWAS of BMI used for conditional analysis are also available from the same website. UK
Biobank data were obtained through direct application to the UK Biobank. The
SUNLIGHT data were downloaded from https://drive.google.com/drive/folders/
0BzYDtCo_doHJRFRKR0ltZHZWZjQ. Functional annotations to partition SNP-based
heritability with LDSC were downloaded from https://data.broadinstitute.org/
alkesgroup/LDSCORE/. eQTL data were downloaded from http://www.eqtlgen.org/cis-
eqtls.html and https://cnsgenomics.com/software/smr/#DataResource. GWAS summary
statistics used for bidirectional GSMR were downloaded from https://walters.psycm.cf.ac.
uk (schizophrenia), https://cnsgenomics.com/content/data (type II diabetes), https://ctg.
cncr.nl/software/summary_statistics (Alzheimer’s disease; fluid intelligence; ADHD),
https://www.thessgac.org/data (educational attainment), https://www.med.unc.edu/pgc/
download-results/ (bipolar disorder; autism spectrum disorder), http://plaza.umin.ac.jp/
~yokada/datasource/software.htm (rheumatoid arthritis), ftp://ftp.ebi.ac.uk/pub/
databases/gwas/summary_statistics/vanderHarstP_29212778_GCST005194 (coronary
artery disease), https://www.ibdgenetics.org/downloads.html (inflammatory bowel
disease). All other data are contained in the article and its supplementary information, or
are available on request.

Received: 27 November 2019; Accepted: 3 March 2020;

References
1. Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).
2. Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D

(National Academies Press, 2010).
3. Lips, P. Worldwide status of vitamin D nutrition. J. Steroid Biochem. Mol. Biol.

121, 297–300 (2010).
4. Karohl, C. et al. Heritability and seasonal variability of vitamin D

concentrations in male twins. Am. J. Clin. Nutr. 92, 1393–1398 (2010).
5. Mills, N. T. et al. Heritability of transforming growth factor-beta 1 and tumor

necrosis factor-receptor type 1 expression and vitamin D levels in healthy
adolescent twins. Twin Res. Hum. Genet. 18, 28–35 (2015).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15421-7

10 NATURE COMMUNICATIONS |         (2020) 11:1647 | https://doi.org/10.1038/s41467-020-15421-7 | www.nature.com/naturecommunications

https://cnsgenomics.com/content/data
https://drive.google.com/drive/folders/0BzYDtCo_doHJRFRKR0ltZHZWZjQ
https://drive.google.com/drive/folders/0BzYDtCo_doHJRFRKR0ltZHZWZjQ
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
http://www.eqtlgen.org/cis-eqtls.html
http://www.eqtlgen.org/cis-eqtls.html
https://cnsgenomics.com/software/smr/#DataResource
https://walters.psycm.cf.ac.uk
https://walters.psycm.cf.ac.uk
https://cnsgenomics.com/content/data
https://ctg.cncr.nl/software/summary_statistics
https://ctg.cncr.nl/software/summary_statistics
https://www.thessgac.org/data
https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
http://plaza.umin.ac.jp/~yokada/datasource/software.htm
http://plaza.umin.ac.jp/~yokada/datasource/software.htm
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/vanderHarstP_29212778_GCST005194
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/vanderHarstP_29212778_GCST005194
https://www.ibdgenetics.org/downloads.html
www.nature.com/naturecommunications


6. Mitchell, B. L. et al. Half the genetic variance in vitamin D concentration is
shared with skin colour and sun exposure genes. Behav. Genet. 49, 386–398
(2019).

7. Jiang, X., Kiel, D. P. & Kraft, P. The genetics of vitamin D. Bone 126, 59–77
(2018).

8. Jiang, X. et al. Genome-wide association study in 79,366 European-ancestry
individuals informs the genetic architecture of 25-hydroxyvitamin D levels.
Nat. Commun. 9, 260 (2018).

9. Sudlow, C. et al. UK biobank: an open access resource for identifying the
causes of a wide range of complex diseases of middle and old age. PLoS Med.
12, e1001779 (2015).

10. Hypponen, E. & Power, C. Hypovitaminosis D in British adults at age 45 y:
nationwide cohort study of dietary and lifestyle predictors. Am. J. Clin. Nutr.
85, 860–868 (2007).

11. Eyles, D. W. et al. The association between neonatal vitamin D status and risk
of schizophrenia. Sci. Rep. 8, 17692 (2018).

12. Wang, H. et al. Genotype-by-environment interactions inferred from genetic
effects on phenotypic variability in the UK Biobank. Sci. Adv. 5, eaaw3538
(2019).

13. Zeng, J. et al. Bayesian analysis of GWAS summary data reveals differential
signatures of natural selection across human complex traits and functional
genomic categories. Preprint at https://www.biorxiv.org/content/10.1101/
752527v1 (2019).

14. International HapMapConsortium et al. Integrating common and rare genetic
variation in diverse human populations. Nature 467, 52–58 (2010).

15. Day, F. R., Loh, P. R., Scott, R. A., Ong, K. K. & Perry, J. R. A robust example
of collider bias in a genetic association study. Am. J. Hum. Genet. 98, 392–393
(2016).

16. Zhu, Z. et al. Causal associations between risk factors and common diseases
inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

17. Xue, A. et al. Genome-wide association analyses identify 143 risk variants and
putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 9, 2941
(2018).

18. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary
statistics identifies additional variants influencing complex traits. Nat. Genet.
44, 369–75, S1-3 (2012).

19. Manousaki, D. et al. Low-frequency synonymous coding variation in CYP2R1
has large effects on vitamin D levels and risk of multiple sclerosis. Am. J. Hum.
Genet. 101, 227–238 (2017).

20. Wang, T. J. et al. Common genetic determinants of vitamin D insufficiency: a
genome-wide association study. Lancet 376, 180–188 (2010).

21. Genomes Project, C. et al. A global reference for human genetic variation.
Nature 526, 68–74 (2015).

22. Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple
regression on summary statistics. Nat. Commun. 10, 5086 (2019).

23. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional
mapping and annotation of genetic associations with FUMA. Nat. Commun.
8, 1826 (2017).

24. GTEx Consortium. Genetic effects on gene expression across human tissues.
Nature 550, 204 (2017).

25. Finucane, H. K. et al. Partitioning heritability by functional annotation using
genome-wide association summary statistics. Nat. Genet. 47, 1228–1235
(2015).

26. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies
predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

27. Võsa, U. et al. Unraveling the polygenic architecture of complex traits using
blood eQTL metaanalysis. Preprint at https://www.biorxiv.org/content/
10.1101/447367v1 (2018).

28. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases
and traits. Nat. Genet. 47, 1236–1241 (2015).

29. Hemani, G. et al. The MR-Base platform supports systematic causal inference
across the human phenome. eLife 7, e34408 (2018).

30. Zheng, J. et al. LD Hub: a centralized database and web interface to perform
LD score regression that maximizes the potential of summary level GWAS
data for SNP heritability and genetic correlation analysis. Bioinformatics 33,
272–279 (2017).

31. Sniekers, S. et al. Genome-wide association meta-analysis of 78,308 individuals
identifies new loci and genes influencing human intelligence. Nat. Genet. 49,
1107–1112 (2017).

32. Tomalik-Scharte, D. et al. Impaired hepatic drug and steroid metabolism in
congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. Eur. J.
Endocrinol. 163, 919–924 (2010).

33. Caffeine Genetics Consortium. et al. Genome-wide meta-analysis identifies six
novel loci associated with habitual coffee consumption. Mol. Psychiatry 20,
647–656 (2015).

34. Canela-Xandri, O., Rawlik, K. & Tenesa, A. An atlas of genetic associations in
UK Biobank. Nat. Genet. 50, 1593–1599 (2018).

35. Kuchenbaecker, K. et al. The transferability of lipid loci across African, Asian
and European cohorts. Nat. Commun. 10, 4330 (2019).

36. Mechin, M. C. et al. The peptidylarginine deiminases expressed in human
epidermis differ in their substrate specificities and subcellular locations. Cell
Mol. Life Sci. 62, 1984–1995 (2005).

37. Marenholz, I. et al. Meta-analysis identifies seven susceptibility loci involved
in the atopic march. Nat. Commun. 6, 8804 (2015).

38. Prassas, I., Eissa, A., Poda, G. & Diamandis, E. P. Unleashing the therapeutic
potential of human kallikrein-related serine proteases. Nat. Rev. Drug Discov.
14, 183–202 (2015).

39. Thyssen, J. P., Bikle, D. D. & Elias, P. M. Evidence that loss-of-function
filaggrin gene mutations evolved in Northern Europeans to favor
intracutaneous vitamin D3 production. Evol. Biol. 41, 388–396 (2014).

40. Thyssen, J. P. et al. Skin barrier abnormality caused by filaggrin (FLG)
mutations is associated with increased serum 25-hydroxyvitamin D
concentrations. J. Allergy Clin. Immunol. 130, 1204–1207 e2 (2012).

41. Eckhart, L. et al. Histidase expression in human epidermal keratinocytes:
regulation by differentiation status and all-trans retinoic acid. J. Dermatol. Sci.
50, 209–215 (2008).

42. Welsh, M. M. et al. A role for ultraviolet radiation immunosuppression in
non-melanoma skin cancer as evidenced by gene-environment interactions.
Carcinogenesis 29, 1950–1954 (2008).

43. Landeck, L. et al. The effect of epidermal levels of urocanic acid on 25-
hydroxyvitamin D synthesis and inflammatory mediators upon narrowband
UVB irradiation. Photodermatol. Photoimmunol. Photomed. 32, 214–223
(2016).

44. de Fine Olivarius, F. et al. Urocanic acid isomers: relation to body site,
pigmentation, stratum corneum thickness and photosensitivity. Arch.
Dermatol. Res. 289, 501–505 (1997).

45. Wang, Z. et al. Human UGT1A4 and UGT1A3 conjugate 25-hydroxyvitamin
D3: metabolite structure, kinetics, inducibility, and interindividual variability.
Endocrinology 155, 2052–2063 (2014).

46. Wong, T. et al. Polymorphic human sulfotransferase 2A1 mediates the
formation of 25-hydroxyvitamin D3-3-O-sulfate, a major circulating vitamin
D metabolite in humans. Drug Metab. Dispos. 46, 367–379 (2018).

47. Kurogi, K., Sakakibara, Y., Suiko, M. & Liu, M. C. Sulfation of vitamin D3-
related compounds-identification and characterization of the responsible
human cytosolic sulfotransferases. FEBS Lett. 591, 2417–2425 (2017).

48. Nozawa, T. et al. Genetic polymorphisms of human organic anion
transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies
in the Japanese population and functional analysis. J. Pharm. Exp. Ther. 302,
804–813 (2002).

49. Mueller, J. W., Gilligan, L. C., Idkowiak, J., Arlt, W. & Foster, P. A. The
regulation of steroid action by sulfation and desulfation. Endocr. Rev. 36,
526–563 (2015).

50. Hypponen, E. & Boucher, B. J. Adiposity, vitamin D requirements, and clinical
implications for obesity-related metabolic abnormalities. Nutr. Rev. 76,
678–692 (2018).

51. Lee, M. J. et al. Vitamin D deficiency in northern Taiwan: a community-based
cohort study. BMC Public Health 19, 337 (2019).

52. Eyles, D. W., Burne, T. H. J. & McGrath, J. J. Vitamin D, effects on brain
development, adult brain function and the links between low levels of vitamin
D and neuropsychiatric disease. Front. Neuroendocrinol. 34, 47–64 (2013).

53. Adamson, J. et al. Correlates of vitamin D in psychotic disorders: a
comprehensive systematic review. Psychiatry Res. 249, 78–85 (2017).

54. McGrath, J. J. et al. Neonatal vitamin D status and risk of schizophrenia: a
population-based case-control study. Arch. Gen. Psychiatry 67, 889–894 (2010).

55. Fry, A. et al. Comparison of sociodemographic and health-related
characteristics of UK Biobank participants with those of the general
population. Am. J. Epidemiol. 186, 1026–1034 (2017).

56. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype
imputation. Nat. Genet. 48, 1279–1283 (2016).

57. Consortium, U. K. et al. The UK10K project identifies rare variants in health
and disease. Nature 526, 82–90 (2015).

58. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and
genomic data. Nature 562, 203–209 (2018).

59. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger
and richer datasets. Gigascience 4, 7 (2015).

60. Genomes Project, C. et al. A map of human genome variation from
population-scale sequencing. Nature 467, 1061–1073 (2010).

61. Fry, D., Almond, R., Moffat, S., Gordon, M., & Singh, P. B. UK Biobank
Biomarker Project: Companion Document to Accompany Serum Biomarker
Data. UK Biobank Document Showcase (2019). Available at: https://biobank.
ndph.ox.ac.uk/showcase/showcase/docs/serum_biochemistry.pdf. Accessed
Mar 2020.

62. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of
large-scale data. Nat. Genet. 51, 1749–1755 (2019).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15421-7 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1647 | https://doi.org/10.1038/s41467-020-15421-7 | www.nature.com/naturecommunications 11

https://www.biorxiv.org/content/10.1101/752527v1
https://www.biorxiv.org/content/10.1101/752527v1
https://www.biorxiv.org/content/10.1101/447367v1
https://www.biorxiv.org/content/10.1101/447367v1
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/serum_biochemistry.pdf
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/serum_biochemistry.pdf
www.nature.com/naturecommunications
www.nature.com/naturecommunications


63. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. Genome-wide complex
trait analysis (GCTA): methods, data analyses, and interpretations. Methods
Mol. Biol. 1019, 215–236 (2013).

64. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

65. Ahn, J. et al. Genome-wide association study of circulating vitamin D levels.
Hum. Mol. Genet. 19, 2739–2745 (2010).

66. Pasaniuc, B. et al. Fast and accurate imputation of summary statistics
enhances evidence of functional enrichment. Bioinformatics 30, 2906–2914
(2014).

67. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis
of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

68. Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation
of pleiotropy between complex diseases using single-nucleotide
polymorphism-derived genomic relationships and restricted maximum
likelihood. Bioinformatics 28, 2540–2542 (2012).

69. Yang, J. et al. Genetic variance estimation with imputed variants finds
negligible missing heritability for human height and body mass index. Nat.
Genet. 47, 1114–1120 (2015).

70. Kimlin, M. G. et al. The contributions of solar ultraviolet radiation
exposure and other determinants to serum 25-hydroxyvitamin D
concentrations in Australian adults: the AusD Study. Am. J. Epidemiol. 179,
864–874 (2014).

71. Medland, S. E. et al. Common variants in the trichohyalin gene are associated
with straight hair in Europeans. Am. J. Hum. Genet. 85, 750–755 (2009).

72. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for
genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

73. Consortium, E. P. An integrated encyclopedia of DNA elements in the human
genome. Nature 489, 57–74 (2012).

74. Bernstein, B. E. et al. The NIH roadmap epigenomics mapping consortium.
Nat. Biotechnol. 28, 1045–1048 (2010).

75. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes
identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629
(2018).

76. Qi, T. et al. Identifying gene targets for brain-related traits using
transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282
(2018).

77. Neme, A. et al. In vivo transcriptome changes of human white blood cells in
response to vitamin D. J. Steroid Biochem. Mol. Biol. 188, 71–76 (2019).

78. Wang, D. et al. Comprehensive functional genomic resource and integrative
model for the human brain. Science 362, eaat8464 (2018).

79. O’Brien, H. E. et al. Expression quantitative trait loci in the developing human
brain and their enrichment in neuropsychiatric disorders. Genome Biol. 19,
194 (2018).

80. Theodoratou, E., Tzoulaki, I., Zgaga, L. & Ioannidis, J. P. Vitamin D and
multiple health outcomes: umbrella review of systematic reviews and meta-
analyses of observational studies and randomised trials. BMJ 348, g2035
(2014).

81. Groves, N. J., McGrath, J. J. & Burne, T. H. Vitamin D as a neurosteroid
affecting the developing and adult brain. Annu. Rev. Nutr. 34, 117–141 (2014).

82. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for
attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

83. Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl.
Psychiatry 8, 99 (2018).

84. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102
independent variants and highlights the importance of the prefrontal brain
regions. Nat. Neurosci. 22, 343–352 (2019).

85. Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-
intolerant genes and in regions under strong background selection. Nat.
Genet. 50, 381–389 (2018).

86. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated
with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

87. Grove, J. et al. Identification of common genetic risk variants for autism
spectrum disorder. Nat. Genet. 51, 431–444 (2019).

88. Zhang, F. et al. OSCA: a tool for omic-data-based complex trait analysis.
Genome Biol. 20, 107 (2019).

Acknowledgements
This study was carried out under the generic approval from the NHS National Research
Ethics Service and conducted using the UK Biobank resource under projects 12505 and
10214. We thank the UKB participants, project team and funders for providing this
important research resource. We thank the eQTLGen consortium for providing the cis
eQTL dataset based on N= 32K participants. We thank 23andMe for the use of GWAS
summary statistics for major depression that include data from 23andMe. We would like to
thank the research participants and employees of 23andMe for making this work possible.
The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of
the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI,
NIDA, NIMH and NINDS. Funding for the QIMR sample was provided by the Australian
National Health and Medical Research Council (NHMRC) and further supported by
NHMRC Project Grants (1007677, 1099709) and a John Cade Fellowship (1056929).
NHMRC also support Naomi Wray (1113400, 1078901), Peter Visscher (1113400, 1078037)
and Jian Yang (1113400). Jian Yang is supported by the Australian Research Council
(FT180100186). John McGrath is supported by the Danish National Research Foundation
(Niels Bohr Professorship, the NHMRC (John Cade Fellowship 1056929). John McGrath,
Darryl Eyles and Thomas Burne are employed by The Queensland Centre for Mental
Health Research which receives core funding from the Queensland Health. Darryl Eyles is
supported by the NHMRC (1124724, 1124721, 1141699). Brittany Mitchell received
financial support from the Queensland University of Technology.

Author contributions
J.A.R., J.J.M. and N.R.W. conceived the study and designed the analyses. J.A.R., T.L., Z.Q.
and B.M. conducted the analyses. K.E.K. and J.S. performed the initial preparation and
quality control of the UK Biobank data. A.X., Y.H., Z.Z., J.Z., H.W., A.A.E.V. and G.Z.
provided support in analysis implementation. J.F., D.E. and T.H.J.B. helped with inter-
pretation of identified loci. N.G.M. provided the QIMR cohort, and B.M. and G.Z.
conducted the analyses based on this sample. P.M.V. and J.Y. provided advice on ana-
lyses and interpretation of the results. J.A.R., J.J.M. and N.R.W. wrote the paper with the
participation of all the authors. All authors reviewed and approved the final paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-15421-7.

Correspondence and requests for materials should be addressed to N.R.W. or J.J.M.

Peer review information Nature Communications thanks Dominic Furniss, Fernando
Rivadeneira and Xia Jiang for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15421-7

12 NATURE COMMUNICATIONS |         (2020) 11:1647 | https://doi.org/10.1038/s41467-020-15421-7 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-15421-7
https://doi.org/10.1038/s41467-020-15421-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration
	Results
	25OHD phenotype
	Heritability and SNP-based heritability
	Genome-wide association study (GWAS) analysis
	Replication and out-of-sample genetic risk prediction
	Functional mapping and annotation of GWAS
	Putative causal relationships with other traits
	Gene–nobreakenvironment interplay

	Discussion
	Methods
	The UK Biobank sample
	Assessment of 25-hydroxyvitamin D concentration
	Genome-wide association study (GWAS) analysis
	Meta-analysis
	Relationship between vitamin D and body mass index traits
	Heritability and SNP-based heritability
	Replication and out-of-sample genetic risk prediction
	Functional mapping and annotation of GWAS
	Genetic correlations and putative causal relationships with other traits
	Proxy-environment vQTL and seasonal analysis
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




