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Abstract: Methyl Violet (MV) was removed from aqueous solutions by adsorption onto halloysite
nanoclay (HNC) employing equilibrium, kinetics, thermodynamic data, molecular modellingR (MD),
and Monte Carlo (MC) simulations. The chosen experimental variables were pH, temperature, starting
MV concentration, contact time, and adsorbent dosage. The adsorption rate was determined to
increase with increasing contact time, initial dye concentration, pH, and temperature. The Langmuir,
Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherms were utilized to determine the
adsorption capacity of HNC. The Langmuir equation matched equilibrium data better than the other
models, whereas the pseudo-second-order model better described kinetic data, and thermodynamic
analyses revealed that the adsorption process was spontaneous, endothermic, and physisorption-
based. This study focused on two distinct molecular mechanics-based theoretical approaches (MC
and MD). These techniques enabled a molecular comprehension of the interaction between the MV
molecule and the halloysite surface. Theoretical results were consistent with experimental findings.
The outcomes revealed that HNC is an excellent dye adsorbent for industrial effluents.

Keywords: halloysite; methyl violet; molecular modelling; monte carlo; adsorption

1. Introduction

Water is a crucial component for life, human evolution, and biodiversity conservation.
Unfortunately, human activities have caused a serious degeneration in the quality of
water resources. Even though a number of regulations are designed to ensure the safe
disposal of industrial effluents, over 80 percent of the world’s wastewater is still disposed
of without sufficient treatment [1–3]. The release of dye-containing effluents into the
natural water bodies can cause harmful effects on the living systems because of their
toxic, allergenic, mutagenic, and carcinogenic nature. Dyes obstruct light penetration,
impede photosynthetic activity, and as a result, hinder the growth of biota and also cause
micro-toxicity to fish and other organisms because of their predisposition to chelate metal
ions [4,5].

In several industries such as food, plastic, textile, leather, paper, cosmetics, etc., organic
dye effluent is one of the main water pollution problems [6]. Methyl violet (MV) is vital
because of its extensive use in textiles, paints, and print inks, and the dying of cotton, silk,
paper, and leather, among other applications [7]. MV is also used in medicine as an active
ingredient in Gram’s biological stain for bacteria categorization [8–11]. Sometimes it can be
used as a second-rate disinfectant but has been found to be toxic to most animals. Inhaling
MV may irritate the respiratory tract, while ingesting it typically irritates the digestive
tract [12,13].
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Numerous technologies have been devised and implemented to eliminate synthetic
dyes from aqueous solutions and limit their environmental impact [14–18]. Among the
methods mentioned above, adsorption is better than the other techniques because of
its low cost, simplicity of design, pliability, ease of working, and insensitivity to toxic
pollutants [19,20]. Due to this, adsorption is currently recognized as a viable operation
for the removal of dyes from the environment; it is a simple and economically viable
procedure [21]. Materials such as walnut husk [22], modified chitosan composite [23],
biochars from crop residues [24], natural zeolite [25], cross-linked succinyl chitosan [26],
modified bentonite [27], quaternized poly(4-vinylpyridine) copolymers [28], natural clinop-
tilolite [29], activated carbon [30], chromium-intercalated montmorillonite [31], metal
oxides [32–35], have been used to remove dyes from aqueous solutions. As well, alu-
mina [36–38], silica gel [39,40], and clay minerals [41–44] are effective and they can support
oxidizing environments.

Clay minerals are low-cost, exist in abundance, and are ordinarily innoxious for
environmental applications. Their large specific surface area, high porosity, surface charge,
and surface functional groups enable the use of clay minerals as adsorbents, flocculants,
and filtration media [45,46]. It was discovered that the adsorption capabilities of clays may
be greater than those of activated carbon at the same temperature and pH conditions [47].
Adsorption and desorption of organic compounds on clays are primarily determined
by the interfacial characteristics of these materials and the chemical properties of their
molecules [48]. Clays have a high adsorption capacity for positively charged cations such
as cationic dyes, heavy metals, etc., due to their net negative charge.

In this work, the removal of MV from aqueous solutions by adsorption utilizing
HNC as an adsorbent was examined. Compared to the earlier published research on the
adsorption of MV by HNC published by Liu et al. [49], this work explores the experimental
part in more depth and employs theoretical calculations.

The Langmuir, Freundlich, Temkin and Dubinin Radushkeviq (D-R) equations were
used to fit the equilibrium isotherms. A kinetic study was carried out with first-order,
pseudo first-order, second-order, pseudo second-order, intraparticle and film diffusion
models. The thermodynamic parameters derived from adsorption experiments in the
present work are extremely useful for elucidating the nature of MV adsorption on halloysite.
On the molecular level, the theoretical calculations are of utmost importance as they offer
the possibility to evaluate the interaction of molecules on the surfaces. MC and MD
provided insights into the theoretical description of the interaction between MV and HNC
surface at a molecular level.

2. Materials and Methods
2.1. Adsorbent and Adsorbate

In this study commercial halloysite nanoclay (Al2Si2O5 (OH)4 × 29H2O) supplied by
Aldrich, was used as an adsorbent.

As adsorbate, Methyl Violet dye purchased from Fluka was utilized and was used
without further purification. The stock solution (1 g L−1) was prepared by dissolving 1 g of
the dye into distilled water. The experimental dye solution was made by diluting the stock
solution with the necessary amount of distilled water.

2.2. Batch Experimental Procedure

Batch experiments were performed by stirring 25 mL of known concentration of MV
solution with 0.2 g of HNC using magnetic stirrer.

Several parameters such as effect of contact time (1–240 min), effect of initial concen-
tration (100, 125, 150, 175, and 200 mg/L), effect of pH (4–10), and effect of temperature (11,
25, and 40 ◦C) were done for optimizing the experimental conditions.

The pH was adjusted using 0.1 M HCl and 0.1 M NaOH.



Toxics 2022, 10, 445 3 of 19

After adsorption, the adsorbent and the supernatants were separated by centrifugation
at 5000 rpm for 10 min and samples were investigated for residual dye concentration using a
UV–Visible Spectrophotometer (type T70+), at wavelength 579 nm, using a 1 cm quartz cell.

All experiments were repeated three times and mean values were presented with a
maximum deviation of 5%.

The amount of MV adsorbed per unit adsorbent (mg/g) was calculated using Equation (1):

qe =
(Ci − Ce) ∗V

m
(1)

where Ci is the initial dye concentration (mg/L), Ce is the equilibrium dye concentration
(mg/L), V is the volume of MV solution used (L), and m(g) is the mass of HNC used.

The MV percent removal was calculated using Equation (2).

Removal (%) =
(Ci − Ce) ∗ 100

Ci
(2)

To construct and evaluate an adsorption process, it is necessary to fit equilibrium
adsorption data with various adsorption isotherm and kinetic models. Thus, several
theoretical models (Table 1) are used for experimental data in order to identify a model that
predicts kinetic and isotherm data adequately. The validity of the models was determined
by calculating the regression coefficient (R2) and the root mean square errors (RMSE):

RMSE =

√
Σ
(
qexp−qcal

)2

N
(3)

where qexp is the experimental value while qcal is the calculated value and N is the number
of observations in the experiment. The smaller the RMSE values, the better the curve
fitting [50,51]. Exel 2016 was used to create all of the graphs.

Table 1. Isotherm, kinetic, and other equations used in this study.

Model Equation Parameters

Isotherm models

Langmuir Ce
qe

= 1
qmKL

+ Ce
qm

qe (mg g−1)—equilibrium adsorption capacity
qm (mg g−1)—maximum adsorption capacity
KL (L mg−1)—Langmuir constant
Ce (mg L−1)—equilibrium dye concentration

Freundlich lnqe = lnKF + 1
n lnCe

KF—(mg g−1) (L g−1)1/n—Freundlich constant
n—heterogeneity factor

Temkin qe =
RT
bT

lnKT + RT
bT

lnCe
KT (L g−1)—Temkin constant related to adsorption capacity.
bT (J mol−1)—Temkin constant related to the heat of sorption

Dubinin–Radushkevich (D-R) lnqe = lnqm − βε2

ε = RTln
(

1 + 1
Ce

) β (mol2/J2): D-R constant
ε (J mol−1): Polanyi potential
R (8.314 J mol−1 K−1)—universal gas constant
T (K)—temperature

Kinetic models

First-order 1
qt

= 1
qe
+ k1

qe t
qt (mg g−1): amount of adsorbate adsorbed at time t
k1 (min−1): first-order rate constant

Pseudo-first-order ln(qe − qt) = ln qe − k1t k1 (min−1): pseudo-first-order rate constant

Second-order 1
Ce
− 1

C0
= k2t k2 (L mg−1 min−1): second-order rate constant

Pseudo-second order t
qt

= 1
k2q2

e
+ t

qe
k2 (g mg−1 min−1): pseudo-second-order rate constant

Intraparticle-diffusion qt = Kit1/2 + C ki (mg g−1 min−0.5): intraparticle diffusion rate constant

Liquid film diffusion ln(1− F) = k f dt + C
F = qt

qe

F—fractional attainment of equilibrium, equal to qt/qe
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2.3. Molecular Modelling and Monte Carlo Calculations
2.3.1. MV and HNC Molecular Modelling

For the interaction amongst the HNC surface and the MV molecule (Figure 1) in
the Monte Carlo (MC) and Molecular dynamic (MD) calculations, the simulation was
done using the halloysite model (under Periodic Boundary Condition) with cell size of:
61.80 Å × 53.40 Å × 30.14 Å with the inclusion of a 25 Å vacuum layer at C axis containing
inside 2500 water molecules and 1 MV molecule.
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Figure 1. Molecular models used in the theoretical calculations: (a) HNC surface, (b) MV molecule
(with MAC charges).

2.3.2. Monte Carlo and Molecular Dynamic Simulation Details

Six cycles of simulated annealing, each with 15,000 steps, were used to do the MC
computations. The annealing temperature was automatically selected between 105 and
102 K for each cycle. As the temperature steadily decreased, potential adsorption structures
were uncovered [52,53]. The MD is performed under an NVT ensemble at 25 ◦C with a 1 fs
time step and 1 ns total simulation period. The temperature control is realized using the
Berendsen thermostat MD [54]. MC and MD simulations use COMPASS II’s force field.
Radial Distribution Function (RDF) is computed using 1 ns of MD trajectory [55,56].

3. Results and Discussion
3.1. Effect of pH

Solution pH affects adsorption. It affects the adsorbent’s surface charge, the solution’s
ionization, and the dissociation of functional groups on the active sites, as well as solution
dye chemistry [57,58]. Figure 2 shows the effect of pH on MV removal effectiveness from
4.0 to 10.5. As illustrated in Figure 2, the pH rise from 4 to 10.5, has an insignificant effect on
the adsorption capacity. This is in line with other studies such as the adsorption of methyl
violet on halloysite nanotube [49] and the adsorption of MG on treated ginger waste [59].

3.2. Effect of Contact Time and Initial Concentration

In Figure 3, the effects of the initial concentrations of MV (100, 125, 150, 175, and
200 mg/L) and contact time (1–240 min) on the adsorption capacity of HNC at 298.15 K
are shown.
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Figure 3. Time and dye concentration affect MV adsorption on HNC.

MV adsorption was faster in the first 10 min, but slowed when the halloysite became
saturated, reaching equilibrium after 240 min. High beginning adsorption rates may
be owing to a large number of binding sites, whereas lower rates at the end are due to
saturation and equilibrium. Similar conclusions have been proposed [60] for the adsorption
of MG by neem sawdust.

Also, adsorption increases with increasing initial dye concentration. According to the
results obtained, adsorption capacity increased from 12.46 mg/g to 24.66 mg/g as the initial
concentration of MV dye increased from 100 mg/L to 200 mg/L. As initial concentration
increases, mass transfer driving force overcomes resistances to dye molecule mass transfer
from solution to the solid phase. Also, increasing concentration promotes dye adsorption
by increasing dye-halloysite interaction [61,62].
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3.3. Effect of Adsorbent Dosage

It was noticed (Figure 4), that the percent of MV adsorption grew significantly from
91–99.9%, with the increase of adsorbent dosage from 0.025 to 0.2 g. Thereafter, by increas-
ing the adsorbent dosage up to 0.4 g, an insignificant increase in the removal efficiency was
observed [63].

Toxics 2022, 10, x FOR PEER REVIEW 6 of 20 
 

 

Also, adsorption increases with increasing initial dye concentration. According to the 
results obtained, adsorption capacity increased from 12.46 mg/g to 24.66 mg/g as the initial 
concentration of MV dye increased from 100 mg/L to 200 mg/L. As initial concentration 
increases, mass transfer driving force overcomes resistances to dye molecule mass transfer 
from solution to the solid phase. Also, increasing concentration promotes dye adsorption 
by increasing dye-halloysite interaction [61,62]. 

3.3. Effect of Adsorbent Dosage 
It was noticed (Figure 4), that the percent of MV adsorption grew significantly from 

91–99.9%, with the increase of adsorbent dosage from 0.025 to 0.2 g. Thereafter, by increas-
ing the adsorbent dosage up to 0.4 g, an insignificant increase in the removal efficiency 
was observed [63]. 

 
Figure 4. Effect of adsorbent dosage on adsorption of of MV onto HNC. 

It was also found that the enhancement of adsorbent dosage, resulted in a decrease 
in the amount of adsorbed dye per unit mass of adsorbent, from 91.3 to 6.3 mg/g. 

Due to a divide in the concentration gradient between dye concentration in the solu-
tion and dye concentration on the HNC surface, qe (mg/g) decreases with increasing ad-
sorbent mass [64]. 

A similar way of behaving was reported for mercury (II) removal on EB [65] and MB 
adsorption on guava leaf [66], on gulmohar plant leaf [67], and on cashew nutshell acti-
vated carbon [68]. 

3.4. Effect of Temperature 
The effect of temperature on MV dye adsorption onto HNC is introduced in Figure 

5. 

89

91

93

95

97

99

101

0

40

80

120

160

200

240

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Re
m

ov
al

 e
ffi

cie
nc

y (
%

)

q e
(m

gg
−1

)

Adsorbent dose (g)

q %

Figure 4. Effect of adsorbent dosage on adsorption of of MV onto HNC.

It was also found that the enhancement of adsorbent dosage, resulted in a decrease in
the amount of adsorbed dye per unit mass of adsorbent, from 91.3 to 6.3 mg/g.

Due to a divide in the concentration gradient between dye concentration in the solution
and dye concentration on the HNC surface, qe (mg/g) decreases with increasing adsorbent
mass [64].

A similar way of behaving was reported for mercury (II) removal on EB [65] and
MB adsorption on guava leaf [66], on gulmohar plant leaf [67], and on cashew nutshell
activated carbon [68].

3.4. Effect of Temperature

The effect of temperature on MV dye adsorption onto HNC is introduced in Figure 5.
The equilibrium adsorption capacity of MV onto HNC was found to increase slightly

with increasing temperature, from 18.63 mg/g at 284.15 K to 18.71 mg/g at 313.15 K. With
increasing temperature, the viscosity of the solution decreases, and consequently the rate
of diffusion of dye molecules increases. This leads to an increase in mobility of molecules
from the bulk solution to the surface of the adsorbent, and as a result, an increase in the
amount of MV adsorbed [69,70].

A similar temperature effect was reported for adsorption of MV adsorption by clinop-
tilolite [71] and adsorption of the dyestuff astrazon red violet 3 rn (basic violet 16) on
montmorillonite clay [72].
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3.5. Adsorption Isotherms

Four isotherm equations specifically Langmuir, Freundlich, Temkin and Dubinin–
Radushkevich (D-R) (Table 1) were employed to interpret the experimental data for MV
adsorption on HNC at different temperatures.

The results are shown in Table 2.

Table 2. Isotherm parameters for the adsorption of MV onto HNC.

Model
Parameters

Equation 284.15 K 298.15 K 313.15 K

Langmuir qe =
qmbCe
1+bCe

qm (mg g−1)
KL (L mg−1)

RL
R2

RMSE

27.8550
2.0200
0.0025
0.9990
0.4700

27.7000
2.3900
0.0021
0.9940
0.6500

25.3800
8.9500
0.0006
0.9998
0.7000

Freundlich qe = KFCe
1/n

KF (mg g−1)
n

R2

RMSE

17.5700
3.3200
0.9600
0.9200

18.4000
3.3300
0.9575
0.8000

21.0800
5.3600
0.8086
1.9900

Temkin qe =
RT
bT

ln(KTCe)

KT (L mg−1)
RT/b (kJ/mol)

bT (J mol−1)
R2

RMSE

27.9300
5.4310

435.0000
0.9834
0.5500

32.7200
5.4220

457.1800
0.9770
0.6400

529.1100
3.4400

755.7800
0.8642
9.7100

D-R qe = qm exp
(
−βε2)

qm (mg g−1)
β

E (kJ/mol)
R2

RMSE

23.0100
7 ×10−8

2.6720
0.9402
1.1600

23.9700
6 × 10−8

2.890
0.9761
0.8400

24.8300
2 × 10−8

5.000
0.9811
6.6000

Based on the R2, RMSE values, qe,calc values, and modelled isotherms, the Langmuir
isotherm model fitted best amongst all the isotherm models investigated. Langmuir
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isotherm model assumes similar, energetically equivalent adsorption sites and monolayer
adsorption [73].

The Langmuir isotherm constants, KL and qm, were calculated from the slope and
intercept respectively, of linear plot of Ce/qe against Ce (Figure 5 and Table 2).

The separation factor (RL), an essential parameter of the Langmuir isotherm, is gener-
ally used to show if the adsorption process is unfavorable (RL > 1), linear (RL = 1), favorable
(0 < RL > 1), or irreversible (RL = 0). It can be calculated by Equation (4).

RL =
1

1 + KLCi
(4)

The values of RL in Table 2 indicate that the adsorption of MV on HNC is favorable.
The Freundlich isotherm which assumes multilayer sorption on the heterogeneous

adsorbent surface was also utilized to evaluate experimental data. KF and 1/n were
calculated from the intercept and slope of the linear plot of log qe versus log Ce. The values
of n greater than unity in Freundlich adsorption isotherm, for all temperatures, indicated
that the HNC is suitable for the adsorption of MV.

The Temkin isotherm model includes a factor that takes into account the interactions
between the adsorbent and adsorbate. The heat of molecular adsorption in the layer would
reduce due to these interactions and the adsorption is identified by a dissipation of binding
energies. The determined Temkin parameters (bT and KT) exhibited that the interactions
between the adsorbent surface and the MV dyes are weak and may be a physical adsorption
process. The increased value of bT with temperature also supports increased adsorption
efficiency with increasing temperature [74,75].

Dubinin-Radushkevich (D-R) isotherm model determines whether adsorption is phys-
ical or chemical. The values of constants qm and β are given in Table 2. The parameter β
could be used to calculate the mean free energy (E = 1/

√
2β), which could distinguish the

type of the adsorption process. If the value of E is less than 8 kJ mol−1, the adsorption
process is physical, and when E is between 8 kJ mol−1 and 16 kJ mol−1, the process is
chemical adsorption [76].

The value of apparent energy E (less than 8.0 kJ mol−1) indicated that the adsorption of
MV onto the HNC is a physical process and is consonant with the ∆G parameter results [77].

The nonlinear relationship of the isotherm models used, is shown in Figure 6.
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3.6. Adsorption Kinetics

In order to investigate the adsorption process and potential rate controlling step of MV
adsorption onto HNC first order, pseudo-first-order, second order, pseudo-second-order,
and intra-particle diffusion kinetic models were studied (Table 1).

Figure 7 shows the linear relationship of kinetic models for the MV adsorption process
and the value of kinetics parameters determined using these models are given in Table 3.
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Table 3. Comparison of HNC adsorption capacities with various adsorbents.

Adsorbent qmax/mg g−1 Ref

Natural and Zwitterionic
Surfactant-modified Clay 54.61 [1]

Halloysite Nanotubes 187.18 [46]
DTMA-bentonite 740.5 [48]
Lignit coal 40.82 [50]
Halloysite Nanotubes 97.96 [75]
Halloysite Nanotubes 84.32 [78]
Na-bentonite 67.1 [48]
Magnetic composite 20.04 [13]
HNC 27.7 This study

On the basis of the high values of the regression coefficient, (R = 1) and very close
values of qe,calc with qe,exp, the pseudo-second-order rate model fitted the experimental data
better than any other model studied, providing evidence that the adsorption of MV on
HNC followed the pseudo-second-order kinetic model. Considerable reduction of dye
amount during batch adsorption experiments and longer time needed for adsorbing species
to diffuse to remote locations deep within a network of fine pores are the two contributing
explanations for these results [79,80].

Similar findings are also reported for adsorption of methylene blue by coconut
husks/polylactide blended films [81], adsorption of CV dye on zeolites from coal fly
and bottom ashes [78], and adsorption of CV dye on coffee husks [82].

Adsorbate molecules travel from the aqueous phase to the adsorbent surface, then
diffuse into pores. External mass transfer (boundary layer diffusion) or intraparticle diffu-
sion determines the adsorption rate. The experimental adsorption kinetics data were fitted
using the intraparticle diffusion model and the liquid film diffusion model to determine
the rate-determining step.

If the intraparticle diffusion is the sole rate-limiting step, the plot of qt vs. t0.5 gives a
straight line with zero intercept. As the intraparticle diffusion plot did not pass through
the origin some other mechanism might be included. For that reason, the kinetic data were
examined by the liquid film diffusion model. Linear graphs of ln (1 − F) vs. t with zero
intercept suggest that adsorption kinetics are driven by diffusion through the liquid film
surrounding solid adsorbents. The low values of R2 (Table 4) and the non-zero intercept
plots of the liquid film diffusion model indicate that the liquid film diffusion is also not the
sole rate-determining step.

Table 4. Kinetic parameters for the sorption of MV onto HNC.

Model qe,exp (mg g−1) Parameters

First-order

18.648

k1 (min−1)
qe,calc (mg g−1)

R2

0.0500
18.5200
0.9444

Pseudo first-order
k1 (min−1)

qe,calc (mg g−1)
R2

0.0188
0.3450
0.6135

Second-order k2 (g mg−1 min−1)
R2

0.0050
0.6927

Pseudo second-order
k2 (gmg−1 min−1)

qe,calc (mg g−1)
R2

0.6300
18.5900

1

Intrapaticle diffusion
ki (mg g−1 min−1/2)

C
R2

0.0650
18.0700
0.5254

Liquid film diffusion
Kfd
C
R2

0.0188
3.9895
0.6135
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So the adsorption mechanism is a combination of the two processes mentioned
above [51,77].

3.7. Adsorption Thermodynamics

The free energy change (∆G0), enthalpy change (∆H0), and entropy change (∆S0) were
evaluated using the following equations:

∆G0 = −RT lnKc (5)

lnKc =
∆S0

R
− ∆H0

RT
(6)

Kc = KL × 106 (7)

where Kc is the equilibrium constant (dimensionless), [83,84] R is the gas constant (J/Kmol),
and T is the temperature (K).

The ∆H0 and ∆S0 were determined from the slope and intercept of the plot of lnKc
versus 1/T (Figure 8), and the results are shown in Table 5.
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Table 5. The thermodynamic parameters of adsorption of MV onto HNC.

Temperature (K) ∆G0 (kJ/mol) ∆H0 (kJ/mol) ∆S0 (J/mol K)

313.15 −41.68
37.84 252.30298.15 −36.40

284.15 −34.30

The positive value of ∆H0 (+37.84 kJ/mol) indicated that the adsorption process was
endothermic and since this value is less than 80 kJ/mol (80 kJ/mol is the upper limit of the
change of enthalpy for physisorption), it shows that the adsorption follows a physisorption.

The positive value of ∆S0 indicated increased disorder and randomness at the solid-
liquid interface; however, the negative value of ∆G0 suggested spontaneous and thermody-
namically favorable adsorption of MV onto HNC.

Meantime, the value of ∆G0 became more negative with increasing temperature, which
exhibits that higher temperature is contributory to adsorption [19].

The activation energy Ea was obtained using the Arrhenius equation:

lnk2 = lnA− Ea

RT
(8)

where k2 is the pseudo-second-order rate constant, A is the Arrhenius constant, Ea refers to
the energy of activation (J mol−1), R is the ideal gas constant (8.314 J mol−1 K−1), and T is
the temperature (K).
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The slope of the plot of ln k2 versus 1/T (Figure 9) is used to evaluate Ea, which was
found to be 44 kJ/mol.
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This value is consistent with the values of the activation energy (43.0 kJ/mol) for the
adsorption of reactive red 189 on cross-linked chitosan beads [85], and (5.6–49.1 kJ/mol)
for the adsorption of polychlorinated biphenyls on fly ash [86].

3.8. Monte Carlo and Molecular Dynamic Simulations

Figure 10 depicts the lowest energy configurations for the MV on the HNC surface
under the simulated adsorption circumstances that were employed (as chosen above). As
evidenced by Mulliken charges (Figure 1), the adsorption geometries of the MV demonstrate
that nitrogen atoms are mostly responsible for this behavior.
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The following equation may be used to calculate the adsorption energies of the adsor-
bate molecule on the halloysite surface.

Eads = Etotal −
[

Esur f ace+water + EMV+sur f ace

]
+ Ewater (9)

where: Etotal is the total energy of the system as a result of adsorbent-adsorbate; Esurface+water
and EMV+water is system energy in the absence and presence of MV.

Figure 11 depicts the distribution of the adsorption energies for the large number of
adsorptive configurations developed and computed by the Monte Carlo approach for the
MV adsorbate, which was based on the results of the Monte Carlo method.
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The Adsorption Energy (Eads) values for the adsorption of MV onto the HNC surface
are presented in Table 6.

Table 6. The distribution Eads values for MV onto the Halloysite surface.

Molecule
Adsorption Media

Min. Max. Mean Value

MV −847.15 −903.55 −875.35

As indicated by the high Eads, the MV has a strong contact with the halloysite surface,
resulting in good adsorptive properties. Adsorption of MV onto the halloysite surface
was determined by both the MC and MD calculations, respectively. In the case of the
adsorption process, Monte Carlo simulations (see Figures 10 and 12) have indicated that
the ensuing negative values of adsorption are indicative of the spontaneity with which the
process occurs (Figure 11). It is important to employ MD simulations because they give
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a very simple means of tracking and recording the kinetics of inhibitor adsorption on the
metal surface under study. Figure 12 shows the final arrangements of MV on the halloysite
surface as depicted in the previous figure.
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corrosion media on the HNC surface PBC model.

The presence of an RDF peak between 1 and 3.5 Å from the surface plane of the
material and the adsorbate atom confirms adsorption, but for physisorption, RDF peaks at
greater distances confirm physisorption, and vice versa.

The RDF of the nitrogen atoms in the MV (Figure 13 is close to the surface plane,
suggesting that these components have an increased interaction with the adsorbent sur-
face. The findings of the MD and RDF analyses confirm that these inhibitors have a high
proclivity to adsorb onto the surface, owing to their peculiar attraction to share and accept
electrons with the surface in question. [55].
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3.9. FTIR Spectroscopy

FTIR-8400S was used for Total Attenuated Reflection (ATR) measurements with the
following parameters: resolution 2 cm−1, 100 scans, 500–4000 cm−1. Figure 14 exhibits
the peaks that appeared at certain wave numbers of MV FTIR spectra before and after
adsorption onto HNC.
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The following peaks: 3082 and 1496 cm−1 show -CH- aromatic and 2927 cm−1 –CH3
methyl vibrating vibrations, respectively 1688 cm−1, aromatic ring vibrations –C=C– vibra-
tions from the skeleton of aromatic ring structures of MV, while we have new displays of
vibrations of the group -OH at 3345 cm−1 stretching, 1127.2 cm−1 bending by the group
connections -Si-O-Si- bending and 990.3 cm−1 from the -Al-O-OH- bond arising from the
Halloysite and MV groups with distinctive features (as shown in Figure 14).

The interaction of MV molecules with Halloysite functional groups was confirmed by
the emergence and disappearance or depletion of various peaks.

4. Conclusions

This study established the viability of halloysite nanoclay as a dye-removal adsorbent
in wastewater. The findings of the batch trials revealed that adsorption was affected by
adsorbent dose, contact time, initial dye concentration, and temperature.

Adsorption of MV is very little affected by changing the temperature and pH. The
optimal adsorption capacity (27.7 mg/g) was reached at ambient temperature (298 K) and
pH (4.26).

Among the investigated isotherm models, the Langmuir isotherm model demonstrated
the best fit.

The experimental data were best suited by the pseudo-second-order rate model,
indicating that the adsorption of MV on HNC followed the pseudo-second-order kinetic
model. The kinetic analysis indicated that the adsorption mechanism is a combination of
intra-particle diffusion and film diffusion.

Thermodynamic investigations demonstrated that the removal of MV by HNC is
possible, exothermic, and spontaneous.

This study focuses on two distinct molecular mechanics-based theoretical approaches
(MC and MD). These techniques enabled a molecular comprehension of the interaction
between the MV molecule and the halloysite surface. Simulations using Monte Carlo and
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molecular dynamics revealed that this molecule spontaneously adsorbs onto surfaces. The
negative value of the adsorption energies supports a strong interaction between the MV
and HNC surface, which is consistent with experimental findings.
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