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Abstract

Predicting brain aging can help in the early detection and prognosis of neurodegener-

ative diseases. Longitudinal cohorts of healthy subjects scanned through magnetic

resonance imaging (MRI) have been essential to understand the structural brain

changes due to aging. However, these cohorts suffer from missing data due to logistic

issues in the recruitment of subjects. This paper proposes a methodology for filling

up missing data in longitudinal cohorts with anatomically plausible images that cap-

ture the subject-specific aging process. The proposed methodology is developed

within the framework of diffeomorphic registration. First, two novel modules are

introduced within Synthmorph, a fast, state-of-the-art deep learning-based diffeo-

morphic registration method, to simulate the aging process between the first and last

available MRI scan for each subject in three-dimensional (3D). The use of image regis-

tration also makes the generated images plausible by construction. Second, we used

six image similarity measurements to rearrange the generated images to the specific

age range. Finally, we estimated the age of every generated image by using the

assumption of linear brain decay in healthy subjects. The methodology was evaluated

on 2662 T1-weighted MRI scans from 796 healthy participants from 3 different lon-

gitudinal cohorts: Alzheimer's Disease Neuroimaging Initiative, Open Access Series of
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Imaging Studies-3, and Group of Neuropsychological Studies of the Canary Islands

(GENIC). In total, we generated 7548 images to simulate the access of a scan per sub-

ject every 6 months in these cohorts. We evaluated the quality of the synthetic

images using six quantitative measurements and a qualitative assessment by an expe-

rienced neuroradiologist with state-of-the-art results. The assumption of linear brain

decay was accurate in these cohorts (R2 � [.924, .940]). The experimental results

show that the proposed methodology can produce anatomically plausible aging pre-

dictions that can be used to enhance longitudinal datasets. Compared to deep

learning-based generative methods, diffeomorphic registration is more likely to pre-

serve the anatomy of the different structures of the brain, which makes it more

appropriate for its use in clinical applications. The proposed methodology is able to

efficiently simulate anatomically plausible 3D MRI scans of brain aging of healthy

subjects from two images scanned at two different time points.
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1 | INTRODUCTION

Brain aging is usually associated with cognitive decline and an

increased risk of neurological disorders such as Alzheimer's disease

(AD) (Ma et al., 2022; Popescu et al., 2021). Analysis of longitudinal

images of healthy brains can reveal the underlying spatiotemporal

structure of brain changes due to aging (Giorgio et al., 2010;

Peters, 2006), which can potentially be used for the early prognosis

and the accurate diagnosis of diseases by serving as the reference of

healthy aging (Alberdi et al., 2016; Lorenzi et al., 2015; Mueller

et al., 2005).

In the last decades, the collection of longitudinal brain images has

facilitated research on brain aging by enabling a noninvasive way to

track brain changes and observe disease progression over time (Resnick

et al., 2003). For example, one of the most-known data-sharing initia-

tives, the Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller

et al., 2005) has collected images using different modalities of subjects

at different stages of AD. Compared with other imaging modalities,

magnetic resonance imaging (MRI) has superior soft-tissue contrast.

This has fostered the use of MRI-based imaging biomarkers, alone or in

combination with cerebrospinal fluid and blood biomarkers and psycho-

logical tests, for tracking aging or disease-related changes (Devic, 2012;

Lockhart & DeCarli, 2014; MacDonald & Pike, 2021; Njeh, 2008;

Poulakis et al., 2020, 2021; Schmidt & Payne, 2015).

An alternative approach to the extraction of imaging biomarkers

for studying aging is to analyze the complete 3D image in order to

detect shape changes of different anatomical structures due to aging

(Oxtoby & Alexander, 2017). This approach has the potential advan-

tage of capturing shape changes of the brain structures before they

can be detected by specific imaging biomarkers. For example, the vol-

ume shrinkage of the brain might occur only in later stages of disease

(Cury et al., 2016, 2019).

Recent studies have demonstrated the potential of using machine

learning (ML) techniques to study brain aging (Anatürk et al., 2021;

Choi et al., 2018; Cole et al., 2015; Ouyang et al., 2021; Popescu

et al., 2021). However, it has rarely been straightforward to follow or

analyze the age and disease progressions via those learning-based

methods. On the one hand, ML-based methods, especially deep learn-

ing (DL)-based methods, are designed to distill knowledge from data.

Therefore, the availability of ground truth data is crucial to feed the

data-hungry DL models. Nevertheless, the sensitive nature of medical

data makes it usually difficult to access. Moreover, brain aging

research needs longitudinal data, which is even less available or unsta-

ble due to, for example, scans taken at different intervals of time or

scanners. On the other hand, the high dimensionality of the brain

images exponentially increases the resource demands of training DL

models (Wegmayr et al., 2019). For this reason, many studies have

limited their scope until now to generating two-dimensional

(2D) slices extracted from the three-dimensional (3D) MRI scan

(Bowles et al., 2018; Kim et al., 2021; Pathan & Hong, 2018). Although

the 3D MRI scan can be reconstructed by concatenating 2D slices, it

is difficult to assess its internal consistency, with a risk of losing its

anatomical plausibility. For all these reasons, it is becoming increas-

ingly necessary to develop Medical Image Generation (MIG) models,

which aim at generating trusted and accurate synthetic 3D aging brain

images in a computationally effective manner.

In this study, we propose a 3D MIG model based on diffeo-

morphic registration, aiming at synthesizing MRI scans with increasing

age, in which subject-level predictions can be derived from individual-

ized image pairs. With our model, the aging progression of the brain

can be simulated rapidly with high-dimensional MRI scans. For exam-

ple, it could synthesize brain atrophy progression from age 60 to age

80 as represented by MRI scans for a particular subject. The main con-

tributions of the proposed method can be summarized as follows:
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(i) we develop a new MIG pipeline that can synthesize subject-specific

and anatomically plausible MRI series in a computationally efficient

manner; (ii) we introduce an aging generative module (AGM) that does

not require a training phase and can be applied to any framework that

is based on diffeomorphic registration; (iii) we introduce the quality

control module (QCM) working in conjunction with AGM, which is

used to assess the quality of the synthetic images according to the

input pair; (iv) we augment the existing longitudinal MRI scans with

corresponding segmentations by around three times and provide the

way to access them,1 enabling the development of data-hungry Artifi-

cial Intelligence (AI)-driven healthcare tools, for instance, developing

registration and segmentation algorithms for high-resolution predic-

tions, which always require more data to increase their performance.

2 | RELATED WORK

The aging population has increased concern for age-related neurode-

generative diseases and so, aging cohorts and studies have attracted

growing interest. MRI scans can clearly illustrate the anatomical struc-

ture inside the brain and thus have been used in research on aging. To

analyze aging or chronic disease progressions of the brain, AI-based

MIG models have been introduced to synthesize scans at different

stages of diseases or at different ages.

A commonly used architecture in MIG models is generative

adversarial networks (GANs) (Creswell et al., 2018). GANs are

designed to generate new data from the same distribution, which con-

sists of two parts: a discriminator to distinguish fake and real samples

and a generator to learn new plausible samples to deceive the discrim-

inator. Several GAN-based methods have been introduced to model

the aging progression (Bowles et al., 2018; Kim et al., 2021; Wegmayr

et al., 2019). Training GANs with 3D brain images is challenging

mainly due to the high dimensionality of the brain images. As a result,

most of the previous studies have simplified the problem by either

using only a single slice per subject (Wegmayr et al., 2019) or by

downsampling the original images, which might result in poor resolu-

tion predictions (Ravi et al., 2022). To alleviate these limitations (Jung

et al., 2021) proposed a method to synthesize high-quality 3D medical

images by introducing a 3D discriminator in a normal 2D GAN archi-

tecture. A depth-wise concatenation module was introduced to con-

catenate separate 2D slices into a whole 3D image. Apart from the

technical challenges, the main issue of GAN-based methods is that

they are unable to guarantee the anatomical plausibility of the gener-

ated images due to the lack of biologically informed constraints in the

generation. This issue becomes relevant if the synthetic images are

expected to be used for answering clinical questions. As an alternative

to GANs, other methods using variational autoencoders (VAEs)

(Kingma & Welling, 2013) have also been devised, such as Tudosiu

et al. (2020). However, it has been reported that GANs tend to pro-

duce clearer images than VAEs in diffusion-weighted and

T1-weighted images (Treder et al., 2022). More recently, latent diffu-

sion models have been proposed for generating synthetic images

(Pinaya et al., 2022).

Apart from the aforementioned issues when using generative

models as the architecture, another critical factor for analyzing

aging is individualization. Personalized healthcare and individual-

ized medicine are important since each patient has different physi-

cal conditions that may cause the same disease. With regard to the

aging-related processes, it is even more complicated since aging-

related brain changes can be influenced or driven by several fac-

tors, such as AD (Song et al., 2022), traumatic brain injury (Cole

et al., 2015), even different regions of the brain might follow a dif-

ferent aging pattern (Popescu et al., 2021). Image regression is

therefore introduced as a means to encode personalized informa-

tion in GANs.

Image regression was introduced with the aim of estimating

images as a function of associated variables such as age (Niethammer

et al., 2011; Beg et al., 2005). The complexity of analyzing age or dis-

ease progressions was alleviated by modeling regression approaches

at the population level (Dukart et al., 2013; Huizinga et al. 2018). For

example, those group-level methods aim at simulating spatiotemporal

changes during aging across all subjects. Even though these methods

capture the time-varying changes of a population well, the way to

leverage and extrapolate this to the target subject is still under devel-

opment (Campbell & Fletcher, 2017). The work of Pathan and Hong

(2018) has addressed this extrapolation problem by incorporating the

regression model based on the framework of large deformation dif-

feomorphic metric mapping (LDDMM) (Pathan & Hong, 2018) with

convolutional neural networks and recurrent neural networks. Their

model, however, generated a sequence of vector moments under the

LDDMM framework before model training, so performance and the

model were highly dependent on the LDDMM output.

The fundamental tool for performing image regression is diffeo-

morphic image registration, which aims at estimating spatial corre-

spondences between images (Zitova & Flusser, 2003). Traditional

methods for diffeomorphic image registration are very time-consum-

ing, which has limited the application of image regression in different

contexts. Recently, many deep-learning-based diffeomorphic registra-

tion methods have emerged (Balakrishnan et al., 2019; Chen

et al., 2021; Dalca, Balakrishnan, et al., 2019; Fu et al., 2020;

Hoffmann et al., 2022; Li & Fan, 2022) with the aim of reducing the

computational burden. These methods have shown a comparable reg-

istration accuracy to that of the traditional methods, especially for

brain images.

Inspired by the aforementioned methods for simulating brain

aging on longitudinal data, we found it necessary to develop a compu-

tational effective and anatomically plausible MIG model for 3D scans.

Most of the GAN-based methods use one input image to generate

synthetic images. Instead, we use two scans at different time points.

Aging is a complex process that is influenced by many factors, such as

lifestyle factors, cognitive diseases, education, and so on. Using a pair

of inputs from the same subject can provide a more accurate picture

of the individual aging. With this feature, we can obtain images of a

1The synthetic scans can be found via https://github.com/Fjr9516/Synthetic-Brain-Aging/

blob/main/README.md
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higher quality which can be used to augment the available longitudinal

datasets.

3 | METHOD

Figure 1 shows the framework of the proposed aging generative

method. As shown, we assume that the input is an image pair of the

same subject acquired at different time points. The objective of the

aging generation is to synthesize images of aging overtime for that

subject. The framework consists of three main parts as shown in

Figure 1: (1) the skeleton of diffeomorphic registration; (2) the pro-

posed AGM aiming at simulating linear aging MRI scans; and (3) the

proposed QCM, which provides the subject-specific hyperparameter

s for AGM and that is fulfilled by imposing an accurate-preserve con-

straint on the synthetic MRI scans.

3.1 | Diffeomorphic registration

Image registration is a fundamental step for analyzing medical images

either in clinics or for downstream tasks such as segmentation, regres-

sion, or classification. In its simplest form, image registration involves

estimating a smooth, continuous mapping between the points in one

image and those in another. Specifically, given a moving image Im and

a fixed image If, the goal of image registration is to find a deformation

field ϕ to map Im into If. Preserving the topology is crucial when regis-

tering biological image pairs in order to avoid the folding of tissues

(e.g., tissues should not fold or even disappear with aging intraindivi-

dually). Diffeomorphic registration has the advantage that it computes

deformation fields that are both differentiable and invertible, which

means that it can preserve the topology.

Traditional diffeomorphic registration methods are computation-

ally intensive. Benefiting from the vigorous development of ML, many

ML-based registration methods have been proposed to shorten the

registration time in the testing phase from tens of minutes to hours

for the traditional methods, to a few minutes or even seconds for the

ML-based ones (Fu et al., 2020). Several ML-based diffeomorphic reg-

istration methods have been proposed (Dalca, Balakrishnan,

et al., 2019; Dalca, Rakic, et al., 2019; Hoffmann et al., 2022; Krebs

et al., 2018, 2019; Li & Fan, 2022). We chose SynthMorph (Hoffmann

et al., 2022) in this study because of its good performance for brain

registration. The architecture of SynthMorph is summarized in the

upper part of Figure 1. One of the issues of using ML for diffeo-

morphic registration is that it is difficult to make sure that the learned

deformation fields are diffeomorphic. To solve this issue, SynthMorph

divides the problem into two steps. First, a U Net-like neural network

(Ronneberger et al., 2015) is trained to learn a stationary velocity field

representation, v, following a similar approach to the diffeomorphic

anatomical registration using exponentiated lie algebra (DARTEL)

method (Ashburner, 2007), in which a single velocity field is involved

which remains constant over unit time. In a second step, this vector

F IGURE 1 Architecture of the proposed Medical Image Generation (MIG) model. The input is an individualized image pair, where Im stands
for moving image, If stands for fixed image. The proposed two modules take velocity field as input. Aging generative module (AGM) and quality
control module (QCM) are introduced within the skeleton of diffeomorphic registration. The details of AGM are shown in the bottom blue shadow
part. The deformation fields can be derived from velocity field given the subject-specific stopping point s and the corresponding number of
generated magnetic resonance imaging (MRI) scans N. At the end, aging MRI sequences can be derived through spatial transform. The QCM can
provide the subject-specific s by applying quality measurements between generated and fixed MRI scans
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field is used for estimating the actual diffeomorphic deformation field

by solving the ordinary differential equation (ODE):

dϕ tð Þ

dt
¼ v ϕ tð Þ
� �

, ð1Þ

where ϕ(0) is initialized with an identity transform. The final deforma-

tion field ϕ(1) is obtained by integrating over unit time as follows:

ϕ¼ϕ 1ð Þ ¼
ð1
0

v ϕ tð Þ
� �

dt: ð2Þ

From group theory, the velocity field v can be seen as a member

of the Lie algebra, which is exponentiated in order to produce a defor-

mation ϕ(1). The resulting deformation is a member of a Lie group:

ϕ(1) = Exp(v).

Equation (2) can be solved with the Euler method, which involves

calculating a new solution after a series of successive small steps h.

ϕ tþhð Þ ¼ pþhvð Þ � ϕ tð Þ, ð3Þ

where ∘ denotes the composition operation and p is a map of spatial

locations. As an example, a relatively accurate solution can be

obtained by using eight time-steps as follows:

ϕ 1=8ð Þ ¼ pþv pð Þ
8

, ð4Þ

ϕ 2=8ð Þ ¼ϕ 1=8ð Þ � ϕ 1=8ð Þ, ð5Þ

ϕ 3=8ð Þ ¼ϕ 1=8ð Þ � ϕ 2=8ð Þ, ð6Þ

… …, ð7Þ

ϕ 1ð Þ ¼ϕ 1=8ð Þ � ϕ 7=8ð Þ: ð8Þ

If the number of time steps is a power of 2, then it is called scaling

and squaring (SS) (Arsigny et al., 2006; Ashburner, 2007). The main

advantage of this implementation is its relatively low computational

cost due to the simplifying of internal points.

Motivated by this, we consider extracting the output deformation

fields in the middle of the integration and applying them to the spatial

transform block. The evolution between two ages associated with

two input images can be simulated.

3.2 | Aging generative module

Our approach for synthesizing images between the fixed and moving

ones is to generate different deformation fields at different time steps

between the paired input. In addition, the stopping point (i.e., s) of

integration is set as the hyper-parameter to enable the input-specific

focus. The main problem of the scaling and squaring approach for our

purpose is that the deformation field is computed at irregular time

steps (i.e., power of 2) in the integration range. Moreover, it is difficult

to obtain fine-grained extrapolation points beyond the original stop-

ping point when t = 1. Since our goal is to generate samples at more

regular steps, it is beneficial to use a more standard ODE solver that

allows us to generate deformation fields at any time t. In particular,

we used the TensorFlow implementation of the ODE solver to obtain

linear intermediate outputs. Specifically, we used the function

“odeint” from the TensorFlow Scientific library, which implements a

fifth-order Runge–Kuttab using the Dormand–Prince method

(Shampine, 1986). We refer to this method as tfODE. This method is

just slightly more computationally expensive than SS. The results com-

paring these two numerical methods can be found in Section 4.2.

The bottom part of Figure 1 shows the AGM of the proposed

method. First, given the velocity field v estimated with the neural

network, we generate N deformation fields at different regular

time points in the range [0, s], with s being a parameter. In the sec-

ond step, we use the spatial transform block introduced by de Vos

et al. (2017) to generate the images at different time points by

warping the moving image Im with the estimated deformation

fields. Parameter s is referred to as the initial stopping point. This

parameter is automatically adjusted later by the QCM as described

in the next subsection.

3.3 | Quality control module

As already mentioned, in theory ϕ(1) should be used to map Im into If.

In practice, this might not happen when using ML-based methods.

Although the neural networks learn the most likely vector field v for

the input images, some inaccuracies are expected due to the fact that

the testing Im and If are, in general, not used during training. In other

words, deformation fields at time points different than one can yield a

better matching for registering the two images. As it will be discussed,

it is important for the method to accurately estimate this stopping

point since the age estimation of the synthetic images is adjusted with

respect to that point.

In order to tackle this issue, we introduce the QCM whose aim is

to adjust the initial stopping point s of the integration layer of the

AGM. Our approach is to assess which integration time point yields

the most similar generated image compared to If. Based on previous

studies and medical image generation literature (Emami et al., 2018;

Gu et al. 2019; Lei et al., 2019), we chose six different similarity mea-

surements between two images I1 and I2, namely the mean absolute

error (MAE), structural similarity index (SSIM), normalized cross-

correlation (NCC), peak signal-to-noise ratio (PSNR), normalized Fro-

benius norm (NFN), and Dice score (DSC).

Figure 2 shows an example of how s is adjusted for the specific

case of SSIM. We have chosen hyperparameter s as 2 in this case to

facilitate understanding. As shown, the image at t = 1.8 is more similar

to the fixed image than the one at t = 1.0 according to SSIM.

Although the difference in SSIM is slight, the morphological
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differences are visible (see for example the ventricles). The six mea-

surements are computed as follows:

MAE¼ 1
N

XN
i¼1

j I1 ið Þ� I2 ið Þ j , ð9Þ

where N is the number of voxels.

SSIM¼ 2μ1μ2þC1ð Þ 2σ12þC2ð Þ
μ21þμ22þC1
� �

σ21þσ22þC2

� � , ð10Þ

where μi and σi stand for the mean and standard deviation of image i,

σ12 is the covariance, and the parameters C1 = (k1Q)
2 and C2 = (k2Q)

2

are used to stabilize divisions with weak denominators, with Q being

the dynamic range of the MRI scans. We used k1 = 0.01 and

k2 = 0.02 in the experiments.

NCC¼

PN
j¼1

Î1 jð Þ̂I2 jð Þ
� ������

�����
PN
j¼1

Î1
2
jð ÞPN

j¼1
Î2

2
jð Þ

" #1=2 , ð11Þ

with Îi jð Þ¼ Ii jð Þ�μi.

PSNR¼10log10
Q2

MSE

 !
, ð12Þ

with Q being the dynamic range of the MRI scans and MSE is the

mean squared error between the two images.

Furthermore, we use the normalized Frobenius Norm (NFN) (also

known as the sum of squared differences) (Van Loan & Golub, 2013)

between the two images:

NFN¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

jI1 ið Þ� I2 ið Þj2
vuut : ð13Þ

Whenever segmentation masks are available, the Dice score is

applied to the segmentation. In order to get segmentation masks for

the generated images, the same estimated deformation fields are used

to warp the segmentation masks of the moving image. In this case,

nearest-neighbor interpolation is used instead of linear used in the

spatial transform. The formula is as follows:

DSC¼2� A\Bð Þ
AþB

, ð14Þ

with A and B being the two segmentation masks. The values range

from 0 to 1, 1 representing a perfectly overlapping segmentation.

Lastly, we combine the six similarity measurements by computing

the mean updated s of the individual methods.

Once the stopping point s is adjusted, we can re-generate

the synthetic images with this more accurate input-specific

hyperparameter.

3.4 | Age estimation

When conducting research on aging, age is a valuable piece of infor-

mation. Once the images are synthesized, the next step is to estimate

the age of every synthetic MRI scan. This step is important in order to

match the synthesized images with real ones by age.

It is vital to know how anatomy changes with age when it comes

to the age estimation of synthetic images. Walhovd et al. (2005)

showed that the contraction of brain structures is linear with age.

F IGURE 2 Adjustment of the
stopping point s. (a) Series of
generated images for a specific
subject for different integration
points. The center coronal slice
from the three-dimensional
(3D) volumes is depicted in these
images. (b) Structural similarity
index (SSIM) between the fixed

image and the synthetic ones is
maximum at t = 1.8. (c) Local
differences between the fixed
image and the synthetic ones at
t = 1.0 and the optimal stopping
point at t = 1.8
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Moreover, Dukart et al. (2013) found linear decreasing age-related

changes in one voxel considering GM volume at the age of 50 years

as a baseline. Based on these findings, we assume that a linear

increase in the integration time will lead to a linear change in the brain

structures. Thus, the age of the synthetic image at time t, It, is com-

puted as:

Age Itð Þ¼Age Imð Þþ t
s
Age Ifð Þ�Age Imð Þ½ �: ð15Þ

Notice that this age estimation depends on the stopping point s,

which can be different depending on the applied measurement from

the previous section. Since there are subjects with more than two

acquired images in the datasets, it is possible to use the intermediate

acquisitions to assess the error in the age estimation. With this, it is

possible to determine which measurement is more appropriate for

simulating aging with the proposed methodology.

4 | EXPERIMENTAL RESULTS

4.1 | Datasets

We evaluated the generative performance of the proposed methodol-

ogy on three datasets: two publicly available datasets, the ADNI (Jack

et al., 2008) and the Open Access Series of Imaging Studies-3 (OASIS-

3) dataset (LaMontagne et al., 2019); and our own dataset, named

Group of Neuropsychological Studies of the Canary Islands (GENIC).

They all are 3D brain-MRI datasets. We focus only on the T1-w MRI

scans in this study. The ADNI2 was launched in 2003 as a public–

private partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether serial MRI,

positron emission tomography, other biological markers, and clinical

and neuropsychological assessment can be combined to measure the

progression of mild cognitive impairment (MCI) and early AD. OASIS-

33 is a retrospective compilation of data from more than 1000 partici-

pants, including 609 cognitively normal adults and 489 individuals at

various stages of cognitive decline. It contains more than 2000 MR

sessions and includes T1-w scans, among other sequences. GENIC is a

population-based prospective longitudinal study from the Canary

Islands in Spain, which it was started in 2004 and is currently on-going

(Machado et al., 2018; Nemy et al., 2020). It includes T1-w scans,

among other sequences.

4.1.1 | Data setup

First, FreeSurfer (Fischl, 2012) was applied to all datasets. Image pro-

cessing and data management of ADNI and GENIC were done in the

Hive database system (Muehlboeck et al., 2014), while OASIS

FreeSurfer data were obtained from https://www.oasis-brains.org/

#access. FreeSurfer performs skull-stripping and bias field correction.

After that, we affine registered the images into FreeSurfer's Talairach

space using the talairach.xfm atlas transform generated by recon-all.

Affine registration is necessary since we adopt the stationary velocity

model, in which the evolution of the diffeomorphism is not invariant

with respect to the affine transformations (Ashburner, 2007). To har-

monize medical data for the DL-based architecture, it is important to

resample the intensity of images to a common shape and scale

between 0 and 1. We also cropped the images to [160,160,192] in

the experiments. The segmentations of three datasets were extracted

from the file aparc + aseg.mgz obtained with the widely used FreeSur-

fer software.

Many neurodegenerative diseases can affect brain aging (Popescu

et al., 2021). For example, it has been previously shown that the

brains of patients with AD tend to look older than the brains they

would have expected when healthy (Franke et al., 2012; Popescu

et al., 2020). Based on this, it is reasonable to separate healthy

patients from diseased patients, especially for age estimation. There-

fore, we only used images of cognitively healthy subjects, resulting in

1489 images in ADNI, 1310 images in OASIS-3, and 406 in GENIC.

Furthermore, the proposed methodology requires images acquired in

at least two time points as input, so subjects with sessions fewer than

two were excluded. Then 1393 images were left in ADNI, 1066

images in OASIS-3, and 203 images in the GENIC dataset. Details

about the data included in the experiment appear in Table 1.

4.2 | Image generation

As mentioned, SynthMorph (Hoffmann et al., 2022) was used as the

backbone of the diffeomorphic registration due to its state-of-the-art

performance for DL-based diffeomorphic registration. We used pre-

trained weights which were trained with a set of brain-anatomy label

maps (sm-brains).4 We also conducted an experiment comparing the

two numerical ODE solvers (i.e., SS and tfODE) in terms of quantita-

tive measurements used in Section 3.3 in two images from the

OASIS-3 dataset. We found that the two methods could achieve com-

parable results even over a wide time range (see Figure S1), which is

in line with the findings of Dalca, Balakrishnan, et al. (2019). The num-

ber of images generated for each subject, Ni, is determined by the age

difference (i.e., δ shown in Figure 1) between the youngest and oldest

sessions in the dataset, namely Ni = 2 � δi for each subject i. We

chose the two MRI scans with the greatest age gap from a subject for

two reasons: (i) it will result in the longest aging simulation and rela-

tively large augmented data pool that can be used for developing

data-hungry AI-enable tools, such as registration and segmentation of

3D MRI scans; (ii) the remaining intermediate MRI scans can be used

for the evaluation part. It was chosen here to use double age differ-

ence because we consider the acquisition of longitudinal data to be

2http://adni.loni.usc.edu/about/
3https://www.oasis-brains.org

4https://surfer.nmr.mgh.harvard.edu/ftp/data/voxelmorph/synthmorph/brains-dice-vel-0.5-

res-16-256f.h5
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suitable every 6 months. The initial stopping point s is set as three in

the experiments. The summary of the datasets and the generated syn-

thetic images can be found in Table 1. It is worth mentioning that the

original datasets can be augmented with high-quality MRI scans

by 284%.

Figure 3 shows the age distributions of the three datasets before

and after the generation of synthetic data. As shown, GENIC contains

younger subjects, ADNI older, and OASIS-3 subjects in the middle.

The figure also shows that OASIS-3 covers a larger range of age dif-

ferences between the first and last MRI acquisition compared to the

ADNI, with GENIC in between. These differences determine that the

number of synthetic images per subject in ADNI is on average smaller

than in the other two datasets.

4.3 | QCM validation

Introducing QCM is one of the contributions of this work since it can

take the quality of synthetic MRI scans into consideration by adjusting

stopping points in the AGM at the inference phase, thus mitigating

the effects of domain shift between training and test cohorts. Six simi-

larity measurements are introduced in the QCM. The validity of QCM

is evaluated from three perspectives: (i) selected measurements

reflect aging-related changes; (ii) the “optimal” stopping point is

mostly beyond the fixed one (i.e., t = 1); (iii) significant differences are

found before and after applying QCM in terms of six criteria.

As discussed, the stopping point can be different depending on

the quality measures used for comparing the acquired images with

the synthetic ones. To show this, we randomly chose a subject

from OASIS-3 that was scanned five times and used them to assess

their corresponding closest synthetic images according to the dif-

ferent criteria. Every curve in Figure 4 shows the evolution of the

different measurements for the five images with the integration

points. Notice in Figure 4 that the integration point of the closest

synthetic image is always growing with the age of the acquired

image for all measurements. Similar behavior was observed in sub-

jects with more than two acquired images. This means that the

chosen quality measurements are consistent and can capture

aging-related changes.

Figure 5 shows box plots of the adjusted stopping points s per

dataset for the different quality measurements. As shown, the stop-

ping point is higher than 1.0 in the vast majority of the cases. ADNI

tends to have lower values of s closer to theoretical stopping point

1 compared to the other datasets. One hypothesis for this is that

ADNI was the only dataset that was included in the training phase of

SynthMorph (Hoffmann et al., 2022). Notice that the value of s is rela-

tively similar for all quality measurements. To further evaluate the dif-

ference among datasets from a quantitative perspective, we

computed the Fréchet inception distance (FID) (Heusel et al., 2017)

between each pair of datasets. FID is widely used in the GAN litera-

ture and is a popular metric for measuring the feature distance

between two distributions, which also shows sensitivity to image

quality and good correspondence with human perception (Treder

et al., 2022). We randomly selected 200 samples of each dataset, took

a representative slice (the central slice in the sagittal direction), and

computed FID between the datasets. This procedure was repeated

TABLE 1 Summary of the datasets

Complete dataset Selected images Synthetic images

Dataset # Images # Healthy # Sessions >1 # Subjects Age range # Images Size increase (%)

ADNI 5097 1489 1393 347 59–95 2500 179

OASIS-3 2044 1310 1066 353 42–95 3948 370

GENIC 539 406 203 96 34–79 1100 542

Total 7680 3205 2662 796 34–95 7548 284

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; OASIS-3, Open Access Series of Imaging Studies-3.

F IGURE 3 Age distributions in the three datasets. (a,b) The histogram of age before and after augmentation. (c) The distribution of age
difference between the first and last acquired magnetic resonance imaging (MRI) scan per subject
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10 times to get the average FID and standard deviation between each

pair of datasets. These results are summarized in Table 2. According

to the table, OASIS-3 is relatively close to ADNI, while GENIC is far

away from both OASIS-3 and ADNI. This finding supports that

OASIS-3 had optimal stopping points closer to the ones from ADNI.

Although the computational cost of adjusting the image gener-

ation to the optimal point s is low, one relevant question is if such

a procedure contributes to get better images. For answering this

question, we conducted an experiment on GENIC in which we

compared the images generated with QCM (i.e., adjusting s) and

F IGURE 4 Trends of the six quality criteria for five images of the same subject. The legends indicate the true ages of the corresponding real
magnetic resonance imaging (MRI) scans. For each curve, we calculate the “extreme” values and positions and connect them to a dashed red line.

For normalized Frobenius norm (NFN) and mean absolute error (MAE), the generated MRI scans that are most similar to the real ones are at the
point of minimum value; for other measurements, it is at the maximum point. Note that the peak signal-to-noise ratio (PSNR) plot is not shown
from 0 since it is not defined for that value

F IGURE 5 Distribution of the stopping point per dataset for the tested quality measurements

TABLE 2 Comparison of FID measurements between paired two
datasets. Standard deviations are shown in parentheses

Datasets GENIC OASIS-3 ADNI

GENIC 1305 (239) 20,089 (1074) 17,108 (1111)

OASIS-3 19,382 (1244) 1754 (192) 4393 (453)

ADNI 17,013 (1054) 4227 (530) 1880 (109)

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; FID,

Fréchet inception distance; OASIS-3, Open Access Series of Imaging

Studies-3.
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without QCM (i.e., with s = 1). As shown in Table 3, the values for

the six measurements are similar. Still, we found that SSIM and

DSC scores are statistically different (p = .018 for SSIM and

p = .03 for DSC). Since GENIC contains a younger population, the

changes due to aging are less pronounced. Thus, the differences

between using QCM or not are expected to be larger with older

subjects (as well as in pathological subjects). Notice that the com-

putational time for these methods is very similar. Thus, it is advan-

tageous to adjust the optimal stopping point since it is

computationally inexpensive.

4.4 | Validation of age estimation

At this point, it is not clear which quality measurement is the most

appropriate for age estimation. To answer this question, we used the

true age of the intermediate images, which were not used in the

image generation, as ground truth to test the error in the age estima-

tion. We used the root mean square error (RMSE) between the true

ages and the estimated ages as follows:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Agetrue Iið Þ�Ageestimated Îi
� �� �2vuut , ð16Þ

where N is the number of images in the ground truth, Ii is the ith

image in the ground truth, and Îi is its closest synthetic image accord-

ing to the tested quality measurement.

Table 4 shows the RMSE for the tested quality measurements.

The corresponding box plots are shown in Figure 6. We observe that

the RMSE is around 2 years when the three datasets are combined.

Again, the error is lower for ADNI. As shown, NFN, PSNR, and NCC

are the best options for age estimation. Notice that the RMSE estima-

tions might be affected by quantization errors since we generate

images to simulate increments of 0.5 years of age.

As mentioned, previous studies have found that the brain changes

linearly with age (Dukart et al., 2013; Walhovd et al., 2005). In order

to assess the validity of that hypothesis in our datasets, we performed

linear regressions between the real age of the images used as ground

truth and the estimated as described in Section 3.4. Figure 7 shows

these plots for the tested quality criteria. According to the coefficient

of determination R2, the linear regression is valid since all measure-

ments are higher than .9, which usually indicates a strong correlation

between variables thus demonstrating the goodness of this fit. Ideally,

the fitting lines should be y = x. As shown, the slopes are close to one

in all cases, which validates the hypothesis that the linear changes

within the brain will cause linear age increments. However, the inter-

section varies between 0.15 (i.e., 1.8 months) and 1.23 (i.e., 1 year and

2.8 months). To assess the effect of the intersect in the estimation of

age, we added an extra column in Table 4 where the regression was

used instead of the linear estimation of age. The improvement is in

the range of 0.07–0.12, which is equivalent to 0.84–1.44 months.

4.5 | Quantitative quality assessment

Table 5 and Figure 8 show the different quality measurements com-

puted on the generated images that are most similar to the ground

truth images. The obtained values cannot be directly compared with

TABLE 3 Quantitative comparisons of images generated with the
adjustment of the stopping point s (with quality control module
[QCM]) and without that adjustment (s = 1) on the GENIC dataset.
The same six quality measures were computed for these images

Quality measurement With QCM Without QCM

NFN 0.035 (0.008) 0.036 (0.008)

MAE 0.015 (0.004) 0.015 (0.004)

PSNR 29.33 (1.82) 29.04 (1.83)

SSIM 0.955 (0.012) 0.950 (0.014)

NCC 0.982 (0.008) 0.980 (0.008)

DSC 0.729 (0.022) 0.722 (0.025)

Note: The best value on each row is marked in bold.

Abbreviations: DSC, Dice score; MAE, mean absolute error; NCC,

normalized cross-correlation; NFN, normalized Frobenius norm; PSNR,

peak signal-to-noise ratio; QCM, quality control module; SSIM, structural

similarity index.

TABLE 4 RMSE of the age
estimation for the tested quality
measurements. Columns 1–4 show the
error of the linear model, while the last
one shows the RMSE of the fitted

regression lines of Figure 7

Quality measurement OASIS-3 ADNI GENIC Three datasets Regressions of Figure 7

NFN 2.78 1.67 2.80 2.13 2.02

MAE 2.94 1.84 2.69 2.28 2.18

PSNR 2.78 1.67 2.80 2.13 2.02

SSIM 2.93 1.80 2.88 2.26 2.14

NCC 2.80 1.67 2.83 2.13 2.02

DSC 3.00 1.92 2.73 2.35 2.27

MEAN 2.83 1.72 2.72 2.17 2.10

Note: Bold is the best and italic is the second best.

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; DSC, Dice score; MAE, mean absolute

error; NCC, normalized cross-correlation; NFN, normalized Frobenius norm; OASIS-3, Open Access

Series of Imaging Studies-3; PSNR, peak signal-to-noise ratio; RMSE, root mean square error; SSIM,

structural similarity index.
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other generative models from the literature because of different

experimental settings. Still, these values are competitive or superior to

those from previous studies (Emami et al., 2018; Gu et al. 2019; Lei

et al., 2019). For example, in these studies, PSNR was around

28 (we got 27.87), SSIM was around 0.85 (we got 0.936), and NCC

was around 0.93 (we got 0.982). We observed that NFN and MAE are

very small as well.

Regarding the DSC, Hoffmann et al. (2022) reported values

around 0.75, compared to the mean of 0.727 of our experiments.

DSC is commonly used for assessing the performance of image

segmentation methods. In such applications, DCS values of 0.70–

0.75 are not considered accurate. However, it is important to

consider that many brain structures are small, which usually has a

direct impact on the DSC. Considering that, Hoffmann et al. (2022)

used the 26 large brain structures for computing the DSC. We

decided to report DSC considering 113 structures in total, on

Table 5, to get a more comprehensive overview of the performance

estimated with DSC.

4.6 | Comparison with baselines

We compared our results on GENIC with two basic baselines:

(i) Baselinedeformation in which the longitudinal scans are synthesized

F IGURE 6 Box plots of the root mean square error (RMSE) of the age estimation for the tested quality measurements

F IGURE 7 Correlation plots between the estimated linear ages and the true ages of the ground truth images. The coefficient of
determination R2 is used to determine the performance of the fitting
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by linearly scaling the deformation field; (ii) Baselinevelocity in which the

longitudinal scans are synthesized by linearly scaling the velocity field.

Notice that these two strategies cannot guarantee diffeomorphism.

Table 6 shows the six image quality measurements of the proposed

method compared with the two baselines for the GENIC dataset. From

the results, we can observe that the improvements are relatively small

but using integration (our proposed method) we can achieve the best

results for all six criteria. The visual assessment shows that our method

gives better results (see Figures S2 and S3). As mentioned, the two

baselines cannot guarantee diffeomorphism. The errors are expected to

increase with age where anatomical changes in the brain are more visi-

ble than in the younger population.

4.7 | Qualitative quality assessment

Figure 9 shows an example subject of the generated aging images.

The comparison between real-aging MRI scans and synthetic aging

MRI scans shows the good quality of the synthetic images. Figure 10

shows the estimated aging progression of this subject, where the

aging MRI scans are shown in three directions (coronal, sagittal, and

axial), ranging from 51.7 to 63.7 years old. We report a magnified

region to show the aging progression in the sagittal direction. As

shown, the ventricles expand with increasing age. This can be seen as

an indication that the proposed method is consistent with what is

expected in the aging brain.

Although the synthetic images look realistic to untrained eyes, it

is necessary to perform validation with a neuroradiologist in order to

assess the quality of the generated images. This step is important

toward the use of synthetic data for answering clinical questions.

In order to accomplish this, we designed a discrimination task for

the neuroradiologist (A. T.), who has 16 years of experience with neu-

rological images. The discrimination task consisted of distinguishing

real images from synthetic ones. From the pool of mixed generated

and real images, 200 MRI scans were randomly selected. Because we

are interested in knowing if there was any bias in different datasets

and age difference between the oldest and youngest image of the

subject used to generate the image, we selected the 200 samples pro-

portionally for each subcategory. By dividing the age difference into

six ranges (i.e., 2 years per range), we got [0–2, 2–4, 4–6, 6–8, 8–10,

10+]. We included the generated MRI scans at time point s as the

generated one in the pool.

The neuroradiologist was completely blinded to the purpose and

design of the study, as well as to the demographic and clinical charac-

teristics of the study participants. The neuroradiologist used the 3D

TABLE 5 Quality measurements of the most similar generated
images compared to the ground truth images for different datasets
and criteria

Quality measurement OASIS-3 ADNI GENIC Average

NFN 0.056 0.040 0.035 0.044

MAE 0.029 0.020 0.016 0.022

PSNR 25.81 28.73 29.07 27.87

SSIM 0.917 0.946 0.945 0.936

NCC 0.981 0.985 0.981 0.982

DSC 0.715 0.749 0.718 0.727

Note: The best value on each row is marked in bold except for the average

column.

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; DSC,

Dice score; MAE, mean absolute error; NCC, normalized cross-correlation;

NFN, normalized Frobenius norm; OASIS-3, Open Access Series of

Imaging Studies-3; PSNR, peak signal-to-noise ratio; RMSE, root mean

square error; SSIM, structural similarity index.

F IGURE 8 Box plots of the quality measurements of the most similar generated images compared to the ground truth images for different
datasets and criteria
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slicer5 for classifying the 200 selected MRI scans as real or synthetic.

He completed the task in four consecutive days—1 h of assessment

per day. Before doing the task, the neuroradiologist was exposed to

three true MRI scans, one per dataset, in order to help the neuroradi-

ologist to build a template of a real image in this dataset. Motivated

by the experiments by Ravi et al. (2022), for each case, the expert was

asked to assign a confidence level from the given list:

• None: “I have no idea, I am guessing the class of this scan.”
• Low: “I have low confidence in my answer.”
• Medium: “I am reasonably confident in my answer.”
• High: “I am absolutely sure in my answer.”

Table 7 shows the confusion matrix of the assessment in which

the real class is marked as positive (P) and synthetic as negative (N).

As shown, highly skilled experts struggle to recognize the real and

synthetic images with an accuracy of 63.5%. Specifically, while even

the expert can reach an accuracy rate of 63.5%, the precision for

detecting real images (45.6%) is poor, suggesting our synthetic images

look realistic.

Figure 11 shows the distribution of confidence levels reported by

the neuroradiologist in the experiment. As we can see, the expert has

high confidence in only 13% of the cases. Moreover, the neuroradiol-

ogist has more uncertainty for synthetic images (i.e., none confidence

in synthetic was 11.9% compared to 3% for real images, p-

value = .042).

Table 8 shows the accuracy and F1-score of the neuroradiologist

in distinguishing between real and synthetic images. Moreover, we

independently report the F1-scores for the synthetic and real images

in Table 8. To evaluate if the algorithm shows differences among

TABLE 6 Comparison with baselines:
Quantitative comparison between the
most similar generated images and the
ground truth images for different
strategies for obtaining deformation
fields on the GENIC dataset.

Quality measurements OURSintegration Baselinedeformation Baselinevelocity

NFN 0.035 (0.004) 0.036 (0.005) 0.036 (0.005)

MAE 0.016 (0.003) 0.016 (0.003) 0.016 (0.003)

PSNR 29.07 (1.02) 28.97 (1.09) 28.97 (1.09)

SSIM 0.945 (0.013) 0.943 (0.016) 0.943 (0.016)

NCC 0.981 (0.004) 0.980 (0.005) 0.980 (0.005)

DSC 0.718 (0.002) 0.715 (0.002) 0.716 (0.002)

Note: The best value on each row is marked in bold.

Abbreviations: DSC, Dice score; MAE, mean absolute error; NCC, normalized cross-correlation; NFN,

normalized Frobenius norm; PSNR, peak signal-to-noise ratio; RMSE, root mean square error; SSIM,

structural similarity index.

F IGURE 9 Qualitative assessment of the quality of the synthetic magnetic resonance imaging (MRI) scans versus the real MRI scans. The first
row indicates the real MRI scans in the longitudinal dataset, and the second row shows synthetic aging MRI scans at different estimated ages. We
also show a magnified region at the bottom of the figure for each row respectively (color figure online). As the synthetic MRI scans are acquired
along with the same interval of 6 months, the last obtained brain age is 63.7 in this case, whereas the counterpart in real data is 64
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different datasets and confidence levels, we also calculate the metrics for

each subcategory. It is also worthwhile to analyze the age difference

between the youngest and oldest images from the subjects since in our

experiments we chose to generate N images for each subject based on

such age difference. According to Figure 3, there is a large age difference

between the three datasets, so we decided to divide the range of age dif-

ferences into six small intervals, each of which contains 2 years.

As expected, the neuroradiologist was able to distinguish better

the two classes when his confidence was high. Regarding confidence

levels between none to medium, the performance was better for syn-

thetic images for the same level of confidence, because the neuroradi-

ologist tends to be more synthetic-oriented as demonstrated by the

precision for detecting real images of only 45.6%. The accuracy was

similar for different datasets (62 ± 5%), whereas the F1-score on over-

all for GENIC is about 0.2 lower than the other two datasets. One

possible reason for this is that images from GENIC come from youn-

ger subjects that might have fewer visual distinctions due to age. This

can make the deformation fields to be small, which increases the

chances of synthetic ones being more similar to the real ones.

We conducted proportion hypothesis tests on the age differences in

accuracy and corrected the resulting p-values by multiple comparisons

(p < .05). Based on the results, we observed that there is no significant

difference among subgroups even over a period of 10 years, thus indicat-

ing the validity of QCM and robustness of the proposed method.

5 | DISCUSSION

We presented a method to efficiently generate 3D MRI scans of aging

brains with the aim of augmenting the current longitudinal datasets

with high-quality images. Our method is able to leverage DL-based

methods to generate synthetic images while avoiding the time-

F IGURE 10 The aging simulations were synthesized using our methodology for a healthy subject from age 51.7 to age 63.7. The three-
dimensional (3D) magnetic resonance imaging (MRI) scans are shown in three directions sagittal, coronal, and axial, respectively. A magnified
region is highlighted at the bottom of the figure for a better illustration (color figure online)

TABLE 7 Confusion matrix on the discrimination task performed
by the neuroradiologist

Neuroradiologist assessment

Real (P) Synthetic (N)

Real True positive = 41 False negative = 24

Synthetic False positive = 49 True negative = 86

F IGURE 11 The distribution of confidence levels
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consuming training process. The use of image registration also makes

the generated images plausible by construction. In addition, we pro-

pose a series of strategies to ensure that the model can provide pre-

dictions of age for the generated images.

5.1 | Image generation

The proposed method was evaluated on 2662 T1-w MRI scans from

796 participants collected in three different datasets. Although T1-w

MRI is the only modality used, the methodology is applicable to any

other modality. We synthesized 7548 high-quality images from the

three datasets, which corresponds to an increase of 284% in the num-

ber of images. Notice that the synthetic images were generated in the

range between the youngest and oldest image per subject. It is actu-

ally straightforward to generate more images by extrapolating the

images beyond the oldest one. In fact, we discarded approximately

one-third of the synthetic images because we first generated images

up to the integration point of three to estimate the stopping point s,

which was close to two, so images beyond s were discarded. The rea-

son for this decision is that we were focused on creating a dataset of

high-quality images that can be combined with existing datasets for

brain aging analysis. Although we think images beyond the stopping

point s are also of high quality, it is more difficult to assess that at this

point. Future works may expand our current method in that direction.

Notice that we decided to exclude AD patients or subjects with MCI

in this study. Indeed, it is straightforward to apply the method to these

subjects. However, the aging patterns of these patient groups coexist with

disease-related patterns, making the age estimation more difficult than in

cognitively healthy individuals. This means that a synthetic dataset of aging

in patients must consider this problem in order to make it useful for aging

studies. Thus, we decided to develop and demonstrate the goodness of

our method in healthy individuals, and future developments shall consider

applying the method to disease populations such as AD.

5.2 | QCM verification

Generally speaking, DL models always face a problem that the perfor-

mance of the model is limited to the distribution of training data.

When the distribution of the prediction data and the distribution of

the training are different, the performance of the model tends to drop.

This can be supported by FID scores in Table 2. The table also shows

that GENIC is slightly more homogeneous (see the diagonal values of

the table), which might have contributed to getting slightly lower vari-

ances seen in Figure 5 (plot with the title MEAN). From Figure 3, the

range of ages of GENIC is very different from those of both ADNI and

OASIS-3. Thus, a possible explanation for the difference in FID for

GENIC is that its range of ages is very different from the other two

datasets (see Figure 3). We tackled that problem by using quality mea-

surements to estimate the most similar generated image to the

acquired ones. As shown in Figure 5, the closest image was almost

always at a stopping point higher than one regardless of the used

quality measurement, while theoretically that should be 1.0. This way,

we managed to benefit from the speedup provided by DL-based regis-

tration methods while keeping image quality as high as possible.

We selected six different quality measurements for estimating

the stopping point s and to estimate the quality of the images. All cri-

teria gave consistent results as the closest synthetic image was always

growing with the age of the acquired image for all criteria (Figure 4).

The results also show that these measurements perform similarly

for age estimation, with NFN, PSNR, and NCC being slightly better

(cf. Table 4). Except for DSC, these measurements also show that the

generated images are of good quality (cf. Table 5). However, the

obtained DSC values are similar to the ones from previous studies,

especially Hoffmann et al. (2022). Moreover, the small size of some

regions of the brain can be biased in the estimation of DSC.

Although the focus of this paper is to generate T1-w images, the

method can be used for other modalities (e.g., T2w, FLAIR, etc.) without

any change. More interesting would be to generate images of one modal-

ity using images from another modality. For example, let us assume that

in the first session, T1-w and T2w images were acquired, but only a T1-w

was acquired in the second session. Then, the two T1-w images can be

used to generate the deformation fields that can be applied to the only

available T2w image. Another example would be if only a T1-w is avail-

able from the first session and only a T2w image is available for the sec-

ond. In this case, it is necessary to use quality measurements that can

deal with multimodality data, for example, DSC or mutual information.

5.3 | Qualitative assessment

From the experiments, the synthetic images are of high quality. The

assessment performed by the neuroradiologist (A.T.) shows that it is

TABLE 8 Comparison of the accuracy and F1-scores of the assessment performed by the neuroradiologist

Confidence levels Datasets Age differences

Criteria Overall None Low Medium High OASIS-3 ADNI GENIC 0–2 2–4 4–6 6–8 8–10 10+

Accuracy 0.64 0.56 0.66 0.58 0.73 0.67 0.62 0.57 0.46 0.67 0.66 0.74 0.50 0.71

F1-score (overall) 0.62 0.45 0.62 0.57 0.73 0.65 0.62 0.42 0.41 0.66 0.61 0.73 0.49 0.71

F1-score (real) 0.53 0.20 0.51 0.50 0.74 0.58 0.56 0.13 0.24 0.60 0.47 0.70 0.44 0.67

F1-score

(synthetic)

0.70 0.69 0.73 0.64 0.72 0.72 0.67 0.71 0.58 0.72 0.75 0.77 0.55 0.75

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; OASIS-3, Open Access Series of Imaging Studies-3.

FU ET AL. 1303



difficult to distinguish between synthetic images and real ones, espe-

cially when the neuroradiologist's confidence was not high. As

expected, the images generated between smaller age differences were

more difficult for the neuroradiologist, since the deformation fields in

those cases are very small as well as age-related brain changes like

small silent infarcts, enlarged perivascular spaces, cortical atrophy,

white matter changes, and microbleed were absent. An interesting

result was that the neuroradiologist tends to think that real images

from GENIC look synthetic. Something that we have to consider is

that the real images were preprocessed with Freesurfer (e.g., they are

bias-corrected and skull-stripped), which can make the visual assess-

ment of the neuroradiologist slightly different compared with every-

day clinical praxis in a neuroradiology department.

It is worth mentioning that in Ravi et al. (2022), the same discrimi-

nation task was introduced. They found that neuroradiologists can

achieve an accuracy of 68.0 ± 7.1% on the synthetic images gener-

ated by their method, while our method can achieve a 64% accuracy

on the generated images. Although these numbers cannot be directly

compared, this indicates that our performances might at least be com-

parable to the results in Ravi et al. (2022).

5.4 | Age estimation

Based on the literature, we assumed that the brain changes due to

age were linear. Such an assumption was supported by the regression

analysis of Figure 7. After correcting the age estimation with the fitted

lines, the age estimation was just slightly better (cf. Table 4 and

Figure 6). Notice that the research community has been very active in

estimating age from images (Lund et al., 2022; Sajedi &

Pardakhti, 2019). Notice that the current best-performing method in

the state-of-the-art for these methods has a MAE in the order of

2.13 years (Bintsi et al., 2020; Dartora et al., 2022), that is, not too dif-

ferent from our results. Thus, we expect similar results if we change

the linear model by a brain age estimation method. An advantage of

using the linear model is that we were able to assess the validity of

that model, as shown in Figure 7. Beyond the use of different metrics

(RMSE in our case and MAE in Bintsi et al., 2020), it is clear that it is

not possible to compare the performance of the used linear method

with the state-of-the-art of brain age estimation since the latter

methods use only one, while we use two images from the same sub-

ject (the youngest and oldest). It might be possible to extend brain age

estimation methods by having more than one image as an input. How-

ever, that is beyond the aim of the paper.

5.5 | Dependency on training data

An important feature of Synthmorph is that it was trained on brain

parcellations instead of raw images. This makes it less sensitive to the

different imaging characteristics of the different scanners and data-

sets compared to GAN- or VAE-based methods. Still, we found a con-

nection between the stopping point s and the dataset, as shown in

Figure 5. Our hypothesis is that rather than the imaging statistics of a

dataset, its demographical characteristics can influence s. The results

of Table 2 align with this hypothesis. Notice that adjusting the image

generation with the stopping point s removes the dependency of the

method with the dataset.

5.6 | Limitations

As stated, the current method aims to fill up the missing data and aug-

ment the current longitudinal cohorts with high-quality scans in 3D. In

order to avoid sources of uncertainty and to guarantee the quality of

the images, we limited the generation of images to intrasubject paired

inputs. Thus, we did not investigate other alternatives for generating

images. For example, although the generation of images from inter-

subject pairs is technically possible, it would be difficult to assess

whether the changes in the images are due to aging or to the morpho-

logical difference between subjects. Also, we only focused on healthy

subjects in order to avoid disease-related factors that can be con-

founded with normal aging. Moreover, the plausibility of images syn-

thesized beyond the oldest image (i.e., beyond the stopping point s)

has not been investigated and cannot be guaranteed. Besides, due to

practical obstacles such as focusing on 2D or the absence of code, the

comparison with previous brain image generation methods has not

been conducted. Instead, the source codes generated for this study

are provided to other researchers for comparison in the future.

One important limitation of the method is that it requires two

images, unlike generative approaches such as GANs and VAEs. Our

current research is focused on removing that restriction to generate

images from a single image. An additional limitation is that the imaging

statistics of the synthetic images are expected to be similar to the

ones used for performing the registration. However, this limitation

might be tackled by using domain adaptation methods.

Finally, the proposed method can suffer from identity leakage. It

has been shown that the cortical and subcortical surfaces can be used

to identify subjects (Wachinger et al., 2015). Thus, by using the pro-

posed method, it is potentially possible to find the subject used for

image generation from a synthetic image since the method relies on

diffeomorphic registration. Although this issue is not a problem for

public datasets, this privacy issue is something that should be consid-

ered if the proposed method is used to generate synthetic images

from private datasets.

5.7 | Future work

Beside tackling the mentioned limitations, we foresee many potential

applications and improvement directions for the proposed method.

First, as mentioned, the method can be used to synthesize high-

quality and high-resolution images from two images from different

modalities by only changing to a suitable similarity measurement. Sec-

ond, our method could be applied to estimate the progression of neu-

rodegenerative brain diseases, not just for normal aging. For example,
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with our methodology, we can synthesize subject-specific temporal

estimations of undergoing neurodegeneration, which can then be

compared with the healthy templates to provide cross-sectional com-

parisons that shall aid clinical diagnoses. Third, the augmented longitu-

dinal data as well as the corresponding segmentations can be used in

the training phase of ML-based segmentation or classification tasks,

or as a reliable reference to validate or interpret AI-enabled models.

6 | CONCLUSION

In this work, we proposed a methodology with the aim of simulating

subject-specific aging in brain MRIs given two 3D images acquired at

different time points. DL-based diffeomorphic registration was used

as a backbone to generate deformation fields at different integration

points. Quality measurements were used for controlling the age esti-

mation of the generated images by using a linear assumption. The

results show good performance from both quantitative and qualitative

perspectives regarding both the image quality of the synthetic MRI

scans and the estimation of age.
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