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ABSTRACT

Motivation: There are a number of well-established methods such as

principal component analysis (PCA) for automatically capturing sys-

tematic variation due to latent variables in large-scale genomic data.

PCA and related methods may directly provide a quantitative charac-

terization of a complex biological variable that is otherwise difficult to

precisely define or model. An unsolved problem in this context is how

to systematically identify the genomic variables that are drivers of

systematic variation captured by PCA. Principal components (PCs)

(and other estimates of systematic variation) are directly constructed

from the genomic variables themselves, making measures of statistical

significance artificially inflated when using conventional methods due

to over-fitting.

Results: We introduce a new approach called the jackstraw that

allows one to accurately identify genomic variables that are statistically

significantly associated with any subset or linear combination of PCs.

The proposed method can greatly simplify complex significance test-

ing problems encountered in genomics and can be used to identify the

genomic variables significantly associated with latent variables. Using

simulation, we demonstrate that our method attains accurate meas-

ures of statistical significance over a range of relevant scenarios. We

consider yeast cell-cycle gene expression data, and show that the

proposed method can be used to straightforwardly identify genes

that are cell-cycle regulated with an accurate measure of statistical

significance. We also analyze gene expression data from post-trauma

patients, allowing the gene expression data to provide a molecularly

driven phenotype. Using our method, we find a greater enrichment for

inflammatory-related gene sets compared to the original analysis that

uses a clinically defined, although likely imprecise, phenotype. The

proposed method provides a useful bridge between large-scale quan-

tifications of systematic variation and gene-level significance analyses.

Availability and implementation: An R software package, called

jackstraw, is available in CRAN.
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1 INTRODUCTION

Latent variable models play an important role in understanding

variation in genomic data (Leek and Storey, 2007; Price et al.,

2006). They are particularly useful for characterizing systematic

variation in genomic data whose variable representation is

unobserved or imprecisely known (Fig. 1). Principal component

analysis (PCA) has proven to be an especially informative

method for capturing quantitative signatures of latent variables
in genomic data, and it is in widespread use across a range of

applications. For example, PCA has been successfully applied to
uncover the systematic variation in gene expression (Alter et al.,

2000; Holter et al., 2000; Raychaudhuri et al., 2000), estimate

structure in population genetics (Price et al., 2006; Zhu et al.,
2002), and account for dependence in multiple hypothesis testing

(Leek and Storey, 2007, 2008). Generally, principal components
(PCs) can be thought of as estimates of unobserved manifest-

ation of latent variables; they are constructed by aggregating

variation across thousands or more genomic variables (Jolliffe,
2002). What is missing from this highly successful system is a

method to precisely identify which genomic variables are the
statistically significant drivers of the PCs in genomic data,

which in turn identifies the genomic variables associated with

the unobserved latent variables.
In a typical application of PCA to genomic data, all variables

will have non-zero loadings, meaning that they all make some

contribution to the construction of PCs. We refer to genomic

variables as the high-dimensional variables considered in a gen-
omics study such as genes, array probe sets, or genetic loci. In

some cases, when many (or most) of these contributions are for-
cibly set to zero, similar PCs nevertheless emerge. Methods have

been proposed to induce sparsity in the loadings, for example,

with a lasso penalized PCA or a Bayesian prior (Engelhardt and
Stephens, 2010; Jolliffe et al., 2003;Witten et al., 2009; Zou et al.,

2006). Methods have also been developed to consider uncertainty
in PCA expansions (Goldsmith et al., 2013). Various formula-

tions of statistical significance have been considered previously in

the context of PCA. These have usually been focused on scen-
arios where the number of observations is substantially larger

than the number of variables, significance is measured in terms
of a completely unstructured data matrix where all variables are

mutually independent, or the goal is to only determine the

number of significant PCs (Anderson, 1963; Buja and
Eyuboglu, 1992; Girshick, 1939; Johnstone, 2001; Linting

et al., 2011; Peres-Neto et al., 2003; Tracy and Widom, 1996;
Timmerman et al., 2010). The problem we consider here differs

from those scenarios.
Our goal is not a minimal representation of a PCA; we would

like instead to develop a strategy that accurately identifies which

genomic variables are truly associated with systematic variation
of interest. This can be phrased in statistical terminology as de-

veloping a significance test for associations between genomic*To whom correspondence should be addressed.
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variables and a given set, subset, or linear combination of PCs

estimated from genomic data. We introduce a new resampling

approach, which we call the jackstraw, to rigorously identify the

genomic variables associated with PCs of interest, as well as sub-

sets and rotations of PCs of interest. Our approach is capable of

obtaining the empirical null distribution of association statistics

(e.g. F-statistics) and applying these to the observed association

statistics between genomic features and PCs to obtain valid stat-

istical significance measures. Succinctly, new PCs are computed

from a dataset with a few independently permuted variables,

which become tractable ‘synthetic’ null variables. The association

statistics between newly computed PCs and synthetic null vari-

ables serve as empirical null statistics, accounting for the meas-

urement error and over-fitting of PCA.

As an application, we consider the problem of identifying

genes whose expression is cell-cycle regulated. In this case,

there are infinitely many theoretical curves that would represent

‘cell-cycle regulation’ to the point where a standard statistical

analysis involves an unwieldy ‘composite null hypothesis’

(Lehmann, 1997). We identify the few realized patterns of cell-

cycle regulated gene expression through PCA and we are able to

directly test whether each gene is associated with these using the

proposed approach. As another application, we analyzed obser-

vational gene expression profiles of blunt-force trauma patients

(Desai et al., 2011), whose post-trauma inflammatory responses

are difficult to be quantified using conventional means. When the

clinical phenotype of interest cannot be precisely measured and

modeled, we may estimate it directly from genomic data itself.

We identify genes driving systematic variation in gene expression

of post-trauma patients and demonstrate that our analysis is

biologically richer than the original analysis (Desai et al., 2011).

PCA has direct connections to independent component ana-

lysis (ICA; Hastie et al., 2011) and K-means clustering (Ding and

He, 2004; Zha et al., 2001). Therefore, the methods we propose

are likely applicable to those models as well. Furthermore, this

approach has potential generalizations to a much broader class

of clustering and latent variable methods that all seek to capture

systematic variation.

2 STATISTICAL MODEL AND APPROACH

Consider an m� n row-wise mean-centered expression data

matrix Y with m observed variables measured over n observa-

tions (m� n). Y may contain systematic variation across the

variables from an arbitrarily complex function of latent variables

z. We may calculate the expected influence of the latent variables

on Y by E½Yjz�, and then write Y=E½Yjz�+E, where E is defined

as Y� E½Yjz�. There exists a r� n matrix, called LðzÞ, that is a

row basis for E½Yjz�, where r � n (Leek and Storey, 2007, 2008).

This low-dimensional matrix LðzÞ can be thought of as the mani-

festation of the latent variables in the genomic data. As illu-

strated in Figure 1, this conditional factor model is common

for biomedical and genomic data (Leek, 2010). Since z is never

directly observed or used in the model, we will abbreviate LðzÞ as

L. This yields the model

Y=BL+E ð1Þ

where B is a m� r matrix of unknown parameters of interest.

The ith row of B, which we write as bi, quantifies the relationship

between the latent variable basis L and genomic variable yi. This

model (1) is schematized in Supplementary Material, Figure S1.
The PCs of Y may be calculated by taking the singular value

decomposition (SVD) of Y. This yields Y=UDVT where U is a

m� n orthonormal matrix, D is a n� n diagonal matrix and V is

a n� n orthonormal matrix. The diagonal elements inD are the n

singular values, which are in a decreasing order of magnitude.

The rows of VT are the right singular vectors, with corresponding

singular values in D. PCs are then the rows of DVT, where the ith

PC is found in the ith row of DVT. The columns of U are con-

sidered to be the loadings of their respective PCs.

Suppose that the row-space of L has dimension r. The top r

PCs may then be used to estimate the row basis for L (Jolliffe,

2002). Specifically, under a mild set of assumptions, it has been

shown that as m!1, the top r PCs of Y converge with prob-

ability 1 to a matrix whose row space is equivalent to that of L

(Leek, 2010). For our estimation purposes, we only need to con-

sider the VT matrix since this captures the row-space. We would

therefore estimate L by simply obtaining the top r right singular

vectors, which we denote by VT
r .

Let’s now consider a concrete example of z; L; VT
r , and the

ultimate inference goal. Spellman et al. (1998) carried out a gene

expression study to identify cell-cycle regulated genes of

Saccharomyces cerevisiae (Fig. 2). In this experiment, m=5981

genes’ expression values were originally measured over n=14

time points in a culture of yeast cells whose cell cycles had

been synchronized. (Note that an inspection of the 14 micro-

arrays from Spellman et al. (1998) reveals an aberrant gene ex-

pression profile from 300-min, so we removed this array in our

analysis—see Supplementary Figure S2.) Here, z is the latent

variable that represents the dynamic gene expression regulatory

program over the yeast cell cycle. L is the manifested influence of

Fig. 1. Illustration of systematic variation genomic data due to latent

variables. Complex biological variables, such as clinical subtypes and

cell-cycle regulation, may be difficult to define, measure, or model.

Instead, we can characterize the manifestation of latent variables, LðzÞ,

directly from high-dimensional genomic data using PCA and related

methods. The proposed method calculates the statistical significance of

associations between variables in Y and estimates of L, while accounting

for over-fitting due to the fact that L must be estimated from Y
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z on the observed scale of gene expression measurements

(Fig. 1). The ordered time points themselves do not capture the

underlying cell-cycle regulation, and it is, therefore, not clear

how to a priori accurately model L. If L were directly observed,

then we could identify which genes are cell-cycle regulated by

performing a significance test of H0 : bi=0 versus H1 : bi=0

for each gene i.

However, since L is not observed, we can instead perform the

analogous association test using VT
r . Figure 2(a) shows the first

two PCs of Y, where it can be seen that these capture systematic

variation that resembles cell-cycle regulation. (It should be noted

that the remaining PCs, three and higher, do not appear to

capture systematic variation of interest.) Since the row-spaces

of L and VT
r (r=2) are theoretically close (Leek, 2010), we

can instead use the model

Y=CVT
r +E

0

; ð2Þ

where C is a m� r matrix of unknown coefficients. We would

then perform a significance test of H0 : ci=0 versus H1 : ci 6¼ 0

for each gene i.
Note that if VT

r ! L in row-space as m!1, then these two

hypothesis tests would be asymptotically (in the number of vari-

ables) equivalent. However, for fixed m, they are not equivalent.

There are two main issues: (i) VT
r is a noisy estimate of L; (ii) VT

r

is itself a function of Y, so hypothesis testing on Y=CVT
r +E

0

results in an anti-conservative bias due to overfitting. Our pro-

posed method deals with problem (ii) by accounting for the over-

fitting that is intrinsic to performing hypothesis testing on model

(2). The numerical results in this article are carried out so that we

generate the data from model (1) and evaluate the accuracy of

the significance based on the truth from model (1). Therefore,

our thorough simulations provide evidence that the proposed

method accounts for both issues (i) and (ii).

3 PROPOSED ALGORITHMS

Wehave developed a resamplingmethod (Fig. 3) to obtain accurate

statistical significance measures of the associations between

observed variables and their PCs, accounting for the over-fitting

characteristics due to computation of PCs from the same set of

observed variables. The proposed algorithm replaces a small

number s (s� m) of observed variables with independently per-

muted ‘synthetic’ null variables, while preserving the overall system-

atic variation in the data. Note that the jackstraw disrupts the

systematic variation among the randomly chosen s rows by apply-

ing independently generated permutationmappings.We denote the

newmatrixwith the s synthetic null variables replacing their original

values asY�m�n. This is simply the original matrix Ywith the s rows

of Y replaced by independently permuted versions. On each per-

mutation dataset Y�, we calculate association statistics for each

synthetic null variable, exactly as was done on the original data.

We carry this outB times, effectively creatingB sets of permutation

statistics. The association statistics calculated on Y are then com-

pared to the association statistics calculated on only the s synthetic

null rows of Y� to obtain statistical significance measures.

Algorithm to Calculate Significance of Variables Associated with PCs

1. Obtain r PCs of interest, VT
r by applying SVD to the row-

wise mean-centered matrix Ym�n=UDVT.

2. Calculate m observed F-statistics F1; . . . ;Fm, testing H0

: ci=0 versus H1 : ci 6¼ 0 from model (2).

3. Randomly select and permute s rows of Ym�n, resulting in

Y�m�n.

4. Obtain V�Tr from SVD applied to Y�=U�D�V�T.

5. Calculate null F-statistics F0b
1 ; . . . ;F0b

s from the s synthetic

null rows of Y� as in step 2, where VT
r is replaced with

V�Tr .

6. Repeat steps 3–5 b=1; . . . ;B times to obtain a total s�B

of null F-statistics.

7. Compute the P value for variable i (i=1; . . . ;m) by:

pi=
# fF0b

j 	 Fi; j=1; . . . ; s; b=1; . . . ;Bg

s� B

8. Identify statistically significant tests based on the P values

p1; p2; . . . ; pm (e.g. using false discovery rates).

We call this approach the jackstraw for the following reason. By

permuting a relatively small amount of observed variables in the

original matrix, the underlying systematic variation due to latent

variables is preserved as a whole. This makes the PCs of Y�

almost identical to the PCs of the original data, Y, up to vari-

ation due to over-fitting of the noise. Replacing s variables with

null versions is reminiscent of the game of jackstraws where the

goal is to remove one stick at a time from a structured set of

sticks without disrupting the overall structure of the sticks. Since

the overall structure of Y is preserved in Y�, we know that the

level of associations between these synthetic null variables and

Fig. 2. Identification of yeast genes associated with the cell-cycle regula-

tion. (a) The top two PCs of gene expression measured over time in a

population of yeast whose cell cycles have been synchronized by elutri-

ation; these PCs appear to capture cell-cycle regulation patterns

(Spellman et al., 1998). The dashed lines are natural cubic smoothing

splines fit to each PC, respectively (with 5 degrees of freedom). (b) The

percent variance explained by PCs shows that the top two PCs capture

48% of the total variance in the data. (c) Hierarchical clustering of ex-

pression levels of genes significantly associated with the top two PCs at

FDR � 1%, where rows are genes and columns are time points.

Hierarchical clustering was applied to this subset of 2998 genes

547

Significance of variables driving systematic variation

cell 
.
utilize 
.
paper 
``
''
.
-
-
-
,


the top r PCs is purely due to the over-fitting nature of PCA.

From these synthetic null statistics, we can, therefore, capture

and adjust for the over-fitting among the original statistics.

A balance between the number of resampling iterations B and

the number of synthetic null variables s is relevant to the speed of

the algorithm and the accuracy of the resulting P values. In each

resampling iteration, s determines the number of estimated null

statistics, so to get the same resolution of a particular empirical

null distribution (s�B total null statistics), B must increase pro-

portionally with a decreasing s. Suppose we fix the total number

of null statistics s�B that are generated (e.g. s� B=10 000).

One extreme is to set s=1 and B=10 000, where the accuracy

of the P values is maximized while the algorithm is the least

efficient. However, setting s=100 and B=100 yields the same

number of null statistics; this configuration would lead to a sav-

ings in computational time while it may result in slightly more

conservative P values. The number of true null variables in Y� is

always greater than or equal to the number of true null variables

in the original matrix Y. Therefore, an increase of s in the pro-

posed algorithm may lead to a greater over-fitting into the noise

of Y� relative to the over-fitting in Y, resulting in conservative

estimates of significance. Due to this favorable trade-off between

s and B, the proposed algorithm is guarded against anti-conser-

vative bias.

The hypothesis test H0 : ci=0 versus H1 : ci 6¼ 0 applied to

model (2) may be generalized to performing the test on subspaces

spanned by the PCs, shown in Supplementary Material. This

generalization allows one to perform the association tests on a

subset of PCs, while adjusting for other PCs. It also allows for

one to consider rotations of VT
r and projections of VT

r onto rele-

vant subspaces. For example, it may be possible to rotate the PCs

to obtain ‘independent components’ from ICA (Hastie et al.,

2011) and then perform our algorithm on any desired subset of

the independent components. Note that when a subset of VT
r is

considered, the largest r eigenvalues corresponding to the top r

PCs must be sufficiently distinguished to ensure their stability

(Ng et al., 2001).

4 RESULTS

We evaluated the proposed method on simulated data so that

we could directly assess its accuracy, and we also applied the

method to two genomic datasets to demonstrate its utility in

practice.

4.1 Simulation studies

Through a set of simulation studies, we demonstrated that the

proposed method is able to accurately estimate the statistical

significance of associations between the latent variable basis L

and observed variables yi (where i=1 . . .m). The data in our

simulation studies were generated from model (1) Y=BL+E,

where variables yi corresponding to bi=0 are, by definition,

the ‘null variables’ not associated with L (Supplementary Fig.

S1). The accuracy of our approach is evaluated by performing

m hypothesis tests using the proposed algorithm (where only Y is

observed) and assessing whether the joint distribution of P values

corresponding to the null variables is correctly behaved.

4.1.1 The joint null criterion We used the ‘joint null criterion’ of

Leek and Storey (2011) to assess whether the set of P values

corresponding to the null variables follow the desired joint dis-

tribution (Supplementary Fig. S3). When testing a single hypoth-

esis, a valid procedure generates null P values that are distributed

uniformly between 0 and 1. For multiple hypothesis tests, the

goal is that the set of null P values produced by a method satis-

fies the joint null criterion, which means their joint distribution is

equivalent to a set of i.i.d. observations from the Uniform(0,1)

(Leek and Storey, 2011). Verifying that the proposed method

satisfies the joint null criterion not only demonstrates that the

method accounts for the over-fitting inherent in methods such as

PCA, but also verifies that our approach to calculating the P

value for each variable i is valid, which uses the set of s�B

synthetic null statistics that have been pooled across variables.

Leek and Storey (2011) prove that when the joint null criterion

holds, then a large body of multiple testing procedures (such as

the standard false discovery rate procedures) control their re-

spective error measure.

There are two ways in which we measured deviations from the

Uniform(0,1) joint null criterion. The first is via a two-sided

Kolmogorov–Smirnov test (KS test), which detects any devi-

ation; the second is a one-sided KS test, which detects anti-con-

servative deviations where the null P values are skewed towards

zero. Anti-conservative deviations will occur when a method

does not properly take into account the fact that the association

statistics are formed between the variables and PCs (which have

been built from the variables themselves), leading to over-fitting

and anti-conservative P values. Evaluation of the joint null cri-

terion works by simulating many datasets (corresponding to in-

dependently repeated studies) from a given data generating

process (Supplementary Fig. S3). The joint behavior of the null

P values is then evaluated among these.
We considered 16 simulation scenarios, described below. For a

given scenario, we simulated 500 independent studies and calcu-

lated 500 KS test P values, each of which is based on the set of

null P values from its respective study. In other words, for 500

simulation datasets per scenario, 500 KS test P values are calcu-

lated to measure deviations from the Uniform(0,1); a second

application of the KS test is then performed on these 500 KS

P values to assess whether any anti-conservative deviation from

the Uniform(0,1) among these studies has occurred

Fig. 3. A schematic of the general steps of the proposed algorithm to

calculate the statistical significance of associations between variables

(rows in Y) and their top r PCs (VT
r ). By independently permuting a

small number (s) of variables and recalculating the PCs, we generate

tractable “synthetic” null variables while preserving the overall systematic

variation. Association statistics between the s synthetic null variables in

Y� and V�Tr form the empirical null distribution, automatically taking

account over-fitting intrinsic to testing for associations between a set of

observed variables and their PCs
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(Supplementary Fig. S3). If the statistical method being evalu-

ated provides accurate measures of statistical significance, the

collection of double KS test P values must be distributed

Uniform(0,1). This guards against any single simulated dataset

leading one to an incorrect conclusion by chance. This technique

is the ‘double KS test’ introduced by Leek and Storey (2011).
Overall, we demonstrate that our proposed method provides

accurate measures of statistical significance of the associations

between variables and the latent variables, when the latent vari-

ables themselves are directly estimated from the data via PCA.

At the same time, we show that the conventional method does

not provide accurate statistical significance measures.

4.1.2 Simulation scenarios and results We constructed 16 simu-
lation scenarios representing a wide range of configurations of

signal and noise (Fig. 4), with 500 independent studies simulated

from each. Let us first consider one of the simpler scenarios in

detail. Model (1) is used to generate the data. In this particular

scenario, we have m=1000, n=20, r=1 and

L=
ffiffiffiffiffi
n�1
n

p
ð1;1;1;1;1;1;1;1;1;1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1Þ;

a dichotomous mean shift resembling differential expression be-

tween the first 10 observations and the second 10 observations.

(The factor
ffiffiffiffiffiffi
n�1
n

q
is to give L unit variance.) For 95% of the

variables, we set bi=0, implying they are null variables; we par-

ameterize this proportion by �0=0:95. The other 50 non-null

variables were simulated such that bi

i:i:d

Uniform(0,1).

The noise terms are simulated as eij

i:i:d

Normal(0,1). The data

for variable i are thus simulated according to yi=biL+ei.
For a given simulated dataset, we tested for the associations

between the observed variables and the latent variables by

forming association statistics between the observed y1; y2; . . . ;
ym and their collective PC, VT

r (r=1). We calculated P values

using both the conventional F test and the proposed method with

s=50 synthetic null variables (Fig. 5). Over 500 simulated

datasets, the conventional F test resulted in 500 one-sided KS

P values that exhibit a strong anti-conservative bias with a

double KS P value of =9:71� 10�196 (Supplementary Fig. S4,

black points). Conversely, the proposed method correctly calcu-

lates null P values, by accounting for the over-fitted measure-

ment error in PCA, with a double KS P value of 0.502

(Supplementary Fig. S4, orange points). Alternatively, a com-

parison of estimated versus true FDR demonstrates an appro-

priate adjustment for over-fitting in the jackstraw method

(Supplementary Fig. S5). Note that the classification of null P

values is based on the true association status from the popula-

tion-level data generating distribution from model (1), not based

on model (2) or on the observed loadings from the PCA.
We carried out analogous analyses on 15 more simulation

scenarios, detailed in Fig. 4. We used all possible combinations

of the following: (1) either dichotomous or sinusoidal functions

for L; (2) the parameters B were simulated from either a

Bernoulli or Uniform distribution; (3) m=1000 or m=5000

variables; and (4) the proportion of true null variables set to

either �0=0:75 or �0=0:95. The proposed method was applied

with s=0:05m; 0:10m, and 0:25m to study the impact of the

choice of the number of synthetic null variables. For each scen-

ario, we applied the joint null criterion double KS evaluation

(Supplementary Fig. S3), using 500 simulated data sets. The con-

ventional F test method consistently produced anti-conservative

null P values, while the proposed method yielded accurately dis-

tributed null P values (Fig. 6).
In these simulations, we found that the proposed method

tended to produce more conservative null P values as s increased

(Fig. 6). The explanation for this is that inclusion of a larger

number of synthetic null variables leads to a greater over-fitting

of PCA to the noise, which in turn yields a conservative empirical

null distribution formed by the synthetic null statistics. We,

therefore, identified a trade-off between computational speed

and how conservative the calculated P values are in the choice

of s. We note, however, that the null P values were never

observed to be prohibitively conservative in that the power

became unreasonably diminished. In practice, the user has the

Fig. 4. Sixteen simulation scenarios generated by combining four design

factors. To assess the statistical accuracy of the conventional F-test and

the proposed method, we simulated 500 independent studies for each

scenario, and assessed statistical accuracy according to the “joint null

criterion” (Leek and Storey, 2011). For the bi 2 f�1; 1g scenarios, non-
null coefficients were set to either -1 or 1 with a probability of 0.5. For a

given simulation study, a valid statistical testing procedure must yield a

set of null P values that are jointly distributed Uniform(0,1). We use a KS

test to identify deviations from the Uniform(0,1) distribution.

Supplementary Material, Figure S3 provides a detailed overview of the

evaluation pipeline

Fig. 5. Evaluation of significance measures of associations between vari-

ables and their PCs by comparing true null P values and the Uniform(0,1)

distribution. (a) The conventional F-test results in anti-conservative P

values, as demonstrated by null P values being skewed towards 0. (b)

The proposed method produces null P values distributed Uniform(0,1).

The dashed line shows the Uniform(0,1) density function
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option to lower the value of s to minimize this, at the cost of

greater computation.
We note that we also investigated a delete-s version of the

jackstraw, which draws on ideas from our proposed method,

which one could call the permute-s jackstraw. However, this im-

plementation did not produce valid null P values (Supplementary

Material).

4.1.3 Testing for associations on subsets of PCs We have gen-

eralized the proposed method to be able to test for associations

on any subset of the top r PCs, while adjusting for the remaining

PCs among the top r. Here, we demonstrate that the proposed

method can identify variables driving a chosen subset of PCs of

interest, VT
r1
, while adjusting for the remaining of the top r PCs

which are not of interest, VT
r0
, where r0+r1=r. Based on model

(1), we simulated data with m=1000, n=20, r=2 and

L1=
ffiffiffiffiffi
n�1
n

p
ð1;1;1;1;1;1;1;1;1;1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1Þ;

L2=
ffiffiffiffiffi
n�1
n

p
ð1;1;1;1;1;�1;�1;�1;�1;�1;1;1;1;1;1;�1;�1;�1;�1;�1Þ:

L1 and L2 are truly associated with 100 variables and 60 vari-

ables, respectively. Among these, 40 variables that are truly asso-

ciated with both L1 and L2. We generated the noise term as eij

i:i:d

Normal(0,1). We set r=2 and tested for associations with the

first PC while adjusting for the second PC. Note that the first PC

effectively captured the signal from the first latent variable. In

this case, the null variables were defined to be 900 variables

associated with either only the second latent variable or no

latent variable. The conventional F test resulted in an anti-

conservative bias among the null P values, with a double KS

test P value of 8:73� 10�20, while the proposed method

produced a correct joint null P value distribution with a

double KS test P value of 0.352 (Supplementary Fig. S6).
We performed a similar simulation with r=5 true underlying

latent variables and also studied the result of setting r to be too

small or too large in model (2). For m=1000 variables and

n=20 observations (�0=0:75), we simulated r=5 latent vari-

ables simulated from one of each of the following distributions: a

randomized dichotomous variable, Normal(0,1), Uniform(0,1),

Bin(2, 0.5), and Normal(0,0.25). We applied the jackstraw algo-

rithm with s=0:1m and the conventional F test to the simulated

data with r̂=1; 3; 5; 7; 9 used in model (2). To detect an anti-con-

servative bias, we applied a one-sided KS-test on P values corres-

ponding to the true null variables as done above. Since there exist

in truth r=5 latent variables, the results with r̂=1; 3 and r̂=7; 9
demonstrate the operating characteristics when the number of

PCs is under- or over-specified, respectively. We found that the

jackstrawmethod resulted in valid nullP values while the conven-

tional test did not (Supplementary Fig. S7).

4.2 Application to gene expression studies

Typically, genomic variables are tested for the associations with

external variables, which are measured independently of genomic

profiling technology, such as disease status, treatment labels, or

time points. However, external variables may be imprecise or

inaccurate due to poor understanding of the biology or techno-

logical limitations; sometimes the external variables of interest

may not be capable of being measured at all. For example, in a

cancer gene expression study, the cancer types may be based on

histological classification of the tumor cells. Then, association

tests, such as F tests, are conducted between the histological

classification and transcriptional levels to discover genes of inter-

est. However, the histological classification of cancer tumors may

not distinguish important cancer subtypes (Alizadeh et al., 2000;

DeRisi et al., 1996). This lack of information may lead to a

spurious signal or reduced power in statistical inference.

When the external variables are unmeasured or imprecise, we

are interested in using the latent variable basis, L, to discover

genes of interest (Fig. 1). Because L is never directly measured,

we must estimate it from the genomic data, using PCA and

related methods. We apply our proposed method to two genomic

datasets to demonstrate its utility in practice.

4.2.1 Cell-cycle regulated gene expression in S. cerevisiae It is
known that in S. cerevisiae there is an abundance of genes whose

transcription is regulated with respect to the cell cycle (Cho et al.,

1998; Spellman et al., 1998). Nonetheless, comprehensive identi-

fication of the yeast genes whose expression is regulated by the

cell cycle is still an active area of research, since it is unclear how

the yeast cell-cycle regulation should be quantified and modeled

(Pramila et al., 2006; Rowicka et al., 2007; Tu et al., 2005; Wu

and Li, 2008). The experimental time points after cell population

synchronization are readily measured, but this external variable

does not directly represent periodic transcriptional regulation

with respect to the cell cycle.
Suppose that we want to carry out a hypothesis test on each

gene of whether it shows regulation associated with a periodic

pattern over the cell cycle. The null hypothesis is then that popu-

lation mean is not periodic over the cell cycle. This null

Fig. 6. QQ-plots of double KS test P values from 16 simulation scenarios

versus the Uniform(0,1) distribution. For each of 500 independent studies

per scenario, we tested for deviation of null P values from Uniform(0,1),

resulting in 500 KS test P values for each scenario. An individual point in

the QQ-plot represents a double KS test P value for one scenario, com-

paring its 500 KS test P values to Uniform(0,1). On the left panel, the

systematic downward displacement of 16 black points indicates an anti-

conservative bias of the conventional F-test. In contrast, the proposed

method produces null P values that are not anti-conservative. On the

right panel, a set of 16 points are below the diagonal red line if the

joint null distribution deviates from the Uniform(0,1) distribution. The

proposed method adjusts for over-fitting of PCA and produces accurate

estimates of association significance
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hypothesis contains an infinite number of mean time-course tra-
jectories that are non-periodic, making the null hypothesis com-
posite. A composite null hypothesis such as this one is largely

intractable because it contains an unwieldy class of potential
probability distributions describing gene expression. Indeed, a
survey of the literature reveals that this composite null hypoth-

esis is the major challenge when a traditional hypothesis testing
approach is taken. However, using our approach, we can reduce
the complexity of this problem by directly estimating the mani-

fested systematic periodic expression variation and applying the
proposed method to identify genes associated with this system-
atic variation due to the latent variables, L.

Spellman et al. (1998) measured transcriptional levels of
m=5981 yeast genes, every 30 min for 390 min after synchro-
nizing the cell cycle among a population of cells by elutriation.

The top two PCs capture the manifestation of cell-cycle regula-
tion on gene expression (Alter et al., 2000), explaining 48% of
total variance (Fig. 2a, b). By testing for associations between

time-course gene expression and the top two PCs, we avoid this
challenging problem and consider instead the tractable associ-
ation significance testing problem with a simple null hypothesis

H0 : ci=0 versus H1 : ci 6¼ 0 (as opposed to a composite null).
The hypothesis test is now simply whether gene i is associated
with r̂=2 latent variables estimated by the top two PCs.

We applied the proposed method (with s=100 and
B=2�m) to test this hypothesis and identified a large number
of genes associated with yeast cell-cycle regulation. (We did not

use functional PCA (Ramsay and Silverman, 2005; Yao et al.,
2005) to smooth the PCs with respect to time, although the jack-
straw method is amendable to do so.) We discovered that ap-

proximately 84% of the 5981 measured genes are associated with
the top two PCs (�̂0=0:16). At FDR � 1%, 2998 genes were
found to be statistically significant. Hierarchical clustering

applied to these 2998 genes reveals the cell-cycle patterns cap-
tured by the top two PCs (Fig. 2c). The generalized proposed
method allows us to compute statistical significance measures of

associations with a subset of PCs. When testing for associations
with the first PC while adjusting for the second PC, 1666 genes
were called statistically significant at FDR � 1%, with the esti-

mated proportion of null variables �̂0=34:4%. On the other
hand, at the same FDR threshold, we found 984 genes were
significantly associated with the second PC with �̂0=39:6%.

We applied the conventional test to the top two PCs in this
data set and investigated its degree of over-fitting (yielding arti-
ficially small P values) as a function of the number of variables.

This was accomplished by randomly sampling a subset of vari-
ables, applying each method to this subset of data, and then
comparing the P value distributions of the jackstraw and con-

ventional tests. It can be observed that smaller numbers of vari-
ables yield larger differences in the P value distributions, where
the conventional test P values tend to be artificially small

(Supplementary Fig. S8).
To explore the impact of the choice of r on the proposed

method, we conducted the jackstraw analysis setting r̂=1 and r̂

=3 in model (2) (Supplementary Fig. S10). Notably, we found
that setting r̂=3 yielded similar results to setting r̂=2, similarly
to what we observed in the simulation study (Supplementary Fig.

S7). Setting r̂=1 resulted in lower levels of statistical significance,
and there was no obvious evidence of adverse effects from the

fact that ignoring the 2nd PC induces dependence in the residuals

of the model used with r̂=1 (Leek and Storey, 2007, 2008).
It was demonstrated in the simulation studies that the pro-

posed method produces valid null P values that satisfy the

joint null criterion. To complement this analysis, we sought to

verify on the real data set that applying the proposed algorithm

with s=100 and B=10 produces P values that are similar to

the most exhaustive method that makes the fewest assumptions.

Specifically, we applied the proposed algorithm with s=1 and

B=1000 where in calculating the P value for variable i, synthetic

null statistics were constructed only on variable i. [The exhaustive

method calculates within-gene P values, whereas the proposed

method calculates P values from null statistics pooled across

genes; see Leek and Storey (2011) for more on this distinction.]

This required B=1000 iterations of the algorithm for each of

the m=5981 genes, for a total of 5 981 000 SVD calculations

and synthetic null statistics. Then, we calculated pi=#f

F0b
i 	 Fi; b=1; . . . ; 1000g=1000 for each gene i=1; . . . ; 5981.

This set-up gives an equivalent resolution to our proposed

method with s=100 and B=10 because each P value is also

based on 1000 synthetic null statistics. However, for the exhaust-

ive method, the number of null statistic calculations is 5981-fold

higher and the number of SVD calculations is 598 100-fold

higher. We plotted the P values for each set-up against one an-

other, where it can be seen in Supplementary Fig. S9 that the set

of 5981 P values is very similar between the proposed method

and the exhaustive method.

4.2.2 Inflammation associated gene expression in post-trauma

patients Large-scale clinical genomic studies often lead to
unique analytical challenges, including dealing with a large

number of clinical variables, unclear clinical endpoints or disease

labels, and expression heterogeneity (Leek and Storey, 2007).

The ‘Inflammation and the Host Response to Injury’ (IHRI)

consortium carried out a longitudinal clinical genomics study

on blunt force trauma patients. They collected 393 clinical vari-

ables (some longitudinal) and time-course gene expression (total

of 797 microarrays) on 168 post-trauma patients (Desai et al.,

2011). One of the main goals in this study was to elucidate how

inflammatory responses after blunt force trauma are manifested

on gene expression. To aggregate relevant clinical variables into a

manageable daily score, the IHRI consortium used a modified

version of the Marshall score to rate the severity of multiple

organ dysfunction syndrome (Marshall et al., 1995).
Based on the modified Marshall score trajectories, Desai et al.

(2011) clustered post-trauma patients into five groups, called

‘ordered categorical Multiple Organ Failure’ (ocMOF) labels.

The time-course gene expression profiles of each patient were

summarized by ‘within patient expression changes’ (WPEC;

Desai et al., 2011). Then, they tested for correlations between

the WPEC genomic variables and the ocMOF score to discover

genes associated with inflammatory responses of post-trauma

patients. However, the use of the potentially noisy ocMOF clin-

ical variable may impose limitations, as patients with similar

Marshall scores may exhibit a wide range of clinical outcomes

(Cobb et al., 2005). Furthermore, five discrete values for the

ocMOF scores potentially limits the resolution of the clinical

variable.
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To investigate this further, we used our proposed approach

where the gene expression itself was used to construct clinical

phenotypes on the patients. We directly used the WPEC data

to characterize the molecular signature of inflammatory re-

sponses to blunt force trauma. We estimated the manifestation

of post-trauma inflammatory responses on gene expression, L,

with the top nine PCs (Supplementary Fig. S11). Then, we

applied the proposed method to identify the genomic variables

in WPEC associated with the top nine PCs. The original analysis

in Desai et al. (2011) estimated 24% of the 54 675 genomic vari-

ables (probe sets) to be associated with the ocMOF score. In

contrast, our analysis revealed a much larger proportions of

the genomic variables to be significantly associated with the

major sources of variation, ranging from 62% for first PC to

39% for ninth PC.
The genes identified in the original analysis (Desai et al., 2011)

were largely identified in our analysis, although our analysis

provided many more significant genes. To compare the biolo-

gical relevance of our re-analysis versus the original analysis, we

tested for enrichment of 17 inflammation-related gene sets (Loza

et al., 2007), using one-sided Mann–Whitney–Wilcoxon tests

with permutation-based significance. At the FDR � 1%, none

of the inflammatory-related gene sets is enriched for the original

analysis using the ocMOF scores (Desai et al., 2011). In contrast,

a large number of inflammation-related gene sets are significantly

enriched when the genomic variables are tested for the associ-

ations with the top nine PCs individually (Table 1). MAPK sig-

naling is enriched for every PC, except fifth PC, whereas Innate

Pathogen Detection is enriched for first, fourth, sixth, and ninth

PCs, at the FDR � 1%. Those two biological pathways were

emphasized in the original analysis (Desai et al., 2011) as indicat-

ing down-regulation of innate pathogen detection and up-regu-

lation of MAPK signaling pathway, and they were seen as strong

predictors of long-term complications from brute force trauma.

Based on enrichment tests, the proposed method appears to

provide a biologically richer source of information than the ana-

lysis based on the ocMOF scores.
As with the previous study, we applied the conventional test in

comparison to the jackstraw method as a function of number of

variables, and we observed the same phenomenon where the
conventional method clearly overfits as a function of the

number of variables (Supplementary Fig. S8).

5 DISCUSSION

We have developed a method to accurately carry out statistical

significance tests of associations between high-dimensional vari-

ables and latent variables, which have been estimated through

systematic variation present in the observed high-dimensional
variables themselves. Our approach is to maintain the overall

systematic variation in the high-dimensional dataset, while repla-

cing a small number of observed variables with independently

permuted synthetic null variables. These synthetic null variables

allow us to estimate the null distribution of the association stat-

istics calculated on the original data that takes into account the

inherent over-fitting that occurs when estimating latent variables
through methods such as PCA. We call this approach the jack-

straw because it draws on the idea of the game of jackstraws,

where a player must remove a stick (i.e. a variable) from a pile of

tangled sticks without disturbing the overall structure. Through

extensive simulations, we demonstrated that the proposed

method is capable of accounting for over-fitting and producing
accurate statistical significance measures. We also demonstrated

that applying conventional association testing methods to this

problem artificially inflates the statistical significance of

associations.
An input required for the proposed method is the number of

PCs, r, that capture systematic variation from latent variables.

Determining the number of ‘statistically significant’ PCs is an

active area of research, and defining a number of significant

Table 1. Q values from gene enrichment analysis using inflammation-related gene sets

Gene set 1st PC 2nd PC 3th PC 4th PC 5th PC 6th PC 7th PC 8th PC 9th PC ocMOF

Adhesion–extravasation–migration 0.004 0.034 0.053 0.002 0.144 0.024 0.036 0.003 0.024 0.016

Apoptosis signaling 0.004 0.018 0.013 0.004 0.036 0.003 0.116 0.006 0.070 0.014

Calcium signaling 0.021 0.005 0.087 0.100 0.078 0.120 0.046 0.004 0.146 0.078

Complement cascase 0.116 0.163 0.068 0.012 0.157 0.013 0.167 0.120 0.098 0.196

Cytokine signaling 0.024 0.100 0.033 0.007 0.140 0.003 0.040 0.004 0.066 0.036

Eicosanoid signaling 0.020 0.031 0.042 0.007 0.163 0.078 0.116 0.122 0.117 0.013

Glucocorticoid/PPAR signaling 0.100 0.034 0.040 0.027 0.182 0.039 0.041 0.005 0.157 0.099

G-protein coupled receptor signaling 0.133 0.020 0.179 0.046 0.034 0.156 0.026 0.122 0.123 0.039

Innate pathogen detection 0.004 0.077 0.018 0.001 0.087 0.005 0.011 0.011 0.007 0.039

Leukocyte signaling 0.003 0.010 0.001 0.002 0.044 0.001 0.124 0.005 0.014 0.123

MAPK signaling 0.001 0.002 0.007 0.002 0.023 0.002 0.004 0.001 0.002 0.036

Natural killer cell signaling 0.106 0.114 0.015 0.024 0.060 0.039 0.139 0.004 0.036 0.167

NF-kB signaling 0.007 0.020 0.007 0.017 0.120 0.003 0.073 0.025 0.001 0.195

Phagocytosis-Ag presentation 0.025 0.064 0.010 0.011 0.098 0.020 0.013 0.008 0.040 0.205

PI3K/AKT signaling 0.005 0.001 0.071 0.059 0.163 0.011 0.006 0.024 0.029 0.078

ROS/glutathione/cytotoxic granules 0.016 0.007 0.019 0.018 0.158 0.007 0.116 0.058 0.150 0.027

TNF superfamily signaling 0.023 0.064 0.070 0.034 0.171 0.007 0.159 0.007 0.078 0.194

Note Darkened cells indicate q value � 0:01 for a gene set enrichment test.
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PCs depends on the data structure and the context (Anderson,
1963; Buja and Eyuboglu, 1992; Johnstone, 2001; Leek, 2010;
Tracy and Widom, 1996). Note that setting r to be too small

leads to dependence in the residuals of model (2). This leads to
the problems of dependence discussed in Leek and Storey (2007,
2008). Subsets of PCs can be considered while conditioning on

other PCs in the jackstraw framework (SupplementaryMaterial),
so it is possible to avoid setting r to be too small. For example, if
one would like to identify variables associated with the top three

PCs, but is unsure whether the given data has three or four sig-
nificant PCs, we have found it more robust to input r̂=4, which
will adjust for potential systematic residual variation captured by

the fourth PC.
We demonstrated our approach using PCA. It is well known

that individual PCs may not be directly interpretable or may

contain multiple signals of interest that the user wishes to distin-
guish. The jackstraw method allows one to pinpoint a set of
genomic variables associated with any given PC, a subset of

PCs, a linear combination of two or more PCs, the projection
of a subset of PCs onto an external variable, rotations of subsets
of PCs, and low-dimensional latent variable estimates from other

methods (see Supplementary Material). Therefore, this approach
can be used to investigate and identify biological signals that may
manifest in a particular subspace spanned by the estimated latent

variables. We do not advocate blindly applying our method to
the top r PCs without considering these issues.
Since the proposed method allows one to rigorously identify

subsets of genomic variables associated with PCs, it allows one to
also investigate whether these subsets have any biological coher-
ence. This may be useful in investigating whether a space spanned

by a subset of PCs captures relevant biological signal or is merely
reflecting technical artifacts (e.g. batch effects in gene expression
data). The method also improves the surrogate variable analysis

algorithm of Leek and Storey (2007, 2008) in that it allows a more
precise determination of the control variables that are used to
estimate the surrogate variables. Thus, we have found the jack-

straw to also be useful in the context of dealing with latent vari-
ables that reflect technical effects of no biological relevance.
The proposed method represents a novel resampling approach

operating on variables, whereas established resampling
approaches, such as the jackknife and the bootstrap, tend to
operate on observations (Efron, 1979; Quenouille, 1949; Tukey,

1958). When applying these methods, systematic variation due to
latent variables is intentionally perturbed, since their purpose is
typically to assess the sampling variation of a single variable. In

high-dimensional data, we may need to preserve systematic vari-
ation due to latent variables, which is the problem that the jack-
straw addresses.

By accurately testing for associations between observed high-
dimensional variables and the systematic manifestation of latent
variables in the observed variables, our proposed method allows

for the automatic discovery of complex sources of variation and
the genomic variables that drive them. The proposed method
extends PCA and related methods beyond their popular applica-

tions in exploring, visualizing and characterizing the systematic
variation to genomic variable level (e.g. gene-level) significance
analyses. Given the increasingly important role that non-

parametric estimation of systematic variation plays in the ana-
lysis of genomic data (Alter et al., 2000; Leek and Storey, 2007;

Price et al., 2006), the proposed method may be useful in many

areas of quantitative biology using high-throughput technologies

as well as other areas of high-dimensional data analysis.
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