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Antibodies are known to be essential in controlling Salmonella infection, but

their exact role remains elusive. We recently developed an in vitro model to

investigate the relative efficiency of four different human immunoglobulin G

(IgG) subclasses in modulating the interaction of the bacteria with human

phagocytes. Our results indicated that different IgG subclasses affect the

efficacy of Salmonella uptake by human phagocytes. In this study, we aim

to quantify the effects of IgG on intracellular dynamics of infection by

combining distributions of bacterial numbers per phagocyte observed

by fluorescence microscopy with a mathematical model that simulates the

in vitro dynamics. We then use maximum likelihood to estimate the model

parameters and compare them across IgG subclasses. The analysis reveals

heterogeneity in the division rates of the bacteria, strongly suggesting that

a subpopulation of intracellular Salmonella, while visible under the micro-

scope, is not dividing. Clear differences in the observed distributions

among the four IgG subclasses are best explained by variations in phago-

cytosis and intracellular dynamics. We propose and compare potential

factors affecting the replication and death of bacteria within phagocytes,

and we discuss these results in the light of recent findings on dormancy

of Salmonella.
1. Introduction
Over the last 15 years, the use of mathematical models to complement tra-

ditional statistical analyses of experimental data in microbiology has

generated new insights on the population dynamics of pathogens inside their

hosts [1–4]. An overarching goal of many of these studies is to estimate the rela-

tive roles of resource limitation and immune responses in controlling the

growth and spread of an infection. While this question has traditionally been

considered at the level of the whole host, modern observation techniques

have started to unravel variations in pathogen growth within individual

infected cells. In particular, there is mounting evidence that antibodies present

in the serum can directly affect the intracellular dynamics of bacteria, such as

Listeria monocytogenes [5], Legionella pneumophila [6] or Salmonella enterica [7].

All these studies measured net changes in pathogen numbers. In order to

make inferences on the concurrent processes underlying these changes (e.g.

replication, death or migration of pathogens), mathematical models need to

be developed alongside experimental observations, and fitted to the data

using appropriate statistical tools. This approach typically provides two quan-

titative outcomes: a ranking of alternative mechanistic scenarios (based on the

relative goodness of fit of the corresponding alternative models), and numerical

estimates of the parameters of the models. An important caveat is that
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predictions from such models cannot provide definitive proof

for the existence of any unobserved mechanism, but they can

guide further experimental investigation in a more focused

and efficient way.

Salmonella enterica serovar Typhimurium (S. Typhimur-

ium), although widely used as a laboratory model for the

study of typhoid-like infection in mice, is also an important

human pathogen. A major source of food poisoning around

the world, S. Typhimurium also causes bacteraemia in

immuno-compromised patients, such as malaria and AIDS

patients and in African children under 2 years of age [8,9].

Salmonella enterica is a facultative intracellular pathogen; a

key virulence determinant of the bacteria is the ability to

grow and persist within phagocytes [10,11]. Despite its intra-

cellular niche, S. enterica spreads rapidly from phagocyte to

phagocyte within the liver and spleen during the acute

phase of infection [12]. This finding was made possible by

the development of novel methods, combining fluorescence

microscopy which allows the counting of bacteria within

individual macrophages, and mechanistic mathematical

models which allow inferences to be drawn from unobserved

processes. Further knowledge of the intimate interactions

between S. Typhimurium and individual macrophages can

be gained by fitting models to data obtained from tailor-

made in vitro experiments. In a recent study, Gog et al. [13]

combined several observation and inference techniques to

quantify various factors affecting phagocytosis rates within

murine macrophage cultures.

Antibodies have long been known to play an important

role in mediating protective immunity against infection

by S. enterica [14,15], but the actual mechanisms at the cellu-

lar level are only beginning to emerge. Opsonization (the

process of antibodies present in serum binding to antigens)

of S. enterica with immune serum has been shown to

increase not only uptake by macrophages, but also intracellu-

lar bactericidal activity, both with serovar Typhi using

human serum [16] and with serovar Typhimurium using

murine serum [7]. Although the concentrations of immuno-

globulins (Ig) G and M in human serum have been shown

to correlate positively with oxidative burst against invasive

strains of S. Typhimurium [17], the specific roles of the differ-

ent immunoglobulins involved remain unclear [16]. We set

out to investigate the role of IgG in mediating the interaction

between S. Typhimurium and human macrophages, with the

ultimate end to help the development of new treatments

against non-typhoid salmonellosis. Using in vitro cultures of

human macrophages, we recently demonstrated that different

IgG subclasses affect the phagocytosis rate of S. Typhimur-

ium differently, through Fcg receptors [18]. We decided to

extend that study by analysing the effect of prior opsoniza-

tion with different IgG subclasses on the intracellular

dynamics of S. Typhimurium following phagocytosis into

human cells in vitro.

Here we associate a mathematical model with new exper-

imental data on intracellular bacterial counts in order to

determine the factors that modulate bacterial replication

and mortality inside macrophages within 9 h of infection

with S. Typhimurium opsonized with human IgG isotypes

1, 2, 3 or 4. These four subclasses, numbered according to

their relative abundance in human serum, are known to

differ in their affinity to Fc receptors on phagocytic cells,

and are therefore expected to produce different dynamics fol-

lowing opsonization. In addition, the large amount of
information present in the experimental data (distributions

of bacteria in samples of 450 infected cells at two time

points and in five opsonization groups) allows us to explore

and assess the value of several hypotheses concerning the

effects of antibodies on the intracellular replication and

death of Salmonella bacteria, which had been suggested by

previous empirical and theoretical studies. Our results

reveal substantial heterogeneity among the intracellular bac-

teria and far-reaching effects of different antibody subclasses.
2. Material and methods
2.1. Bacterial strains, antibodies and cell culture
The bacterial strain used in the study is a green fluorescence

protein (GFP)-expressing S. Typhimurium SL3261 with a short

peptide-coding sequence inserted into its ompA gene [18]. The

short peptide, with sequence TSSPSAD, is a mimotope of the

human CD52 antigen. Expression of the peptide in the OmpA

protein allows tagging of the OmpA protein with a panel of

humanized CD52 antibodies. The humanized anti-CD52 anti-

bodies share the same variable regions (CAMPATH-1 [19]) that

recognize the human CD52 mimotope, but are of different

human antibody subclasses, either IgG1, IgG2, IgG3 or IgG4

[20,21]. The non-specific control antibody used is the recombi-

nant human Fog-1 IgG1 antibody [21] which recognizes the

human RhD antigen. The phagocytes used in this study belong

to the human monocyte cell line THP-1. The cells were grown

in RPMI-1640 supplemented with 10 per cent foetal calf serum,

2 mM L-glutamine, 0.05 mM 2-mercaptoethanol at 378C. Prior

to bacterial infection, THP-1 cells were grown in RPMI-1640

supplemented with 10 per cent Nu serum (VWR), 2 mM

L-glutamine, 0.05 mM 2-mercaptoethanol for 22 days, followed

by an incubation with 100 U ml– 1 rIFNg for 48 h [18,22].

2.2. Bacterial opsonization and infection
These were performed as previously described by Goh et al. [18].

Briefly, opsonization of overnight bacterial culture was per-

formed by incubation in either the humanized anti-TSSPSAD

antibodies (IgG1, IgG2, IgG3 or IgG4) or the non-specific control

antibody at 378C with shaking for 30 min. The dilution of the

antibodies for opsonizing bacteria was determined as the

lowest dilution that does not cause bacterial agglutination,

which corresponded to 25 mg ml21. THP-1 cells were then

exposed to the opsonized bacteria at multiplicity of infection of

10 bacteria per THP-1 cell for 45 min. Hereafter, the end of this

period of exposure is taken as the initial time point (t ¼ 0). The

infected cells were incubated with fresh culture medium contain-

ing 100 mg ml21 gentamicin for an hour to kill any remaining

extracellular bacteria, at which point half of the cell cultures

were harvested for further analysis (first data time point,

t ¼ 1 h). In the remaining cultures, the medium was replaced

with fresh medium supplemented with 10 mg ml21 gentamicin

and the cells were incubated for another 8 h (second data time

point, t ¼ 9 h).

2.3. Visualization of intracellular bacteria
As previously described [18], THP-1 cells were plated onto poly-

L-lysine-treated coverslips (Fisher Scientific) 12 h prior to infec-

tion. At t ¼ 1 h and t ¼ 9 h, THP-1 cells were fixed with 4 per

cent paraformaldehyde for 15 min, and then incubated with

mouse monoclonal O4 antibody (Abcam) and secondary goat

anti-mouse Alexa Fluor 405 antibody (Invitrogen). Each antibody

reagent was diluted 1 : 1000 in 10 per cent normal goat serum

(Dako). After the coverslips were mounted onto Vecta bond-

treated glass slides (Vector Laboratories) with Vectashield
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mounting medium (Vector Laboratories), they were examined

using fluorescence microscopy (Leica DM6000B). Intracellular

bacteria were discriminated from extracellular bacteria by the

presence of GFP and the absence of labelling by the mouse

monoclonal O4 antibodies. The experiment was performed

three times with each of the four specific antibody types and

the one control antibody. In each replicate, 450 infected cells

were examined in order to determine the distribution of

intracellular bacteria. Only a few extracellular bacteria were

observed across all samples, indicating that re-infection events

should be extremely rare. The complete dataset is presented in

the electronic supplementary material, table S1.
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2.4. Mechanistic model
Following on from previous work on cell-level dynamics of

S. Typhimurium infection [12,13], we described the dynamics

of the system by a set of differential equations representing tem-

poral variations in the numbers of cells harbouring different

numbers of bacteria. In line with the experimental protocol, we

assumed that a large number of uninfected cells were exposed

to opsonized bacteria for 45 min, when phagocytosis could

occur, and from then onwards all extracellular bacteria were

killed. Thus, we started with a baseline model containing four

parameters. The effective division rate of a replicating bacterium

in a cell containing i bacteria is modelled as a exp(–b i) where a is

the maximum division rate and b measures density-dependent

reduction in division rate (accounting for limitation of accessible

resources in the Salmonella-containing vacuole [12]). Bacteria are

degraded (and are no longer visible) at rate d; as explained in the

next paragraph, we also consider as a different process the possi-

bility that bacteria stop replicating (and possibly die) while

remaining visible. The phagocytosis rate F(t) is set equal to a

constant w for the first 45 min (20.75 h , t , 0) and to zero after-

wards (t . 0). Note that the assumption of a constant

phagocytosis rate is justified by the large excess of bacteria in

the medium (10 times the number of cells) and the short duration

of exposure.

Preliminary data [18] indicated that the distributions of intra-

cellular bacteria were bimodal: at the first time point with any of

the four specific antibodies, a large proportion of infected cells

contained a single bacterium, while there were more cells with

three or four bacteria than cells with two bacteria. We show in

§3 that this pattern is even more conspicuous at the second

time point (figure 2). In line with a recent report [23], we hypoth-

esized that the presence of a subset of non-replicating bacteria

persisting within some macrophages might contribute to the

observed distributions. To date, the potential mechanisms

responsible for heterogeneity in bacterial replication are not

known. Therefore, we sought to use our combined data and

modelling framework to assess the credibility of three scenarios:

(i) intracellular bacteria randomly enter a non-replicating state at

rate d and remain in that state until they are degraded; (ii) before

phagocytosis, a proportion p of bacteria are in a non-replicating

state (possibly induced by opsonization) and can be taken up

by macrophages without distinction from active bacteria; (iii) a

proportion q of macrophages (thereafter ‘refractory’ macro-

phages) are preventing intracellular bacteria from dividing.

Unlike scenario (iii), the first two assume that infected cells

can contain a mix of replicating and non-replicating bacteria

(figure 1). In any case, non-replicating bacteria are assumed to

remain visible by fluorescence microscopy (with no presumption

as to whether they are effectively dead or in a dormant state)

until they are degraded at rate 1. By including or excluding

each scenario, we generated eight alternative models (table 2).

In the following, ‘complete model’ refers to the inclusion of all

three scenarios.
To account for these scenarios, we must assume that the

observed intracellular bacteria fall into two classes: replicating

and non-replicating. Specifically, the models keep track of a

large number of variables Ni,j(t) representing the number of ‘per-

missive’ macrophages that contain i visible intracellular bacteria,

of which j are in a replicating state and i– j are non-replicating

(according to scenarios (i) and (ii) above); and a second set of

variables Mi(t) that represent ‘refractory’ macrophages with i
non-replicating bacteria, according to scenario (iii). Only with

IgG3 did any cells contain more than 12 bacteria, most of

which had up to 15. Hence we restricted the number of intra-

cellular bacteria to 20 in our model for computational

efficiency, but we checked with a few examples that allowing

higher numbers did not affect noticeably the numerical output

of the model. A schematic of the complete model, combining

the three scenarios for non-replicating bacteria, is shown in

figure 1. The dynamics of the permissive cells are described by

the following set of differential equations (where dependence

on time t has been omitted for brevity):

N
0

0;0 ¼ dN1;1 þ 1N1;0 �FN0;0

N
0

i;0 ¼ FpNi�1;0þdNiþ1;1þdNi;1þðiþ1Þ1Niþ1;0

� ðFþ i1ÞNi;0; 1 � i � 19

N
0

i;j ¼ ½Fð1� pÞ þ ð j� 1Þae�bð j�1Þ�Ni�1;j�1 þFpNi�1;j

þ ð jþ 1ÞdNiþ1;jþ1
þ ð jþ 1ÞdNi;jþ1 þ ðiþ 1� jÞ1Niþ1;j

� ½Fþ jðae�bj þ dþ dÞ þ ði� jÞ1�Ni;j; 1 � j � i � 19

N
0

i;i ¼ ½Fð1� pÞ þ ði� 1Þae�bði�1Þ�Ni�1;i�1 þ ðiþ 1ÞdNiþ1;iþ1

þ 1Niþ1;i � ½Fþ iðae�bi þ dþ dÞ�Ni;i; 1 � i � 19

N
0

20;0 ¼ FpN19;0 þ dN20;1 � 201N20;0

N
0

20;j ¼ ½Fð1� pÞ þ ð j� 1Þae�bð j�1Þ�N19;j�1 þFpN19;j

þ ð jþ 1ÞdN20;jþ1 � ½ jðdþ dÞ þ ð20þ jÞ1�N20;j; 1 � j � 19

N
0

20;20 ¼ ½Fð1� pÞ þ 19ae�19b�N19;19 � 20ðdþ dÞN20;20

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The dynamics of the refractory cells Mi are described the

following equation:

M0i ¼ ðiþ 1Þ1Miþ1 þFpMi�1 � ðFpþ i1ÞMi; i � 0:

The numerical values of the eight parameters in this

model (table 1) were unknown a priori and were estimated

from the data using the statistical method described below.

All equations in the system are linear, enabling us to solve

them using matrix exponentials (see electronic supplementary

material, methods).

2.5. Model fitting and parameter inference
In order to estimate the values of the parameters in our models,

we computed the likelihood of the observed data (proportion of

infected macrophages and distribution of intracellular bacteria

numbers at 1 h and 9 h post-exposure, for each of the five opso-

nization treatments) given the theoretical distributions predicted

by the model at the same two time points. We allowed the eight

parameters to differ among the four IgG subclasses and the con-

trol, but we assumed they did not vary between experimental

replicate, making a total of 40 parameters. Let Qg ¼ fag, bg, dg,

dg, 1g, pg, wg, qgg be the vector of parameters for antibody type

g from 0 to 4 (where g ¼ 0 represents the non-specific antibody

and g ¼ 1–4 represents each of the four IgG isotypes). Since

the data comes from a full factorial design with two indepen-

dently measured variables, two independent time points and

five independent opsonization treatments, all in three indepen-

dent replicates, the log-likelihood LLQ of the whole dataset

is the sum of the five antibody-specific log-likelihoods LLg
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proportion p, to scenario (ii); and refractory macrophages, in proportion q, to scenario (iii). For simplicity, cells containing more than three bacteria are not shown.
Phagocytosis (dashed arrows) occurs during the first 45 min only.

Table 1. Definition of parameters used in the models.

symbol definition

a maximum replication rate of bacteria

b coefficient of density-dependent reduction in

bacterial replication

d degradation rate of replicating bacteria

d rate at which intracellular bacteria switch to

the non-replicating state

1 degradation rate of non-replicating bacteria

p initial proportion of non-replicating bacteria

w phagocytosis rate

q proportion of refractory macrophages
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(0 � g � 4), each of which can be expressed as

LLgðQgÞ ¼
X

t¼f1;9g

X
r¼f1;2;3g

h
log Binðxt;r;g;pQg ðtÞÞ

þ log Multinðfmk;t;r;g; k � 1g; fmk;Qg
ðtÞ; k � 1gÞ

i
;

where subscript r stands for each of the three replicate experiments

and t for time post-exposure (1 h or 9 h); xt,r,g is the observed

number of infected cells, pQ(t) the predicted proportion of infected

cells according to the model, mi,t,r,g the observed number of macro-

phages with i bacteria and mi,Q(t) the predicted proportion of

macrophages with i bacteria according to the model. Since the

observed number of infected cells and the observed distributions

of bacteria per macrophage were determined independently

based on two samples of S ¼ 450 macrophages within each repli-

cate, we combined a binomial (Bin) and a multinomial (Multin)

probability mass functions defined as follows:

Binðx;pÞ ¼
S
x

� �
pxð1� pÞS�x

Multinðfxkg; fmkgÞ ¼ S!
Y
k�1

m
xk
k

xk!
;
X
k�1

mk ¼ 1:

The predicted proportions (p and mk) were derived from the

numerical solution of the system of differential equations as follows:

pQðtÞ ¼ 1� N0;0ðtÞ þM0ðtÞP
0�i�20

P
0�j�i Ni;jðtÞ þMiðtÞ

and

mk;QðtÞ ¼
MkðtÞ þ

P
0�j�k Nk;jðtÞP

1�i�20 MiðtÞ þ
P

0�j�i Ni;jðtÞ
:

Each log-likelihood function LLg was maximized numerically

using the built-in function optim in R [24], which implements the

Nelder–Mead simplex algorithm; all maximizations were repli-

cated with different initial conditions to reduce the risk of

obtaining local maxima. This function also provides a numerical

approximation of the Hessian matrix of the likelihood function

around its maximum, which enabled us to calculate approximate

95% confidence intervals and correlation matrices for the par-

ameters. Because parameters were constrained to be positive,

correlation matrices could not be computed for parameters with

a maximum-likelihood estimate (MLE) equal to zero (as the
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maximum is then on the edge of the domain over which the like-

lihood is defined); in that case, contour plots of the likelihood

function provided a graphic assessment of the correlations.

In order to compare the relative importance of the three

scenarios for non-replicating bacteria, we fitted eight different sim-

plified versions of the model by setting the values of d, p or q
to zero. For example, scenario (i) alone corresponds to p ¼ q ¼ 0,

leaving six parameters per group to estimate; while combining

scenarios (ii) and (iii) corresponds to setting d ¼ 0 and estimating

the remaining seven parameters per group. We compared these

eight models within each opsonization group using Akaike’s Infor-

mation Criterion (AIC): AIC ¼ 2n� 2 maxQg ðLLgÞ where n is the

number of parameters of the model considered. This allowed us
to calculate weighted averages of the parameter estimates across

the set of models, using the Akaike weight of each model m
within the set M considered, defined by

wm ¼
expð�Dm=2ÞP

n[M expð�Dn=2Þ ;

where Dm is the difference between the AIC value for model m and

the minimum AIC value within the set of models M [25]. In

addition to these antibody-specific analyses, we fitted a second

series of models to the whole dataset, whereby each parameter in

turn was forced to have the same value either across all five anti-

bodies or across the four specific IgG subclasses. We calculated



Table 2. Comparison of eight mechanistic models fitted to the distributions of intracellular bacteria for each subclass of IgG. Scenarios (i) – (iii) correspond to
the three proposed mechanisms for non-replicating bacteria as explained in §2. Columns 4 – 8 show the DAIC values of the eight models fitted to each
experimental group (control and IgG1 to 4).

scenarios parameters set to 0 no. parameters control IgG1 IgG2 IgG3 IgG4

(i) – (iii) none 8 4.0 2.0 4.0 2.0 1.5

(ii) and (iii) d 7 2.0 267.7 2.0 501.3 65.5

(i) and (iii) p 7 2.0 16.3 2.0 4.8 1.0

(i) and (ii) q 7 11.2 0.0 42.1 0.0 0.0

(iii) d, p 6 0.0 290.0 0.0 543.7 63.8

(ii) d, q 6 9.0 267.3 39.9 501.5 85.5

(i) p, q 6 352.2 168.2 662.0 24.1 331.3

none d, 1, p, q 4 480.6 994.0 1118.8 968.4 1035.9

rsif.royalsocietypublishing.org
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the corresponding AIC values and weights using the total likeli-

hood summed across all five opsonization groups.

Finally, we performed Monte Carlo sampling of the predicted

distributions of cells to assess the goodness-of-fit of the models.

Using the rbinom and rmultinom function in R, we generated

10 000 pseudo-random binomial samples of 450 cells (for the pro-

portions of infected cells) and 10 000 multinomial samples of 450

infected cells (for the distributions of intracellular bacteria); the

expected probabilities of the binomial and multinomial distri-

butions were given by the numerical solutions of each fitted

model at either t ¼ 1 h or t ¼ 9 h. We plotted the 2.5–97.5%

inter-quantile range of the Monte Carlo simulated distributions

alongside the observed data to highlight any deviation from the

predicted values unlikely to be due to sampling noise.
3. Results
3.1. Observed distributions of intracellular bacteria
As previously reported [18], fluorescence microscopy

observations at the first time point (1 h post-exposure)

revealed differences in the proportions of infected macro-

phages and in the distributions of intracellular bacteria

between opsonizing antibody subclasses (figure 2a). The

cell cultures that were left to incubate for 9 h post-exposure

showed slightly but consistently lower proportions of

infected macrophages and larger numbers of intracellular

bacteria (figure 2b). Both measurements at the two time

points followed the same hierarchy among the different opso-

nization groups: bacteria opsonized with the non-specific IgG

(control group) infected fewer macrophages and reached

lower intracellular numbers than those opsonized with

specific IgG2, followed in increasing order by IgG4, IgG1

and IgG3.

The distribution of intracellular bacteria at the first time

point exhibits a weak bimodal pattern among the four

specific IgG subclasses (revealed by the low proportion of

infected cells containing two bacteria compared with lower

and higher numbers in figure 2). The bimodal pattern is

much more pronounced at the later time point across all

five groups: while at least 35 per cent (and up to 62%) of

infected cells contained five or more bacteria, large pro-

portions (between 23 and 41%) contained only one

bacterium. We used this pattern as a hallmark to assess the

quality of our mathematical models. Even though the
higher mode apparent in the experimental data may have

been inflated by the grouping of cells containing large num-

bers of bacteria (which was deemed necessary due to possible

inaccuracies in bacterial counts in highly infected cells), we

used the same grouping for the predicted distributions

when fitting the model to the data, hence avoiding any bias

in our analysis.
3.2. Comparison of mechanistic models
We explored a range of hypotheses regarding the mechan-

isms underlying the observed distributions of intracellular

bacteria and their variations across antibody treatments, as

detailed in §2.5. In the absence of previous information

about expected differences between IgG subclasses (apart

from rates of phagocytosis), we followed two steps. First,

we looked for qualitative differences between the five exper-

imental groups (control, IgG1, IgG2, IgG3 and IgG4) by

comparing the possible scenarios for non-replicating bacteria.

Then we assessed quantitative variations between antibodies

by fitting a series of simplified models to the whole dataset,

each assuming that some parameter was invariant across

the groups.

The baseline model, which includes phagocytosis, intra-

cellular bacterial replication and death and assumes that

all bacteria can replicate, fails to reproduce the observed bimo-

dal distributions (see the electronic supplementary material,

figure S1). Statistically, this model receives no support at all

for any IgG subclass, compared with the other models

considered (table 2). In total, eight models, obtained by includ-

ing or excluding each of the three scenarios for non-replicating

bacteria, were fitted to the data for each antibody subclass sep-

arately. Including any combination of alternative scenarios

resulted in a significant improvement based on likelihood

values (see the electronic supplementary material, table S2).

According to AIC, the observed distributions from the four

IgG isotypes and the control are best described by different

models (table 2): for the control and IgG2 (which have

the lowest bacterial loads), the best model includes scenario

(iii) only, assuming a certain proportion of ‘refractory’ macro-

phages inhibit intracellular replication of bacteria; whereas

for IgG1, 3 and 4 the best model combines scenarios (i),

whereby intracellular bacteria progressively stop replicating,

and (ii), which assumes that a proportion of bacteria



Table 3. Comparison of simplified versions of the complete model fitted to the whole dataset, obtained by assuming that certain parameters are invariant
either across all five antibody groups (including the control) or across the four specific IgG subclasses (excluding the control).

invariant across all groups invariant across IgG1 – 4 parameters LL DAIC

a none 36 21116.40 0

none b 37 21115.61 0.42

a b 33 21119.81 0.82

none a 37 21116.26 1.71

none a, b 34 21119.76 2.71

none none 40 21115.23 5.65

none 1 37 21119.57 8.34

none w 37 21124.51 18.22

p none 36 21128.30 23.80

none p 37 21129.33 27.86

none d 37 21130.50 30.20

1 none 36 21131.82 30.83

w none 36 21135.80 38.79

none q 37 21136.63 42.45

q none 36 21141.29 49.77

d none 36 21157.66 82.51

b none 36 21162.40 91.98

none d 37 21377.02 523.23

d none 36 21506.41 780.02
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are incapable of replication from the onset. However, with

IgG4, AIC values show good support for an alternative

model combining scenarios (i) and (iii); in other words, the

data obtained with IgG4 can be explained by assuming that

either a proportion of non-replicating cells or a proportion of

refractory phagocytic cells were present at the start of

the experiment.

We then fitted further models to the whole dataset,

assuming that some parameters were invariant either across

all five antibodies or across the four specific subclasses.

Based on AIC, the best model has a common value for the

baseline replication rate a across all groups, closely followed

by a model where the replication parameter b is invariant

across the four specific antibodies (table 3) and then followed

by the combination of these two models. Attempts to impose

invariance on other parameters obtained little or no support

from AIC; the only one within 10 units of the best model

assumes invariance of the degradation rate of non-replicating

bacteria (1) among the four specific IgG subclasses.

Figure 2 shows the observed and predicted distributions of

visible intracellular bacteria, using the best model for each

experimental group (as per table 2); other supported models

produced very similar distributions (see the electronic sup-

plementary material, figure S2). The predicted values were

obtained by adding replicating and non-replicating bacteria,

following the assumption that they are undistinguishable by

fluorescence microscopy. Despite some discrepancies in the

proportions of heavily infected cells beyond the 95% Monte

Carlo sampling intervals, the fitted model reproduces the

bimodal distributions and the variations between the five

experimental groups.
3.3. Parameter estimates
The parameter estimates obtained by fitting each model to the

data can be averaged using AIC weights. We produced two

weighted averages, one for the set of models that were fitted

to each opsonization group separately (table 2), and the other

for the set of models fitted to the whole data. In the former

case, the weight of every model is specific to each experimental

group. As shown in figure 3, these two sets of estimates are gen-

erally very close. In addition, for each model, we generated

approximate 95% confidence intervals on the parameter esti-

mates, illustrated in figure 3 for the best model. These are

deduced from the curvature of the likelihood function around

its maximum for a given model, and reflect the information

available in the data in support of each parameter. We can see

in figure 3 that the variations across models are well within

the level of uncertainty, with the notable exception of par-

ameters p and q for IgG4 which will be discussed further down.

Given these uncertainties, the observed variations in the

distributions of intracellular bacteria among antibody sub-

classes are best explained by a combination of qualitative

differences in the replication regimes of Salmonella (governed

by parameters d, p and q) and quantitative variations in

other processes—mainly phagocytosis (w) and degradation (d
and 1) of intracellular bacteria (figure 3). As expected from

the observation of intracellular bacterial distributions at the

first time point [18], the model predicts that all four specific anti-

bodies enhance the rate of phagocytosis, at most by 58 per cent

(IgG1 versus control). Note that the estimated rates of phago-

cytosis are slightly higher for IgG1 than IgG3 (0.41 and 0.37,

respectively, albeit with overlapping confidence intervals),
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whereas our previous report [18] made the opposite prediction

based on proportion of infected cells and bacterial counts.

According to our model, this discrepancy is due to the substan-

tial variations in bacterial killing rates (d): indeed, the half-life of

intracellular replicating bacteria (given by the formula log 2/d)

following opsonization with IgG1 is 80 per cent shorter than

with IgG3.

As stated earlier, the only model compatible with the

distributions observed following opsonization with either

IgG1 or IgG3 combines scenarios (i) and (ii). Nine hours post-
infection, these two groups exhibited the greatest numbers of

bacteria per cell. Quantitatively, opsonization with IgG3,

which had the highest bacterial loads, can be explained by a

low degradation rate (d) of replicating bacteria, a relatively

low initial proportion of non-replicating bacteria ( p � 10%,

against 30% with IgG1), and a high rate of conversion from

replicating to non-replicating (d), twice as high as with IgG1.

In contrast, opsonization with the non-specific antibody or

with IgG2 is best described by scenario (iii) only. However,

our parameter estimates for these two groups differ in many
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respects (figure 3). When considering the parameters common

to all models (a, b, d, 1 and w), IgG2 is more similar to other IgG

subclasses than to the control. Finally, IgG4 appears to be some-

where between the others, as we were not able to explain the

observed data unambiguously with a single model. Although

we can be confident that opsonization with IgG4 results in a

low conversion rate (d), the proportion q of refractory cells

and the initial proportion of non-replicating bacteria p are

more uncertain.

Univariate confidence intervals (figure 3), must be

interpreted with caution when parameter estimates are corre-

lated. We conducted pairwise analyses of parameters using

covariance matrices (excluding parameters with an MLE

equal to zero; see the electronic supplementary material,

table S3) and contour plots of the likelihood function for

the complete, eight parameter, model fitted to each opsoniza-

tion group (see the electronic supplementary material, figure

S3). The only systematically high correlation across all groups

was between a and b (ranging between 0.78 and 0.95); this

could be expected as these parameters affect the replication

rate in opposite ways. Although correlations between p and

q could not be computed, graphically the two parameters

appeared to be negatively associated (see the electronic sup-

plementary material, figure S3), meaning that it is possible

to trade a small proportion of non-replicating bacteria for a

small proportion of refractory cells (by varying the values

of p and q in opposite directions around the MLE) without

decreasing substantially the likelihood, especially with IgG4.

3.4. Predicted dynamics
We then used our best-fitted model to predict the dynamics

of the average number of bacteria per infected macrophage
for each antibody subclass (figure 4). The comparison

between the mean number of visible bacteria (figure 4a)

and the mean number of replicating bacteria (figure 4b)

reveals two striking predictions. Firstly, the relative abilities

of the four specific antibody subclasses to control the

number of replicating intracellular bacteria (with IgG3

being the most efficient and IgG2 being the least efficient)

are in sharp contrast with their relative merits based on the

number of visible bacteria (IgG3 resulting in the largest

load and IgG2 the smallest). Secondly, the predicted numbers

of replicating bacteria reach a plateau in all groups within a

few hours, whereas the predicted numbers of visible bacteria

keep increasing markedly for at least 9 h (figure 4b). To

understand this apparent paradox, let us consider two

cases. Our best model for IgG3 predicts that around 90 per

cent of bacteria are able to replicate immediately after phago-

cytosis, causing the rapid accumulation visible in figure 4a
and in the data; however, the relatively high value of d

means that these intracellular bacteria switch to a non-

replicating stage on average within 1.5 h: as a result, the

number of replicating bacteria at any time remains low

(figure 4b) and the proportion of the visible bacteria actually

replicating drops rapidly (figure 4c). At the other end of the

spectrum, opsonization with IgG2 appears to be associated

with around 50 per cent of refractory cells, keeping the aver-

age numbers of intracellular bacteria low (figure 4a,b);

however, the proportion of those bacteria that are replicating

keeps increasing (figure 4c) because there is no process of

inactivation (d ¼ 0) in permissive cells.

Extending simulations beyond observed time points, the

numbers of visible bacteria are expected to start decreasing

after 10–12 h in the presence of IgG3 or IgG1. These
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differences are best summarized by considering the predicted

proportions of intracellular bacteria that are replicating

(figure 4c): while they increase to around 80 per cent within

9 h in the control and IgG2, the fractions of replicating

bacteria drop to very low levels in the other three groups.
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4. Discussion
This work demonstrates how mathematical and statistical

models can be tailored to an experimental system to help for-

mulate detailed predictions about complex biological

processes that cannot be observed directly. We sought to

reconstruct the dynamics of S. enterica infection at the cellular

level, using human monocyte cultures and IgG antibodies.

We previously reported variations in phagocytosis efficiency

among IgG subclasses, owing to their different affinities for

Fc receptors expressed at the surface of phagocytic cells

[18]. However, opsonization has been shown to also affect

the growth of pathogens inside infected cells [5–7]. By

extending our previous in vitro gentamicin assay to 9 h

post-infection and modelling the intracellular dynamics of

S. enterica, we were able to quantify the impact of opsoniza-

tion on bacterial replication and death in unprecedented

detail. In particular, we showed that these effects are hetero-

geneous, as subpopulations of bacteria appear to stop

replicating, and differ substantially between IgG subclasses.

Our predictions will help design further experimental

exploration of these intracellular dynamics.

Our first finding concerns the heterogeneity of intracellu-

lar replication of S. enterica. This was motivated by the

observed distributions of bacteria within infected cells: after

9 h, each experimental group showed a peak ranging from

four to around 15 bacteria, combined with a large but vari-

able proportion of cells containing a single bacterium. Such

bimodal distributions contrasted with previous observations

in a murine model of typhoidal S. Typhimurium infection

[26], and led us to hypothesize the existence of a subpopu-

lation of non-replicating bacteria within infected cells. This

phenomenon was reported recently in S. Typhimurium by

Helaine et al. [23] in experimental infections of murine cells,

based on measures of fluorescence dilution in vitro. However,

the underlying mechanisms are still unknown, and we con-

sidered three simple scenarios. One assumption was that,

following opsonization, an unknown proportion p of bacteria

in the inoculum was inactivated (scenario (ii)). Alternatively,

the heterogeneity might reside in the host cell population, so

we allowed for a proportion q of ‘refractory’ cells that would

completely prevent bacterial replication (scenario (iii)).

Although scenario (iii) on its own does not allow cells to con-

tain a mixture of replicating and non-replicating cells,

contrary to Helaine et al.’s [23] observations, heterogeneities

in phagocytic cell populations have been shown to play

important roles in a related experimental system [13]. Finally,

we considered the possibility that there was no intrinsic het-

erogeneity among the bacteria or the cells: by assuming that

inactivation occurs randomly within all infected cells at a cer-

tain rate d, we generated a model where an increasing

proportion of intracellular bacteria are non-replicating (scen-

ario (iii)). Because of our focus on intracellular bacterial

replication, we chose to carry out experiments using a

well-established gentamicin assay which kills extracellular

bacteria. In the future, it would be interesting to use a
different approach to bring together our predictions with

those of Gog et al. [13] on phagocytosis dynamics.

Although each scenario on its own improved the good-

ness of fit (table 2) and resulted in bimodal distributions

similar to those observed in the data, their relative support

varied across opsonization groups. When allowing for combi-

nations of scenarios, scenario (iii) came out on top for IgG2

and the control, whereas combining scenarios (i) and (ii)

was best for IgG1, 3 and 4. Although the AIC analysis pro-

vides support for the alternative combination of scenarios

(i) and (iii) with IgG4 and to a lesser extent with IgG1,

there is no overall support for any single scenario across all

opsonization groups. That IgG2 should cluster with the

non-specific antibody used as a control is not unexpected:

indeed IgG2 has been shown to have a much lower affinity

to Fc receptors at the surface of phagocytic cells than the

other subclasses [27]. While this is coherent with our estimates

for phagocytosis rates (lowest for control and IgG2), our model

suggests further consequences. The best-fitting model for the

groups opsonized with IgG1, 3 or 4 assumes that opsonized

bacteria are the source of heterogeneity; whereas the control

group and the group opsonized with IgG2 were best described

by the model with two subpopulations of host cells.

In addition to these qualitative differences relating to non-

replicating bacteria, our model predicts variations among

antibody subclasses in other parameters. Opsonization of

various intra- or extracellular bacterial pathogens by immuno-

globulins has been shown to enhance phagocytosis and

killing by macrophages and neutrophils [28], but these

processes have rarely been quantified properly: as demon-

strated here, changes in bacterial numbers can be attributed

to a combination of factors. According to our best models

(figure 3), the anti-TSSPSAD antibodies caused limited

increases in phagocytosis rate (w) compared with the control

group, with a maximum of 59 per cent for IgG1. In contrast,

we predict that the same antibody increases the degradation

rate of replicating bacteria (d ) by 680 per cent. Interestingly,

we found that all four subclasses enhanced in equal measure

the replication rates of bacteria: even though there is no vari-

ation at all in the estimates of the baseline rate of bacterial

replication (a), the model predicts a 50 per cent decrease in

the rate at which bacterial replication slows down as they

accumulate within cells (b). This means that, ignoring bac-

terial death and induction of the non-replicating state, we

would expect a single infection event in a cell to produce

on average seven bacteria within 9 h when opsonized with

any of the four IgG subclasses, but only four bacteria when

opsonized with the non-specific antibody. It is important to

highlight that this predicted enhanced replication following

opsonization by IgG is in part balanced by the concurrent

inactivation of bacteria: in other words, we predict that a frac-

tion of bacteria replicate faster following opsonization while a

growing proportion stops replicating. As is visible from the

data, the net result of opsonization in this particular exper-

imental system is an accumulation of visible bacteria inside

infected cells. Although we have no direct experimental evi-

dence that the replication rate of Salmonella decreases as

bacteria accumulate within a cell, both this study and an earlier

one by Brown et al. [12], who analysed intracellular counts of

bacteria from the livers of mice infected with S. Typhimurium,

found statistical support for this phenomenon.

In order to test the validity of these predictions, further

experiments would be required with the aim of detecting
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and quantifying non-replicating bacteria, possibly using flu-

orescence dilution methods. As shown in figure 4c, the

model predicts clear, testable differences in the proportions

of non-replicating bacteria among experimental groups,

reflecting the two qualitatively different sets of scenarios

selected by the statistical model. The parameter estimates

also provide us with quantitative measures that might be

validated experimentally. For example, the values of p
(figure 3) represent predicted proportions of bacteria opso-

nized with each antibody subclass that are in a non-

replicating state prior to phagocytosis—ranging from 0 to

40 per cent of all bacteria. In particular, it would be interest-

ing to assess whether this correlates with variations in

opsonization. We also predict that replicating bacteria are

rapidly degraded inside cells (i.e. are no longer visible by

microscopy, as described by parameter d in our model),

with median survival times ranging from 2 to 10 h depending

on the antibody type used. Finally, the best model for the

control and IgG2 groups assumes that the heterogeneity in

bacterial replication is among the macrophage population:

between 50 (IgG2) and 67 per cent (control) of cells are pre-

dicted to inhibit replication of phagocytized bacteria

(parameter q). Heterogeneities in phagocytic cell populations

are well documented; we recently quantified, using a similar

modelling approach but a different experimental set-up,

variability in susceptibility to infection within a population

of murine bone-marrow derived macrophages exposed to

S. Typhimurium [13]. However, the fact that we predict

different proportions of refractory macrophages among

experimental groups does not imply that we expect the cell

samples used were different before the start of the exper-

iment. Our interpretation (which remains to be tested

experimentally) is that in these experimental conditions, a

large proportion of cells can inhibit replication of bacteria

with non-specific or IgG2 antibodies, whereas opsonization

with IgG1 or IgG3 makes all cells initially permissive (q ¼ 0),

only to inhibit bacterial replication at a later point (with
rate d). Finally, our estimates of the degradation rate of non-

replicating bacteria (1) were lower than that of replicating bac-

teria (d ), with half-lives ranging from 6 to 24 h among groups.

Interestingly, even though differences in protocols preclude

any formal quantitative comparisons, Helaine et al. [23]

observed that non-replicating bacteria retained some biologi-

cal functions for similar periods of time (namely 30–40%

persistence after 24 h). We must underline, however, that the

non-replicating bacteria, as defined in our model, could actu-

ally be dead: the only assumptions we make are that they

cannot revert to a replicating state and that they are degraded

(i.e. stop being visible by fluorescence microscopy) at a rate

that can differ from that of replicating bacteria.

In conclusion, our multi-disciplinary approach provides

new insight into the complex dynamics of bacterial infections.

Using fluorescence microscopy with cultures, we were able

to collect data from individual cells at two different time

points, generating enough information to estimate multiple

parameters and compare multiple scenarios. The statistical

comparison of alternative scenarios that appeared plausible

a priori provides objective ground to focus future experimen-

tal work on testing the specific hypotheses that are deemed

more credible. Although this in vitro experimental model

lacks many components of real-life infections—for example,

T cell-mediated apoptosis facilitated by antibodies [29]—it

has enabled us to draw inferences on a subset of essential

processes, which in turn provides working hypotheses for

in vivo experimental systems. Such multi-disciplinary studies,

associated with more traditional approaches, can contribute

to faster progress in our mechanistic understanding of

infection dynamics.
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