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SUMMARY

Hepatocellular carcinoma (HCC) initiation is characterized by stepwise accumula-
tion of molecular alterations, during which the early events are largely unknown.
Here, we presented a comprehensive genomic and transcriptomic landscape at
stages of hepatitis, cirrhosis, and HCC by using a diethylnitrosamine-induced rat
HCCmodel.We observed the early occurrence of gene instability and aberrant can-
cer associated signaling pathways in liver hepatitis. We further characterized the
progressive molecular changes during hepatocarcinogenesis, wherein the intense
rivalry between tumor-suppressive and oncogenic strengths occurred in cirrhosis
stage. Despite the significant pathological difference, mutation signatures and
expression landscape are highly similar between hepatitis and cirrhosis stages.
Furthermore,we identifiedPI3K-Akt signaling pathway as a keypathway in the pro-
cess of hepatocarcinogenesis through integrative analysis, and PIK3CD is a poten-
tial biomarker indicating HCC recurrence. The dynamic immune response during
hepatocarcinogenesis, such as continuous decline ofmonocytes, suggests an immu-
nological intervention strategy beyond chemoprevention for liver cancer.

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second leading

cause of cancer-related deaths worldwide (Villanueva, 2019). Major risk factors for HCC include infection

with hepatitis B virus or hepatitis C virus, alcoholic liver disease, and most probably non-alcoholic fatty liver

disease (El-Serag and Rudolph, 2007; Villanueva, 2019). HCC largely occurs in an established background

of chronic liver disease and cirrhosis but rarely develops in healthy liver during normal aging. Patients with

chronic liver disease have sustained hepatic inflammation, cirrhosis, and aberrant hepatocyte regenera-

tion. These abnormalities can cause cirrhosis, which is present in 80–90% of patients with HCC. HCC can

arise in patients who have chronic liver disease but do not have established cirrhosis, although the HCC

risk remains low at this stage. The cancer risk increases sharply in response to chronic liver injury at the

cirrhosis stage. A series of genetic and epigenetic events occurred during this process and culminate in

the formation of preneoplastic lesions. On this foundation, additional molecular alterations in the cirrhosis

tissue provide liver cells with sustained proliferative, invasive, and survival advantages and complete the

transition to HCC(El-Serag, 2012; Yu et al., 2013).

Although many approaches can provide new insights into the complex molecular pathogenesis of HCC,

i.e., identification of novel oncogenic pathways and cancer driver genes (Fujimoto et al., 2012; Guichard

et al., 2012; Li et al., 2019), sequential analysis of the development of tumors in humans is very difficult.

It is still a challenge to study the development of HCC, especially those early events, e.g., from chronic liver

disease to cirrhosis stage (Sottoriva et al., 2015; Tao et al., 2011). For instance, most analyses have failed to

identify gene profiles or the genes that play key roles during the entire carcinogenic process of tumor

development. Animal models of hepatocarcinogenesis in mice and rats expanded our understanding of

molecular events driving HCC and identification of key signaling pathways involved in this process.

Although there is not yet a single model that fully recapitulates all aspects of human liver cancer, the avail-

ability of multiple chemical and genetic models allows us for selecting the appropriate one to investigate

the dynamic changes in hepatitis and cirrhosis stages to better prevent and diagnose cancers (CavigLia and

Schwabe, 2014). Chronic administration of diethylnitrosamine (DEN) causes liver tumors with a sequential

progression of hepatitis, cirrhosis and tumor formation. Comparing to the 34% of induction rate for mice,
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recent studies demonstrated that Sprague-Dawley (SD) rats treated with 10 weekly doses of DEN (70mg/kg

body weight, intraperitoneally) develop HCC with up to 80% (CavigLia and Schwabe, 2014). This DEN-

induced rat HCCmodel closely mimics human liver cancer development, which typically involve sequential

stimuli for initiation and progression. DEN is administered to cause DNA damage, that can induce hepa-

tocellular injury, compensatory proliferation, inflammation (1�8 weeks after first DEN treatment), followed

by cirrhosis (8�16 weeks). Ultimately, it leads to the amplification of initiated cells and clonal expansion to

form tumors (16�22 weeks) (Magee and Barnes, 1956). Therefore, this experimental model of HCC can

reproduce the frequent alterations of the hepatic environment. The genetic and transcriptomic landscape

of this rat model remains to be investigated in detail, particularly at hepatitis and cirrhosis stages.

It is well accepted that chronic inflammation is a key driver of disease progression in the prototypical eti-

ologies of HCC (Llovet et al., 2016). As a central player in immunoregulation, the liver ensures organ and

systemic protection while maintaining immunotolerance (Jenne and Kubes, 2013). A dysregulated immune

system plays a key role in the development of HCC. Persistent up-regulation of inflammation signals leads

to changes in the number and/or function of immune cells, altered immunological, survival and prolifera-

tion signals, and subsequently, the induction of tumorigenesis (Notas et al., 2009; Robinson et al., 2016)

Moreover, the deregulation of innate and adaptive immune systems also enable the liver fail to detect

and eliminate the transformed cells (Ringelhan et al., 2018). However, the roles of immunotolerance mech-

anisms and immune cell subsets involved in the progression of chronic liver disease are poorly understood.

Thus, understanding the immunological network of the liver and alterations to the microenvironment in

DEN-induced rat HCC model is also vital for liver cancer research.

RESULTS

DEN-Induced Hepatocarcinogenesis in Rat

We used a well established protocol to generate a genotoxic hepatocarcinogenesis model wherein 36

male SD rats were administered 10 once-weekly doses of DEN (intraperitoneal injection, 70 mg/kg body

weight) for 10 weeks (Figure 1A). To capture developing stages of inflammation, cirrhosis, and liver tumor,

we sacrificed 12 rats at fifth weeks, 14th weeks, and 24th weeks, respectively. At the fifth week after the first

DEN administration, inflammatory infiltration occurred in 9 of 12 rats, which represents the liver hepatitis

(LH) stage (Figure S1). Pathological histology in livers from this group showed hepatocyte swelling, expan-

sion of some portal areas, and inflammatory cell infiltrating in portal duct areas. At the 14th week, liver

cirrhosis (LC) occurred in 10 of 12 rats, which represent the stage of LC stage (Figure S1). Results of path-

ological sections showed fibrous tissue hyperplasia, fibrous bands, and significant portal-to-portal and por-

tal-to-central bridging with pseudolobular formation in livers from this group. At the 24th week, 7 of 12 rats

developed multiple, macroscopically identifiable tumors, and among which 6 developed HCC, which

represent the stage of HCC (Figure S1). Tumor nodule from livers in this group showed tumor cells ar-

ranged irregularly, small cell change with high cell density and cytological atypia. As for the sample collec-

tion, 3 rats of 9 with the occurrence of inflammatory infiltration (at week 5), 3 rats of 10 with the occurrence of

cirrhosis (at week 14), and 3 rats of 6 with the occurrence of HCC (at week 24) were chosen, and one path-

ologic tissue sample from each of the rat, which have similar histological character in each group, was

collected to perform the whole-exome sequencing (WES). Three histologically confirmed HCC from 3

rats were collected to perform WES. As for the control group, we used the liver tissues from the control

rats sacrificed at the fifth week to perform WES and gene expression microarray profiling (Figure 1B).

Genomic and Transcriptomic Variations in Liver Cancer Developing Stages

To understand the molecular basis of hepatocarcinogenesis, we investigated the genomic and transcrip-

tomic variations in the rat model of DEN-induced HCC. Our analysis revealed that 88.4% of point mutations

are non-synonymous, with no detectable bias in distribution of missense, intorn/intergenic and other non-

synonymous mutations across different stages (Figure 2A and Table S1). As expected, the HCC stage car-

ried the highest mutation burden (52.3 missense mutations per megabase) (Figure 2A). In addition, an

attenuate mutation load was observed in LC samples. By analyzing all 96 possible substitutions based

on trinucleotide context, we revealed highly consistent mutation signature across all DEN-treated rat sam-

ples (Figure S2A). Among these SNV mutations, C>T transitions was the most frequent SNV, following by

T>C transitions. Furthermore, we applied a non-negative matrix factorization method to analyze the 96

substitution patterns (see Methods) and identified mutational signatures in all stages (Figure 2B). Two sig-

natures were identified in HCC samples, wherein Signature 1 was characterized by the prominence of C>T

transitions at NpCpG trinucleotides, while Signature 2 was characterized by T>A transversions at NpTpG
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trinucleotides, and T>C transitions at NpTpC trinucleotides. The signatures matched the previously iden-

tified signature 12, 16, 3, and 5 for human cancers (Figure S2B), which are described in the Catalog of So-

matic Mutations in Cancer database (Tate et al., 2019). Specifically, the signature 12 and 16 were exclusively

found in liver cancer, while signature 3 and 5 were identified in most cancer types (Alexandrov et al., 2013).

To seek evidence for important genes of hepatocarcinoma in our rat model, we explored several existing

human liver cancer cohorts. These mutated genes in our DEN-induced HCC rat captured about half of

those in TCGA Liver HCC (Totoki et al., 2017), Schulze et al. (Schulze et al., 2015), Ahn et al. (Ahn et al.,

2014) or Harding et al. (Harding et al., 2019) cohort (Figure S2C). Additionally, we identified 38 recurrently

mutated genes (mutation frequency >5% in at least two cohorts), including the tumor suppressor genes

TP53, and oncogene CTNNB1 in WNT pathway (Figure S2D). We checked the mutation status of specific

genes in additional DEN treatment rat sample, such as Dnah5 and Fras1 (Figure S3). The corresponding

mutation points were found in additional DEN treatment rat samples. We further built the phylogenetic

tree by using R package ape (Paradis et al., 2004). In particular, pair-wide distances between samples

were calculated as the number of genomic loci where the sample genotypes differ as described by previous

study (Connor et al., 2018). As expected, samples in the same groups were closer (Figure S4A). After devel-

oping LH, rat livers were more genetically heterogeneous as they develop to cirrhosis/HCC. Furthermore,

we found that genomic variants in aberrant growth and genomic instability occurred from early stage of

hepatocarcinogenesis, such as ‘‘mitotic spindle’’ and ‘‘TGF beta signaling’’ (Figure S4B).

We further characterized transcriptomic changes in each stage by comparing gene expression with those

normal control samples. We detected 855, 966, and 2,601 differentially expressed genes in LH, LC, and

A
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Figure 1. DEN-Induced Hepatocarcinogenesis in Rat Models

(A) Schematic diagram of the timeline for DEN-induced liver cancer rat model. Cohorts of SD male rats were either

injected intraperitoneally with a dosage of 70 mg/kg DEN or distilled water once per week for 10 weeks. Liver samples

were collected from cohorts of LH, LC, and HCC after administration of DEN for in 5, 14, and 24 weeks, respectively.

(B) Representative photomicrographs of serial sections of liver tissue from DEN-treated rats. H&E staining demonstrates

tissue morphology. Original magnification, 340 or 3100, as indicated.

See also Figure S1.
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HCC stage, respectively (Figures 2C and S5 and Table S2). Only a few dysregulated genes were shared by

all stages, while the majority were HCC-specific (80.8%, 2,102) (Figure 2D). In addition, most HCC-specific

dysregulated genes contributed to cell proliferation such as ‘‘MYC targets’’ and ‘‘G2M checkpoints’’,

whereas stages-shared dysregulated genes were involved in liver metabolism such as ‘‘bile acid meta-

bolism’’ and ‘‘glycolysis’’ (Figure S5).

Characterization of Changing Genome and Transcriptome during Hepatocarcinogenesis

Our DEN-inducedmodel represents the progressive stages of liver cancer, which enables us to capture the

molecular changes from stage to stage. In order to characterize the mutagenesis during hepatocarcino-

genesis, mutated genes were divided into 7 groups according to their mutated stages, wherein HCC stage

witnessed a burst of mutagenesis with 1,195 mutated genes (Figure 3A and Table S3). Notably, the muta-

tions of quite a number of genes (461 genes) occurred from the LH stage, which were in enriched in ‘‘WNT

beta-catenin signaling’’, ‘‘apical junction’’ and ‘‘coagulation’’ (Figure 3B). Moreover, 91 genes were found

to bemutated from LCmutations, which were involved inmore cancer-related hallmarks such as ‘‘IL2 STAT5

signaling’’, ‘‘WNT beta-catenin signaling’’ and ‘‘TGF beta signaling’’. As expected, the burst of transcrip-

tional dysregulation happened in HCC stage (Figure 3C and Table S4 and S5). Interestingly, the progress

from hepatitis to cirrhosis stage showed less transcriptional dysregulation, compared to those from
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Figure 2. Genomic and Transcriptomic Variations in Each Stage of Liver Cancer Development

(A) Upper bar plots show the percentages of different mutation types in each stage, and lower bar plots are mutation

burden (missense mutation) in different stages.

(B) Patterns of mutation signatures in each stage.

(C) Hierarchical clustering of significantly differentially expressed genes in DEN-treated rats from samples of hepatitis,

cirrhosis, and hepatocellular carcinomas. Red color indicates higher expression level compared with the control, while

blue shows lower expression.

(D) Venny plot presents overlaps of differentially expressed genes among LH, LC, and HCC stages.

See also Figures S2 and S5, and Table S2.
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hepatitis and from cirrhosis to liver cancer, which was implicated by the closer clustering and similar expres-

sion pattern as well (Figures 2C and S6A). The expression similarity between LH and LC was also observed

in these human samples (Figure S6B). In addition to the transcriptional dysregulation burst from LC to HCC

stage, we found 16 and 60 genes showed continuous up-regulation and down-regulation across the pro-

gressive stages, respectively (Figure 3D). To further characterize the biological changes across the progres-

sive stages during hepatocarcinogenesis, we calculated the scores of key hallmarks in each stage (see

Methods). The tumor-suppressive activities showed sharp decrease from LC to HCC stage, whereas onco-

genic activities displayed up-regulation or maintained high levels (Figure 3E). However, some tumor-sup-

pressive pathways showed the highest activity in LC stage such as Notch signaling pathway. Moreover,

prior to the increase in HCC stage, PI3K-AKT-mTOR signaling pathway displayed sharp down-regulation

from LH to LC stage. Intriguingly, cell proliferation exhibited a decline in LC and then increased in liver can-

cer. The immune-related hallmarks continued up-regulation until LC, then declined in liver cancer. In sum,

A

C

D E

B

Figure 3. Characterization of Changing Genome and Transcriptome during Hepatocarcinogenesis

(A) The number of genes in different mutation patterns.

(B) Significantly enriched hallmarks for genes that have mutations in all stages and last two stages, respectively.

(C) Differentially expressed genes in each stage compared to its prior stage.

(D) Gene counts in various expression changing patterns. Left heatmap shows continuous up-regulation genes, and right

heatmap shows continuous down-regulation genes.

(E) The dynamic changes of hallmarks during DEN-induced liver carcinogenesis.

See also Table S3 and Table S4.
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the decrease of cell proliferation, high-level tumor-suppressive activities and active immune response in LC

suggested that drastic rivalry between anti-tumor and oncogenic strength occurred in cirrhosis. Presum-

ably, enhancing anti-tumor strength such as Notch signaling pathway or suppressing oncogenic factors

such as PI3K-AKT-mTOR signaling pathway in LC would be helpful for preventing the transition from

cirrhosis to liver cancer.

Identification of the Key Signaling Pathways Involved in Hepatocarcinogenesis

To further elucidate the regulation of pathways in the progression from LH to cancer, we performed KEGG

pathway analysis of dysregulated genes that showed differential expression or mutation in transformed tis-

sues compared to normal tissues. The majority of dysregulated pathways in LH stage were related to

inflammation, such as ‘‘Toll-like receptor signaling’’, ‘‘PPAR signaling’’, and ‘‘TNF signaling’’ (Figure 4A).

Most disordered pathways in HCC stage were tumor-related, including ‘‘AMPK signaling’’, ‘‘PI3K-Akt

signaling’’, ‘‘MAPK signaling’’, and ‘‘p53 signaling’’. As the transitional stage from LH to HCC, the LC stage

A

B

Figure 4. Integration Analysis Identified the Key Affected Signaling Pathways Involved in Hepatocarcinogenesis

(A) The significantly enriched signaling pathways by dysregulated genes in LH, LC, and HCC stages.

(B) The dysregulation of PI3K signaling pathway. Nodes with red borders indicate genes with mutation in HCC stage.

Nodes in pink represent higher expression in HCC, while blue ones represent genes with lower expression. The size of

nodes show the closeness of genes in the network.
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showed a mixture of tangled inflammation and tumor-related signaling pathways (Figure 4A). Interestingly,

some tumor-related signaling pathways, including ‘‘FoxO signaling’’ and ‘‘p53 signaling’’ were perturbed

from the initiation of liver cancer, suggesting a potential molecular mechanism for hepatocarcinogenesis.

Of note, the ‘‘PI3K-Akt signaling’’ pathway harbored the most dysregulated genes in HCC, that 26 and 50

genes were observed to differentially expressed and mutated, respectively (Figure 4B). In the centered

PI3K, Pik3r1 was down-regulated, and Pik3cd and Pik3cb harbored mutations, which were a missense mu-

tation in Pik3cd (GenBank: NM_001108978, c.T2084C, p.F695S) and an intron mutation in Pik3cb, respec-

tively. Our results suggested that the PI3K pathway might play important roles in the development of liver

cancer.

Biological and Clinicopathological Significance of PIK3CD in HCC

Through the integrative analysis of mutation and expression data, we identified an important oncogenic

network, PI3K-Akt signaling pathway, wherein PI3K plays central roles. To determine the effect of PI3K-

Akt activities on liver tumor growth, we performed loss-of-functional studies in HCC cell lines. The results

showed that the knockdown of the PIK3CB did not affect the cell proliferation and colony formation of HCC

cells in HepG2/C3A and Huh 7 cell lines (Figures S7A–S7F). In addition, the knockdown of PIK3R1 was

observed to markedly promote HCC cell proliferation in Huh 7 cells but not in HepG2/C3A cells (Figures

S7G–S7J). Notably, the knockdown of the PIK3CD significantly inhibited the proliferation and colony for-

mation of HCC cells in HepG2/C3A and PLC/PRF/5 cell lines (Figures 5A and 5B).

To further determine the clinicopathological significance of PIK3CD in HCC, we investigated the protein

level of PIK3CD by using immunohistochemical staining in a tissue array that included 118 paired HCC

and adjacent non-tumor tissues. The results were graded from 0 to 3 depending on the average number

of PIK3CD-positive cells in the aggregated field (Figure 5C). The results showed that PIK3CD was primarily

localized in the cytoplasm. Notably, high PIK3CD expression was found in primary HCC samples compared

with adjacent non-tumor tissues (p = 0.00069), thus indicating that an increase in PIK3CD expression is a

frequent event in HCC (Figures 5D and 5E). Furthermore, we evaluated the relationship between PIK3CD

expression and early recurrence (less than 3 years) by analyzing tumor liver tissue of early stage HCC pa-

tients undergoing curative ablation. We found that high expression of PIK3CD was significantly associated

with early recurrence (Figure 5F). These results suggest that PIK3CD may represent useful biomarkers for

the risk of HCC recurrence and may be used to identify patients who should be closely monitored after

curative HCC ablation.

Dynamic Immune Response during Hepatocarcinogenesis

Despite themolecular lesions, the immunological microenvironment has been shown to play crucial roles in

the development of liver cancer (Makarova-Rusher et al., 2015), and we observed immunology reprogram-

ming in our hepatocarcinogenesis rat model (Figures 3E and 4A). To maximize the utility of our hepatocar-

cinogenesis model in understanding extensive molecular dynamics during the development of liver cancer

and their clinical implications, we then analyzed the compositions of different immune cells in each sample

across all stages based on gene expression profile (See Methods). We observed composition changes of

immune cell types in different stages (Figure 6A). Some of the cell types keep stable abundance, such as

memory B cells, whereas some showed notable changes among different stages, such as resting dendritic

cells andmonocytes. Moreover, memory B cells andmonocytes are themajor parts of immune composition

in normal samples, while HCC samples primarily comprise memory B cells and resting dendritic cells. In

particular, we found a consecutive decrease of monocytes (Figure 6B), and a significant decrease of M0

macrophages from LC to HCC stage was observed (Figure 6C). In addition, an increase of M1 macro-

phages, and resting dendritic cells during the progress of hepatocarcinogenesis (Figures 6D and 6E), which

might indicate that macrophage activation erupts during the transition from LC to HCC. These results sug-

gest that initiation of liver cancer might stimulate the differentiation of monocytes into activated macro-

phages and dendritic cells. Furthermore, we found a co-regulation of activated mast cells, CD8 T cells,

and follicular helper T cells, wherein the decline of cell abundance in LC stage was followed by an increase

in HCC (Figure 6F). The decrease of these immune cells in LC stage might indicate a repaired microenvi-

ronment or immune evasion in LC stage. Additionally, we also observed a shift in the immune status of na-

ture killer cells (Figure 6G). Specifically, an abundant decline in activated natural killer (NK) cells was accom-

panied by an increase in resting NK cells in LH stage, which was followed by a sharp increase of activated

NK cells and a concurrent decline of resting NK cells in the LC stage (Figure 6G). To validate the perfor-

mance of cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) on
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tumor-infiltrating leukocytes (TILs) cell subsets, we performed immunohistochemistry (IHC) to evaluate the

expression of CD14 and CD56 on TILs. We found difference in the density of CD14 and CD56 positive cells

among the four developments stages. Consistent with the immune gene expression evolution, CD14 pos-

itive monocytes/macrophages showed an increase during the progress of hepatocarcinogenesis. Addi-

tionally, we also observed an abundant decline of CD56 positive NK cells in LC stage, which was followed

by a sharp increase of NK cells in HCC stage (Figure S8). The shift of NK status mirrors the dynamic response

of immune system to the progress of hepatocarcinogenesis. Taken together, our analysis revealed dynamic

immune configurations during the development of liver cancer. The differentiation of monocytes into den-

dritic cells and macrophages during hepatocarcinogenesis suggest an immune response mechanism for

the initiation liver cancer.

DISCUSSION

HCC is an inflammation-driven disease, 90% of which develop due to underlying chronic liver inflammation

and the induction of subsequent cirrhosis. The liver has the ability to repair itself after acute damage. In

chronic hepatitis stage, constant cell death, compensatory regeneration, and activation of other cells,

A

C

E F

D

B

Figure 5. Biological and Clinicopathological Significance of PIK3CD in HCC

(A) Representative CCK-8 assays showing proliferation of HepG2/C3A and PLC/PRF/5 cells after PIK3CD knockdown.

(B) Colony formation assay showing the effect of PIK3CD knockdown on proliferation of HepG2/C3A and PLC/PRF/5 cells.

(C) Representative images of PIK3CD immunohistochemistry of liver biopsies from HCC patients.

(D) Representative case of PIK3CD expression is shown for HCC and adjacent non-tumor tissues. Original magnification,

3400.

(E) IHC analysis of PIK3CD in 118 paired HCC and adjacent non-tumor tissues. The p-value was determined by McNemar

test.

(F) Kaplan-Meier analysis of the correlation between PIK3CD expression and recurrence-free survival of 95 HCC patients.

Log rank tests were used to determine statistical significance. (Data are represented as mean G SEM, **p < 0.01).

See also Figure S7.
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promote LC and tumorigenesis. Connor et al. compared mutation signatures between liver tumors for

DEN-treated and untreated mice, and human HCCs by using mouse model of DEN-initiated HCC (Connor

et al., 2018). They provided insights into the mutational landscape of DEN-initiated HCC mouse model,

which facilitated the better understanding of this disease model. However, dynamic molecular changes

during the progressive development from normal liver to HCC still remain vague. In the present study,

we characterized the dynamic molecular changes underlying hepatocarcinogenesis from our rat model es-

tablished for stepwise carcinogenesis stages of hepatocarcinoma, including hepatitis, cirrhosis, and liver

cancer.

During the process of hepatocarcinogenesis in our rat model, chronic inflammation preceded cirrhosis and

ultimately led to carcinoma. Interestingly, the most frequent SNVs in the hepatitis and cirrhosis stages were

NCG>T (or the complement, CGN>A). NCG>T is a signature of genomic instability in cancer and normal

A

C

F G

D E

B

Figure 6. Dynamic Immune Response during Hepatocarcinogenesis

(A) The abundance estimation of different immune cell types in LH, LC, and HCC stages.

(B–E) (B) Monocytes show continuous decrease during liver cancer development. M0 macrophages (C), M1 Macrophages

(D), and resting dendritic cells (E) show increase during hepatocarcinogenesis.

(F) Activated mast cells, CD8 T cells, and follicular helper T cells show co-regulation during hepatocarcinogenesis.

(G) The shift of immune status for NK cells during hepatocarcinogenesis.

See also Figure S8.
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cells (Alexandrov et al., 2013; Welch et al., 2012), thus indicating that genomic instability occurred in the

stage of LH. Genomic instability and mutation are clearly enabling characteristics that are causally associ-

ated with the acquisition of hallmark capabilities, which endow cancer cells with genetic alterations that

drive tumor progression (Hanahan and Weinberg, 2011). Therefore, this mutability observed in LH may

be achieved through increased sensitivity tomutagenic agents. We identified twomutation signatures (Fig-

ure 2B) in DEN rat HCC samples, i.e. HCC S1 and HCC S2. The mutation profile of HCC S2 is quite similar to

that of DEN mouse HCC as shown in Figure 4A of Connor et al. paper, which are both characterized with

C>T, T>A and T>C. Compared to DEN mouse HCC, HCC S1 lacks T>A mutations, which may due to the

heterogeneity of hepatocarcinogenesis. In addition, we compared cancer genes that presented in Connor

et al. paper between DEN rat and mouse. We found 46 cancer genes that were mutated in DNE mouse but

not DEN rat, such as Gata3 and Notch1 (Table S6). Comparison that include large cohorts of rat and mouse

HCC samples will reveal more mutation differences.

p53 signaling pathway is a major tumor-suppressor pathway, the activation of this signaling pathway also

indicated that the aberrant cell survival or proliferation signals and disorder of genome integrity had

already occurred in the early stage. Our results suggest that the genomic instability in LH activated the

p53 signaling pathway and initiated DNA repair, thereby maintaining or reducing the number of somatic

mutations in the cirrhosis stage. One striking observation is that an oncogenic pathway, PI3K-Akt/FoxO

signaling pathway, has been already activated in the hepatitis stage. Activation of the Akt pathway sup-

presses transforming growth factor b-induced apoptosis and growth-inhibitory activity of CCAAT/

enhancer binding protein a. These results suggested this effect may promote tumor formation at the

very early stage. Furthermore, integrative analysis of gene mutations and expression identified PI3K-Akt

pathway as one of the oncogenic networks. An activation of PI3K-Akt signaling and impaired expression

of phosphatase and tensin homolog (a negative regulator of Akt) have been reported in 40–60% of human

HCC. Although the activation of oncogenic pathways in human HCC appears to be more heterogeneous

compared with other cancer types, activation of PI3K-Akt signaling pathway may occur early and

throughout in human hepatocarcinogenesis.

Increasing evidences suggest that a dysregulated immune system, including changes in the number or

function of immune cells significantly contribute to the development of HCC. Our data show that the dy-

namic response of different immune cell types, reflecting the battle between immune surveillance and

cancerous lesions, occurs at early stages of pre-malignant transformation and the initiation of carcinoma,

which supports the hypothesis of immune surveillance in pre-cancerous lesions. It has been reported that

macrophages play a critical role in hepatic progenitor cell (HPC) expansion to chronic liver injury and HPC-

mediated hepatocellular regeneration (Boulter et al., 2012; Viebahn et al., 2010). Our study revealed

decrease of monocytes and increase of macrophage subtypes during the progress of hepatocarcinogen-

esis, reflecting the activation of the hepatocellular regeneration and contribute to chronic inflammation.

Tumor-related cytotoxic T cells, CD4+ T cells, NK cells, and the cross talk between them have all been re-

ported to be involved in the development of HCC (Cariani and Missale, 2019; Ringelhan et al., 2018). Co-

regulation of immune cells from both innate and adaptive immunity showed significant decline of most LH-

increased immune cells in LC groups, which suggests that T cell and NK cell exhaustion contribute to the

escape of liver cancer cells from immune surveillance might occur in LC stage. Our observation proposed

an immunological intervention in LC stage, but further study is needed for the precise immunotherapy to

prevent liver cancer. Resting or immature dendritic cells induce tolerance in T lymphocytes (Abbas and

Sharpe, 2005). The continuous increased resting dendritic cells (DCs) may shift the immune response to-

ward tumor tolerance, resulting in the pre-malignant transformation.

In conclusion, we report a comprehensive genomic and transcriptomic analysis of DEN-induced rat HCC

resulting from hepatitis, cirrhosis of hepatocytes, and their malignant transformation, in which the earliest

molecular alterations affect proliferation and metabolism. Integrated analyses revealed several key

signaling pathways and biological processes in the pathogenesis of HCC. These observations have a po-

tential clinical impact to guide the identification of novel therapeutic targets and/or stratify patients with a

high risk of malignant transformation whomay require more aggressive treatment. In addition, models that

encompass heterogeneity in carcinogen exposure may also be useful for the preclinical screening of cancer

therapeutics.
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Limitations of the Study

In this work, we comprehensively characterize the molecular changes during hepatocarcinogenesis by us-

ing a rat HCC model. One limitation of our study is the relatively small sample size of rat model. Tracing

molecular changes during hepatocarcinogenesis in human is a huge challenge, and re-building rat HCC

model is time consuming. Our proposed analytical strategy is worth testing in larger sample size.
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Transparent Methods 

Generation of hepatocarcinoma rat models 

Male Sprague-Dawley (SD) rats weighing 120 to 150 g at the beginning of the experiments were 

obtained from SLAC Laboratory Animal Co. Ltd. (Shanghai, PR China). The animals were 

acclimatized to standard laboratory conditions (temperature 22-25°C, relative humidity 50-60%, 

and 12-hour photoperiods (lights on 07:00-19:00)) and were housed in stainless steel wire-mesh 

cages (3 rats per cage). During the entire period of study, the rats were supplied with a semipurified 

basal diet and water ad libitum. All experiments followed the Guide for the Care and Use of 

Laboratory Animals. 

Collecting rat samples 

Briefly, 50 SD rats were randomly divided into two groups: the control (14 rats) and 

diethylnitrosamine (DEN, Sigma Chemical Co. St Louis, MO) groups (36 rats; 12 for the hepatitis 

group, 12 for the cirrhosis group, and 12 for the carcinoma group). After 1 week on a basal diet, 

rats belonging to the DEN group were injected intraperitoneally with a dosage of 70 mg/kg of 

DEN once per week for 10 weeks. Animals that belonged to the control group were injected with 

distilled water. The rats were sacrificed with 1.5% (g/ml) pentobarbital sodium (30 mg/kg) by 

intraperitoneal injection at different time points. At the end of the 5th (hepatitis group), 13/14th 

(cirrhosis group) and 23/24th (carcinoma group) weeks after DEN-treatment, 12 rats were 

sacrificed, respectively. The entire liver of each rat was observed grossly and weighed. The 

samples from each rats were collected and divided into pieces. Some samples were snap-frozen 

directly in liquid nitrogen and stored at -80°C prior to DNA and RNA isolation for microarray 

analysis. The remaining pieces were preserved in 10% phosphate-buffered formalin. The liver 

tissue fixed in neutral formalin was embedded in paraffin, sectioned, and stained with 

haematoxylin and eosin (H&E). Histopathologic examinations of the liver sections were conducted 

by a pathologist. 

DNA/RNA extraction 

DNA was isolated using the Qiagen reagents and total RNA was isolated using TRIzol reagent 

(Invitrogen, Carlsbad, CA). Genomic DNA from tumour samples weighing up to 10 mg was 

extracted using the QIAamp DNA Micro Kit (Qiagen, Waltham, MA) following the 

manufacturer’s instructions. 

Illumina library construction and sequencing 
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To characterize the somatic mutation spectrum during hepatocarcinogenesis, we performed whole-

exome sequencing (WES) on 12 liver tissues, including 3 from control group, 3 from liver hepatitis 

group (LH), 3 from liver cirrhosis group (LC), and 3 from HCC group. All methods for library 

construction were performed as described in the SeqCap EZ Library protocols (Roche NimbleGen, 

Madison, WI). Genomic libraries were prepared using the SepCap EZ Developer Library for rats 

per the manufacturer’s instructions (Roche NimbleGen). Each exome was sequenced using the 100 

bp paired-end protocol on an Illumina HiSeq 2000 DNA Analyzer to produce approximately 12 to 

20 Gb of sequence per exome. 

Processing DNA sequencing data 

For each sample, low-quality bases were removed from the raw sequencing reads by using 

Trimmomatic (version 0.38)(Bolger et al., 2014). Then the trimmed reads were aligned to the 

reference rat genome (rn6) using BWA (version 0.7.17)(Li et al., 2010). After alignment, 

MarkDuplicates program (version 2.18.27) in Picard was employed to mark the duplicate reads. 

We then recalibrated the base quality scores and realigned reads around indels using GATK 

(version 3.8-0)(McKenna, Aaron, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian 

Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel et al., 2010). 

Alignment and coverage metrics were then collected. Specifically, we sequenced an average of 

102 million unique on-target reads per sample and the targeted exonic regions were sequenced to 

an average depth of 142x. 

Identification and annotation of SNVs  

SNVs were identified using the somatic variant detection program MuTect2 in GATK (version 3.8-

0). Each sample was called against DNA taken from normal livers isolated from the control group. 

Rn6 served as the reference genome during the mutation calling process. Each set of variants was 

then used to generate a subset of variants that passed MuTect2 filters and had a minimum read 

depth of 10. The associated data were then called for variants using MuSE (version 1.0rc)(Fan et 

al., 2016), SomaticSniper (version 1.0.5.0)(Larson et al., 2012) and VarScan2 (version 

2.3.9)(Wilson et al., 2012). Variants from each caller were then filtered for sites with a minimum 

quality of 20 and minimum depth of 10. Variants called by a minimum of two softwares were 

filtered for downstream analysis. Surviving variants were annotated using SnpEff (version 

4.1)(Cingolani et al., 2012).  

Mutation spectra analysis 
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SNVs in all samples were annotated on the basis of the 96 possible tri-nucleotide context 

substitutions (6 types of substitutions × 4 possible flanking 5' bases × 4 possible flanking 3' bases) 

and summed for each sample, thus creating a matrix of 96 substitutions. The signeR package, 

which employed an empirical Bayesian treated non-negative matrix factorization (NMF) approach 

for mutational signature discovery(Rosales et al., 2017), was applied to mutation counts to infer 

the number of operating mutational signatures and the mutational signatures (96 normalized 

weights per process) in each sample. 

Gene expression analysis 

Total RNAs from three samples of each group were extracted for the GeneChip analysis. Biotin-

labelled cRNA samples were used for hybridization of Affymetrix GeneChip Rat Genome 230 2.0 

arrays. The arrays were prepared according to the protocol supplied with the GeneChip Sample 

Clean up module (P/N 900371, Affymetrix Inc., Santa Clara, CA). The microarray expression data 

was deposited in the Gene Expression Omnibus (GEO) database under accession GSE141090.The 

probes from the same genes were merged on the basis of their average values. The differential 

analysis of gene expression between different stages was conducted by Wilcoxon rank sum test.  

Genes with fold-change > 1.5 and P value < 0.05 were considered to be statistically differentially 

expressed. 

Cell lines and cell culture 

Two liver cancer cell lines were used: HepG2/C3A (ATCC, ATCC Number: CRL-10741), and 

PLC/PRF/5 (ATCC, ATCC Number: CRL-8024). Cells were cultured in DMEM supplemented 

with 10% fetal bovine serum, 100 U/ml penicillin, and 100 μg/ml streptomycin. Cells were 

regularly certified as free of mycoplasma contamination. 

Cell proliferation and colony formation assays 

Cell proliferation was monitored by counting viable cells using the Cell Counting Kit (CCK)-8 

(Dojindo, Kumamoto, Japan). Cells were seeded at 1000 cells/well in 96-well plates and incubated. 

A 10 μl volume of the CCK-8 solution was added to the triplicate wells and incubated for 2 hours. 

Subsequently, the absorbance at 450 nm was measured to calculate the number of vital cells in 

each well. For colony formation assays, cells were trypsinized, resuspended, seeded into 6-well 

plates at a concentration of 500 cells per well, and cultured at 37°C with 5% CO2 for 2 weeks. The 

media were changed every 3-4 days. At the end of the incubation, the cells were fixed with 100% 

methanol and stained with 0.1% crystal violet. Megascopic cell colonies were counted by Image-
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Pro Plus 5.0 (Media Cybernetics, Bethesda, MD). 

Transient transfection and RNA interference 

Cells were transfected using the Lipofectamine 2000 reagent (Invitrogen) according to the 

manufacturer's instructions. The total amount of transfected plasmid DNA was kept constant 

between experimental conditions by the addition of an empty-vector plasmid. For small interfering 

RNA (siRNA) transfection, cells seeded in antibiotic-free medium at 30 to 50% confluence were 

transfected with 50 nM siRNA duplexes by using RNAiMAX (Invitrogen) according to the 

manufacturer's instructions. 

Human Tissue microarray and immunohistochemistry 

The tissue microarray was constructed as described previously (Jia et al., 2010). Core samples 

were obtained from representative regions of each tumour based on H&E staining. Duplicate 1-

mm cores were taken from different areas of the same tissue block for each case (intratumoural 

tissue and peritumoural tissue). Serial sections (4-μm-thick) were placed on slides coated with 3-

aminopropyltriethoxysilane. The immunohistochemistry analysis was carried out as described 

previously. The primary mAbs used were rabbit anti-human PIK3CD (1:100, ThermoFisher 

Scientific, Waltham, MA), rabbit anti-rat CD14 (1:4000, proteintech, Wuhan, Hubei, China) and 

rabbit anti-rat NCAM (CD56) (1:400, Cell Signaling Technology, Danvers, MA, USA). The 

PIK3CD immunostaining intensities was scored semi-quantitatively. All samples were 

anonymously and independently scored by two investigators. In cases of disagreement, the slides 

were re-examined, and a consensus was reached by the observers. 

This study also involved a set of 118 HCC patients from the Eastern Hepatobiliary Surgery 

Hospital (Shanghai, PR China). The patients had undergone curative resection for HCC, and the 

isolated tumour tissues were prepared on tissue microarray slides. Patients with HCC had first 

undergone radical resection of HCC, suffered a relapse a few years later, and then underwent a 

second resection of HCC. The follow-up procedures and postoperative treatments were based on 

a uniform guideline and have been described previously (Sho et al., 2009). Tumour differentiation 

was graded using the Edmondson grading system. Clinical staging was performed according to the 

6th edition of the AJCC/UICC TNM classification system. The data were censored at the last 

follow-up for patients without relapse or upon death. Institutional review board approval was 

obtained, and each patient provided written informed consent. 

Calculation of hallmark scores 
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The hallmark gene sets were retrieved from the Molecular Signature Database (MSigDB) 

(Liberzon et al., 2015). The hallmark score for each sample was calculated based on gene set 

variation analysis (Hänzelmann et al., 2013). In particular, we adopted the Gene Set Variation 

Analysis (GSVA) method to estimate the variation of hallmark activities over each sample in an 

unsupervised manner by employing expression profiles of genes annotated in the corresponding 

hallmarks. 

Network construction 

We first extracted the network connections of signalling pathways from the KEGG database 

(Kanehisa et al., 2017). Then dysregulated genes with differential expression or non-synonymous 

mutations were mapped to these networks. Moreover, the topology analysis and visualization of 

the networks were conducted by Cytoscape (version 3.4.0) (Paul Shannon et al., 2003). 

Functional enrichment analysis 

The list of unique genes that harbored nonsynonymous mutations or showed differential 

expression was extracted to determine the enrichment in hallmark gene sets. A hypergeometric test 

was performed to calculate the enrichment significance. The probability P was computed to assess 

the enrichment significance as following (Li et al., 2019): 

P = 1 − F(𝑥|𝑁, 𝐾, 𝑀) 

    = 1 − ∑
(𝐾

𝑡
)(𝑁−𝐾

𝑀−𝑡
)

(𝑁
𝑀

)

𝑥

𝑡=0

 

where N is the total number of all protein-coding genes annotated in GENCODE (v28), K 

represents the number of genes in the hallmark under investigation, M indicates the number of 

mutated or differential genes for analysis, and x is the number of genes shared between investigated 

hallmark and mutated or differential genes. 

Estimation of immune cell abundance 

The CIBERSORT algorithm (Newman et al., 2015) was adopted to estimate the abundance of 

different immune cell types in each sample. Specifically, the predefined LM22 signature in 

CIBERSORT method was applied for immune cell deconvolution from gene expression. The 

LM22 signature is a leukocyte gene signature which includes 547 genes that could distinguish 22 

types of hematopoietic cells. 

Ethics approval and consent to participate 

All experimental methods comply with the Helsinki Declaration. Liver cancer cell lines used in 



 

6 

 

this study were obtained by ATCC and Shanghai Second Military Medical University (Shanghai, 

China). All experiments involving animals followed the Guide for the Care and Use of Laboratory 

Animals. All work relating to human tissues was performed previously at Shanghai Second 

Military Medical University under an institutional review board-approval protocol, and each 

patient provided written informed consent. 

Statistical analysis 

The experiments were repeated at least three times, and the results are expressed as the means and 

the standard error of the mean (SEM). Student’s t tests (two-tailed) and two-way analysis of 

variance (ANOVA) were used to compare the means of two or more samples unless otherwise 

indicated. The chi-squared (χ2) test was used to evaluate the different expression of PIK3CD 

between HCC and adjacent non-tumour tissues. Significant pathways were identified using the 

hypergeometric distribution model (hypergeom). The P-values for each analysis were adjusted 

using the Benjamini-Hochberg method for multiple-testing correction. The cumulative recurrence 

and survival rates were determined using the Kaplan-Meier method (log-rank test). All data was 

visualized in R using summary statistics and basic plotting functions before statistical testing, and 

variance was comparable in all cases in which the Wilcoxon rank-sum test was used. All reported 

P-values were two tailed, and differences were considered to be statistically significant when the 

P-value was less than 0.05. 
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Supplemental Tables 

Table S6. The mutation status of 77 cancer genes in DEN rat and mouse HCC. Related to Figure 

2. 

Gene DEN rat DEN mouse 

Cdc73 Mutated Mutated 

Gata3 Non-Mutated Mutated 

Notch1 Non-Mutated Mutated 

Tsc1 Non-Mutated Mutated 

Nfe2l2 Mutated Mutated 

Asxl1 Mutated Mutated 

Gnas Non-Mutated Mutated 

Gm20721 Non-Mutated Mutated 

Pik3ca Mutated Mutated 

Fbxw7 Mutated Mutated 

Notch2 Non-Mutated Mutated 

Tet2 Non-Mutated Mutated 

Fubp1 Non-Mutated Mutated 

Pax5 Mutated Mutated 

Klf4 Non-Mutated Mutated 

Cdkn2a Non-Mutated Mutated 

Jak1 Mutated Mutated 

Arid1a Mutated Mutated 

Kmt2c Non-Mutated Mutated 

Pdgfra Mutated Mutated 

Kit Mutated Mutated 

Crlf2 Non-Mutated Mutated 

Card11 Non-Mutated Mutated 

Brca2 Mutated Mutated 

Met Mutated Mutated 

Braf Non-Mutated Mutated 
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Ezh2 Non-Mutated Mutated 

Ret Mutated Mutated 

Gata2 Mutated Mutated 

Kras Non-Mutated Mutated 

Cic Non-Mutated Mutated 

Cebpa Non-Mutated Mutated 

Idh2 Non-Mutated Mutated 

Fgfr2 Non-Mutated Mutated 

Hras Non-Mutated Mutated 

Jak3 Non-Mutated Mutated 

Cyld Non-Mutated Mutated 

Cdh1 Mutated Mutated 

Dnmt1 Non-Mutated Mutated 

Smarca4 Non-Mutated Mutated 

Cbl Non-Mutated Mutated 

Atm Mutated Mutated 

Map2k1 Non-Mutated Mutated 

Setd2 Mutated Mutated 

Mlh1 Mutated Mutated 

Myd88 Non-Mutated Mutated 

Ctnnb1 Mutated Mutated 

Egfr Mutated Mutated 

Ncor1 Mutated Mutated 

Nf1 Mutated Mutated 

Rnf43 Non-Mutated Mutated 

Erbb2 Non-Mutated Mutated 

Brca1 Mutated Mutated 

Tshr Non-Mutated Mutated 

Map3k1 Non-Mutated Mutated 

Pbrm1 Non-Mutated Mutated 
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Rb1 Mutated Mutated 

Ep300 Non-Mutated Mutated 

Arid2 Non-Mutated Mutated 

Kmt2d Non-Mutated Mutated 

Crebbp Mutated Mutated 

Runx1 Non-Mutated Mutated 

Arid1b Mutated Mutated 

Ppp2r1a Non-Mutated Mutated 

Traf7 Non-Mutated Mutated 

Axin1 Non-Mutated Mutated 

U2af1 Mutated Mutated 

Alk Non-Mutated Mutated 

Msh6 Mutated Mutated 

Apc Mutated Mutated 

Csf1r Non-Mutated Mutated 

Smad2 Non-Mutated Mutated 

Setbp1 Mutated Mutated 

Men1 Non-Mutated Mutated 

Gnaq Mutated Mutated 

Jak2 Non-Mutated Mutated 

Pten Non-Mutated Mutated 
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Supplemental Figures 

 

Supplementary Figure S1. Collecting and processing rat liver samples. (A) Breakdown of 

different histological findings in each treatment group. (B) Genomic DNAs and transcriptomic 

RNAs from these samples were used for whole exome sequencing and microarray, respectively. 

Related to Figure 1.   
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Supplementary Figure S2. Mutational profiles for each stage in DEN-induced rat model of 

hepatocarcinogenesis. (A) Stacked heatmaps of mutation spectra for the LH, LC and HCC stages. 

Substitutions are shown on the left of each heatmap, while the 5’- and 3’-flanking base displayed 

down and right, respectively. (B) The cosine similarities between HCC mutation signatures and 

COSMIC signature 12, 16, 3, and 5. (C) Barplots show the percentage of mutated genes identified 

in TCGA, INSERM, AMC, and MSK cohorts. (D) The mutation landscape of recurrently mutated 

genes (>5% mutation frequency in at least two cohorts) in LH, LC and HCC stages. Barplots in 

upper panel show the number of mutated genes in each sample. Points in left panel indicate the 

mutation frequency of corresponding genes in TCGA, INSERM, AMC, and MSK datasets. Related 

to Figure 2.   
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Figure S3. IGV visualization of mutation points of specific genes, i.e. Dnah5|chr2:81020088:A-

G (A), Fras1|chr14:14582666:G-C (B), Fras1|chr14:14598459:G-A (C), Fras1|chr14:14598508:C-

T (D). Bars indicate reads coverage mapped in the corresponding loci. Related to Figure 2. 
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Supplementary Figure S4. The mutational relationship and enrichment analysis of mutated 

genes among different stages. (A) Phylogenetic analysis of DEN treatment rat samples. The 

functional enrichment analysis of genes wiht non-synonymous mutations in LH stage (B), LC 

stage (C) and HCC stage (D). LH, liver hepatitis; LC, liver cirrhosis; HCC, hepatocellular 

carcinoma. Related to Figure 2. 
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Figure S5. The significance and functional enrichment analysis of differentially expressed genes 

in LH stage (A), LC stage (B), and HCC stage (C). Related to Figure 2. 
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Figure S6. PCA analysis of gene expression among different stages. (A) PCA analysis of 

samples in LH, LC and HCC stages from DEN-induced rats. (B) PCA analysis of samples in 

normal, LH and LC stages from a human cohort (GSE83148). Related to Figure 3. 
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Figure S7. Biological function of PIK3CB and PIK3R1 in HCC. (A) The PIK3CB mRNA level 

in Huh 7 cells transfected with small interfering RNA (siRNA) against PIK3CB. (B) 

Representative CCK-8 assays showing proliferation of Huh 7 cells after PIK3CB knockdown. (C) 

Colony formation assay showing the effect of PIK3CB knockdown on proliferation of Huh 7 cells.  

(D) The PIK3CB mRNA level in HepG2/C3A cells transfected with small interfering RNA (siRNA) 

against PIK3CB. (E) Representative CCK-8 assays showing proliferation of HepG2/C3A cells 

after PIK3CB knockdown. (F) Colony formation assay showing the effect of PIK3CB knockdown 

on proliferation of HepG2/C3A cells. (G) The PIK3R1 mRNA level in Huh 7 cells transfected with 

small interfering RNA (siRNA) against PIK3R1. (H) Representative CCK-8 assays showing 

proliferation of Huh 7 cells after PIK3R1 knockdown. (I) The PIK3R1 mRNA level in HepG2/C3A 

cells transfected with small interfering RNA (siRNA) against PIK3R1. (J) Representative CCK-8 

assays showing proliferation of Huh 7 cells after PIK3CB knockdown. Related to Figure 5.   
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Figure S8. IHC sections of liver tissues. (A) Representative image of CD14 expression are shown 

for liver tissues among the four stages. (B) Representative image of CD56 expression are shown 

for liver tissues among the four stages. Red arrows indicate CD14 positive 

monocytes/macrophages. Magnification: a, b, c, and d, × 10; e, f, g, and h, × 40; B, × 10. Related 

to Figure 6. 
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