
RESEARCH ARTICLE

Noise-precision tradeoff in predicting

combinations of mutations and drugs

Avichai Tendler, Anat Zimmer, Avi Mayo, Uri AlonID*

Dept. Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel

* uri.alon@weizmann.ac.il

Abstract

Many biological problems involve the response to multiple perturbations. Examples include

response to combinations of many drugs, and the effects of combinations of many muta-

tions. Such problems have an exponentially large space of combinations, which makes it

infeasible to cover the entire space experimentally. To overcome this problem, several for-

mulae that predict the effect of drug combinations or fitness landscape values have been

proposed. These formulae use the effects of single perturbations and pairs of perturbations

to predict triplets and higher order combinations. Interestingly, different formulae perform

best on different datasets. Here we use Pareto optimality theory to quantitatively explain

why no formula is optimal for all datasets, due to an inherent bias-variance (noise-precision)

tradeoff. We calculate the Pareto front of log-linear formulae and find that the optimal for-

mula depends on properties of the dataset: the typical interaction strength and the experi-

mental noise. This study provides an approach to choose a suitable prediction formula for a

given dataset, in order to best overcome the combinatorial explosion problem.

Author summary

Sometimes a combination of drugs works much better than each drug alone. Finding such

drug cocktails is a pressing challenge in order to combat drug resistance and to improve

drug effects. However, it is impossible to test all combinations of multiple drug experi-

mentally. Therefore, researchers are looking for computational rather than experimental

approaches to overcome this problem. One approach is to measure the effect of few drugs

and plug it into a formula that predicts the effect of many drugs together. Existing predic-

tion formulae typically perform best on the dataset that they were developed on, but less

well on other datasets. Here we explain this observation and give a guide for the choice of

an optimal prediction formula for a given dataset. The optimal formula depends on two

main properties of the dataset: 1) The interaction strength between the drugs and 2) The

experimental noise in the data. This study may help researchers discover effective combi-

nations of multiple drugs and multiple perturbations in general.
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Introduction

Different fields of biology ask how multiple perturbations affect a biological system. For exam-

ple, to understand the function of DNA sequences such as promoters or coding regions, or to

design new ones, it is important to understand how mutations combine to affect function [1–

4]. Another widely studied example is how multiple drugs combine to affect cells and organ-

isms. This question is important for developing effective combination therapy [5–9] and to

reduce drug resistance [10–14].

A major challenge in these fields is the combinatorial explosion problem: the number of

combinations increases exponentially with the number of perturbations. Given n different sin-

gle perturbations, there are 2n possible combinations. In DNA sequences there are 4n combi-

nations of bases so that sequences of 30bp have 1018 possible combination. Drugs present the

additional dimension of doses, so that 8 drugs at 6 doses amount to 68�106 combinations.

Therefore, the number of combinations quickly outgrows experimental ability.

To overcome the combinatorial explosion problem, there are two main approaches. In the

case of sequences, one can use directed evolution to find sequences with desired function [15–

19]. This approach is powerful and is based on exponential expansion of the sequences with

highest function. However, experimental evolution still covers only a tiny fraction of sequence

space and has the potential to get stuck on local optima. In the case of drugs this approach is

not feasible.

The other main approach is to use mathematical models to estimate the effects of combina-

tions using only a small number of measurements. Machine learning studies use regression-

like models to estimate drug and mutation effects based on a learning set of measurements

[20–24]. For example [4] analyzed combinations of mutations on the lac promoter, and [25]

analyzed a library of mutation in green fluorescent protein. One limitation of machine learn-

ing is that it requires extensive training data, which may exceed experimental ability when

samples are rare and perturbations are costly, as in the case of drug combinations.

To overcome the lack of large training datasets, another line of research establishes analyti-

cal formulae to estimate combination effects based on, for example, measurements of single

perturbations and pairs. Analytical formulae can include knowledge about the biology of the

system and can therefore be more effective than machine learning when data is scarce. The

most common baseline model, that seems to work well as a first approximation in many cases,

is Bliss independence [26] in which the effect of a pair of perturbations is the product of the

single perturbation effects, sij = sisj. Bliss independence is equivalent to additivity in log-effect

space. Another baseline model for drugs is Loewe (dose additivity) [27], but seems to be less

accurate than the Bliss approximation for high-order drug combinations [28,29].

Baseline models are generally inaccurate because they do not consider the interactions

between perturbations. These interactions are called synergy and antagonism, in the case

where the combination shows larger or smaller effect than the baseline model, respectively.

Several studies have attempted to present formulae that take interactions into account, by

including measurements for pairs. Wood et al. [30] introduced an Isserlis-like formula based

on singles and pairs. For triplets, the formula is s123 = s1s23+s2s13+s3s12−2s1s2s3. This formula

worked well for combinations of up to 4 antibiotics.

Zimmer et al [31] presented a model which used measurements of dose-response for single

drugs and drug pairs to compute the dose-dependent effect of higher order combinations,

with excellent accuracy on antibiotics and anti-cancer drugs. An additional formula, based

only on pairs, performed well on small single-dose drug datasets [32].

Surveying these studies, it seems that there is no best formula that outperforms others on all

datasets. Instead, each formula works well on the dataset it was developed on, but typically less
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well on other datasets. This situation suggests that, because datasets differ in their noise and

interaction strengths, there may be a range of formulae to consider. There is therefore a need

to compare formulae, to understand when formulae fail, and to develop ways to decide which

formula to use when considering a given dataset.

Here, we address these questions by studying the tradeoffs inherent in formulae for combi-

nations. We study wide classes of formulae and test them on twelve experimental datasets for

drugs and sequences, as well as on synthetically generated datasets. We find that no formula

outperforms the others on all datasets. Instead, each dataset has a different optimal formula.

On the other hand, many formulae are suboptimal for all datasets.

We explain this result using a well-known concept from statistical learning, the bias-vari-

ance tradeoff [33–35]. Roughly speaking, good formulae should be complex or expressive

enough to capture the true variability of the dataset (low bias). On the other hand, formulae

should be simple enough in order to avoid overfitting the noise in the dataset (Fig 1). Hence,

the optimal formula for a dataset should be dependent on the typical effect size (true variabil-

ity) of the dataset as well as the experimental noise.

In order to understand this tradeoff, we use Pareto optimality [36–39]. Pareto optimality

was previously used to study model selection and hyper-parameter choice in machine learn-

ing models [40,41]. We use it to define the optimal formula for each dataset, based on its

noise and interaction strength. We suggest a method to choose the optimal formula for a

new dataset.

Fig 1. Demonstration of the Bias-Variance tradeoff on a simple example. The data points (blue) originate from a line

y = x plus additive noise. Different models were used to fit this data. A low complexity model gives constant prediction,

y = a (orange line). Its predictive power is poor because of high bias. A high complexity model fits an 8th order polynomial

(purple line) to the data, this model is rich enough to capture precisely all the training points, but its generalization to

unseen data is poor due to its high variance. A medium complexity model (yellow line, y = ax+b) gives good predictions

for new data points, keeping both bias and variance low.

https://doi.org/10.1371/journal.pcbi.1006956.g001
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Results

Family of formulae for predicting triplets from pairs

For simplicity, we concentrate on the problem of predicting the effect of triplets of perturba-

tions from data on the effects of pairs and single perturbations. We provide formula for the

effects of k perturbations in the supporting information (S1 Text, [29,42]).

To establish notation and terminology, we use the term perturbation as a general term for

drug, mutation or other type of change in the system. We define the effect as the measurable

outcome of the perturbations on the system function, such as survival of cancer cells for anti-

cancer drugs, growth rate of bacteria in case of antibiotics, and the activity of a promoter or a

protein in the case of sequence mutations.

Three different perturbations will be denoted by 1,2,3. The value of the effect in the absence

of perturbation (wild-type) is S;. The effects of single perturbations are S1,S2,S3, of pairs of per-

turbation are S12,S13,S23. The effect of the triplet perturbation, which we wish to predict given

singles and pairs effect data, is S123. For the effects normalized by the wild-type we use lower

case letters sx ¼
Sx
S;

Formulae from the literature include the Bliss independence formula:

s123 ¼ s1s2s3 ð1Þ

Machine learning approaches often use a regression formula:

s123 ¼
s12s13s23

s1s2s3

: ð2Þ

This formula results from regression where one fits the effects of singles and pairs to s =

∑iaixi+∑i,jaijxixj where xi = 0 if mutation i is absent and xi = 1 if it is present.

A third formula uses only information from pairs [32]:

s123 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s12s13s23

p
: ð3Þ

These formulae belong to the class of log-linear formulae, and hence we focus on this class.

The most general formula in this class, taking into account the symmetry in perturbation indi-

ces (re-naming drugs 1, 2 and 3 should not affect the prediction for S123) is:

S123 ¼ Sa
;
ðS1S2S3Þ

b
ðS12S13S23Þ

g

To make the calculation linear, we use the logarithm of the un-normalized effects Lx = log

(SX), resulting in

L123 ¼ aL; þ bðL1 þ L2 þ L3Þ þ gðL12 þ L13 þ L23Þ

The log-linear formulae thus have three parameters, α,β and γ. They include the previous

formula discussed above: Bliss independence is when α = −2,β = 1,γ = 0 and regression is

α = γ = 1,β = −1.

The precision of the log-linear class of models

We now evaluate the precision of each formula. As an operational definition of precision, we

use a Taylor-series approach. We assume that the log effect is a smooth function f of multiple

inner variables of the system. Each perturbation is represented by a change in one of these

inner variables.

Without loss of generality, we can assume that without perturbations, L; = f(0,0,0). Then

L1, the log effect of perturbation 1, is L1 = f(x,0,0), for some value of x. Similarly, the other two
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single perturbations are L2 = f(0,y,0) and L3 = f(0,0,z). The pair log effects are L12 = f(x,y,0),

L13 = f(x,0,z),L23 = f(0,y,z). To predict the triplet, we need to estimate L123 = f(x,y,z). Mathemat-

ically, this is equivalent to the question of estimating a function on one vertex of a 3D

box given its values on the other 7 vertices [42].

Even though in reality perturbations are sometimes not small, we will next assume that they

are in order to give an operationalized and analytically solvable way to discuss precision.

When the values of x,y and z are such that they represent small perturbations, one can use a

Taylor expansion and ask which of the formulae are precise to which order of expansion (no

matter what the exact form of f).
Here we will derive conditions for a formula to be precise to the 0th, 1st and 2nd orders in

Taylor series. But first we explain intuitively what these precisions orders mean. Formulae pre-

cise to 0th order have the property that if all effects are equal, L; = Li = Lij = C the prediction

for the triplet is equal to that effect: L123 = C. Formulae accurate to first order have the property

that if all pairs are Bliss independent in the sense that sij = sisj, then the predicted triplet is also

Bliss independent s123 = s1s2s3.

We now derive the conditions for precision to different orders. The Taylor expansion of

L123 is, to first order:

L123 ¼ f x; y; zð Þ ¼ f 0; 0; 0ð Þ þ
@f
@x

0; 0; 0ð Þxþ
@f
@y

0; 0; 0ð Þyþ
@f
@z

0; 0; 0ð Þz þ o jxj; jyj; jzjð Þ

We equate this to the Taylor expansion of the log-linear formula:

aL; þ bðL1 þ L2 þ L3Þ þ gðL12 þ L13 þ L23Þ ¼

¼ af ð0; 0; 0Þ þ b½f ðx; 0; 0Þ þ f ð0; y; 0Þ þ f ð0; 0; zÞ� þ g½f ðx; y; 0Þ þ f ðx; 0; zÞ þ f ð0; y; zÞ� ¼

¼ aþ 3bþ 3gð Þf 0; 0; 0ð Þ þ bþ 2gð Þ
@f
@x
ð0; 0; 0Þxþ

@f
@y
ð0; 0; 0Þyþ

@f
@z
ð0; 0; 0Þz

� �

þ o jxj; jyj; jzjð Þ

We therefore obtain the condition for a formula to be precise to 0th order:

1 ¼ aþ 3bþ 3g

From now on, we restrict ourselves to the class of models that are precise to 0th order. We

next ask which models are precise to 1st order. The condition for 1st order precision is:

bþ 2g ¼ 1

All the formulae on this line in beta-gamma space give exact approximation to the first

order. For example, the Bliss (β = 1,γ = 0), the regression (β = −1,γ = 1) and pairs formula

b ¼ 0; g ¼ 1

2

� �
fall on this line of first order precision.

We can define the deviation from 1st order precision as follows:

P1stða; b; gÞ ¼ ð1 � b � 2gÞ
2

We next ask which formulae are precise to the second order. We find that there is only one

log-linear formula which is precise to the second order–the regression formula of Eq 2 (S1

Text) (α = γ = 1,β = −1). The deviation of other formula from second-order precision can be

represented by the sum of the coefficients of the second order error (S1 Text):

P2nd a; b; gð Þ ¼
1

2
�
b

2
� g

� �2

þ ð1 � gÞ
2
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The precision findings are summarized in (Fig 2A and 2B). The figures plot contours of

accuracy to different orders as a function of β and γ. In the plots, α is evaluated by the zero-

order precision demand α = 1−3β−3γ. The plots are therefore restricted to 0th order precise

formulae. It is seen that optimal first-order accuracy occurs on a line in model space which

includes the Bliss and regression models, and that second-order precision has elliptical con-

tours maximal at the regression model.

Formulae differ in their robustness to experimental noise

If precision was the only factor at play, one would expect the regression model to outperform

others. However in most real datasets this model does poorly [31]. The reason is that it is sensi-

tive to experimental noise. To estimate the robustness to noise of different models, we model

experimental noise in the measured effects, Li = Li+χi and Lij = Lij+χij, where χ are independent

Gaussian noise with equal STD σ for all measurements (similar conclusions apply to the case

of non-independent noise, S1 Text). This corresponds to log-normal multiplicative noise for

the effect measurements. Such log-normal noise is typical for experiments on drug and muta-

tion effects [31,32].

Fig 2. Performance functions in log-linear model space for the tasks of noise and precision. (A) First-order-

precision performance function contours show a line of formulae which are accurate to the first order, including Bliss,

pairs, regression and other formulae. (B) Second order precision performance function contours show that only

formula accurate to the second order is the regression formula. (C) Noise performance function contours in case there

is no noise in the wild type measurement, the noise is zero at β= 0,γ = 0. (D) Noise performance function contours in

case there is noise in the wild type measurement, the noise is minimal at a ¼ b ¼ g ¼ 1

7
.

https://doi.org/10.1371/journal.pcbi.1006956.g002
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Here we derive an expression for the noise in the predicted triplet effect. We must separate

between two cases. Case I occurs when there is experimental noise in L; (the wild-type), as is

the typical case for sequence (mutation) data, so that L; = L;+χ;. Case II is when L; is noiseless,

as often happens for drug combinations when the effect is cell survival and L; = 0 by

definition.

To compute the variation in the prediction of a triplet s123 given the noise in the pair and

single inputs, we assume independent noise for each variable. The noise (std) for case I

depends on the three parameters of the model α,β and γ:

PN;WTnoiseða; b; gÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 3b
2
þ 3g2

q

And in case II (noiseless L;) only on the parameters β and γ:

PN;WT¼1ða; b; gÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3b
2
þ 3g2

q

Note that noise is minimal when α = β = γ = 0, a formula that always predicts 0. This model

is not precise even to 0th order. Considering only models precise to 0th order, we obtain the

minima of the noise performance function in case of noisy wild type (S1 Text):

argminðPN;WTnoise a;b; gð ÞÞ ¼
1

7
;
1

7
;
1

7

� �

Which simply averages the inputs L;,Li and Lij, and in case of noiseless wild-type simply

taking the wild-type value S; as the prediction

argminðPN;WT¼1ða; b; gÞÞ ¼ ð1; 0; 0Þ

Contours of this function in the cases of presence and absence of noise in the wild-type

appear in (Fig 2C and 2D). In both cases noise grows with distance from the single minimum.

Computing the noise-1st order–precision Pareto front

In order to compare models according to the two tasks, precision and noise, we use the Pareto

front approach. The Pareto front is defined as the set of formula for which there is no other

formula that is better at both tasks. Given the two performance functions of noise and preci-

sion, we compute the Pareto front as the set of points of external tangency of the performance

contours [43,44]. The resulting front is a one-dimensional curve in the space of formulae

(beta-gamma space). In the case of first-order precision and noise robustness, the front is a

straight line.

In the absence of wild-type noise the Pareto front is defined by (see S1 Text and Fig 3A):

g ¼ 2b

Or in the presence of wild-type noise (see S1 Text and Fig 3B):

5bþ 2g ¼ 1

If noise and first-order precision are the only tasks faced by formulae, it is expected that all

optimal formulae will fall on this line.

Computing the noise-2nd order Pareto front

We next computed the Pareto front where the two tasks are noise robustness and second order

precision. In the case of noiseless wild-type, this give the conic defined by the equation (see S1

Noise-precision tradeoff in predicting combinations of mutations and drugs
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Text and Fig 3C):

� 2g2 þ 7bgþ 2b
2
þ g � 6b ¼ 0

In the case of noisy wild-type we find (see S1 Text and Fig 3D):

5b
2
þ 28bg � 22bþ 16g2 � 20gþ 5 ¼ 0

Computing the entire Pareto front

It is now possible to compute the entire Pareto front which consists of optimizing the three

performances together. The boundary of the Pareto front is defined by the Pareto fronts of the

pairs of tasks. The entire Pareto front in the cases of noiseless and noisy wild-type is composed

of two thin triangle-like shapes that meet at a vertex, as shown in Fig 4A and 4B (black region).

We note in passing that the typical solution for a Pareto front with three tasks resembles a

single triangle with the optima for the three tasks at the three vertices[43,44]; the elongated

Fig 3. Pareto fronts of pair of performance functions fall on lines. In all subfigures red lines are contours of noise

performance function, blue lines are contours of first order accuracy performance function, green lines are contours of

second order accuracy performance function and the a black line is the Pareto front. The Pareto fronts are computed

as the set of points where the contours of the two performance functions are parallel. (A) Contours of noise and first

order accuracy when there is no noise in wild-type measurement, the Pareto front is the line between the minimal

noise formula in the LHS and the minimal noise formula among first order accurate formula in the RHS. (B) Same as

(A) in case there is noise in wild-type measurement, in this case the minimal noise formula accurate to the first order is

the pairs formula. (C) Contours of noise and second order accuracy when there is no noise in wild-type measurement,

the Pareto front is a curve between the minimal noise formula in the LHS and the regression formula, which is exact to

the second order in the RHS. (D) Same as (C) in case there is noise in wild-type measurement.

https://doi.org/10.1371/journal.pcbi.1006956.g003

Noise-precision tradeoff in predicting combinations of mutations and drugs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006956 May 22, 2019 8 / 17

https://doi.org/10.1371/journal.pcbi.1006956.g003
https://doi.org/10.1371/journal.pcbi.1006956


two-shape pattern found here results from the fact that the optima for one task, first order pre-

cision, falls on a line and not a single point.

The present approach can be applied to any class of formulae. To illustrate this we compute

the Pareto front for a class of generalized mean formulae in S1 Text.

For real datasets the optimal formulae are on the Pareto front

In order to test the relevance of the Pareto front to real data, we compiled a set of thirteen pub-

lished experimental datasets for drugs and mutations (Table 1). This includes data on the

effects of drugs (antibiotics, cancer drugs) on cells, and the effect of mutations on proteins and

organisms. The datasets include the effects of singles, pairs and triplets of perturbations. For

each dataset, we scanned formulae (scanning β and γ with α = 1−3β−3γ to provide 0th order

precision) and found the formula that gives the smallest root-mean-square error for triplet

predictions. This formula, a point in the β,γ plane, is the optimal formula for that dataset. In

order to control for outliers and variation in the data, we repeated this for each dataset on 30

bootstrapped datasets, in which we built a new dataset sampled from the original data with

replacements. Thus, each dataset yields 30 additional optimal formula points.

We find that the optimal formula for all datasets lie close to the Pareto front (Fig 4A). The

large datasets fall neatly on the Pareto front (E. coli antibiotics 1, A549 and others), whereas

smaller datasets tend to deviate more due to their larger bootstrapping variance (Dihydrofolate

reductase, H1299, E. coli antibiotics 2). Note also that the main direction of variability of the

bootstrapping distribution is parallel to the Pareto front [45].

In the presence of noise in the measured wild-type effect (case II above), the datasets also

fall on the Pareto front (Fig 4B). In this case the datasets are larger, hence they have less vari-

ability in the bootstrapping. Here, we used an expansion trick to increase the amount of usable

Fig 4. Best formulae for real datasets fall near the Pareto front for the three tasks. The Pareto front is the black area, each point is the optimal formula (in terms of

RMSE) for a given dataset. Points of the same color correspond to different bootstrapped samplings of the same dataset. Datasets are detailed in Table 1. Subplots

correspond to the two cases: (A) there is no noise in the wild-type measurement S;. (B) noise exists in S; (includes mutation datasets and drug datasets in which we used

the expansion trick). (C) UniProbe datasets fall on the Pareto front close to the noise archetype. Each blue point corresponds to the best formula for a different dataset on

the effect of mutations on protein binding from the UniProbe database. For each dataset we used 1000 randomly selected wild-types and triplet mutations on those wild-

type backgrounds to generate the dataset on which we checked the formulae. Points fall close to the noise robustness archetype.

https://doi.org/10.1371/journal.pcbi.1006956.g004
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data from small fully-factorial datasets. In the expansion trick, we consider treatment with a

single perturbation Li as wild-type L;. We then consider treatments with an additional second

perturbation Lij as a single perturbation on the wild-type background, Li, treatments with

three perturbations Lijk as the pairs Ljk, in order to predict the triplet Ljkm given by the quadru-

plet Lijkm in the original data (Fig 5). We also used pairs and higher order combinations as

wildtype to the extent allowed by the dataset. This increases the number of triplets in the fully

factorial dataset of order k from k
2

� �
to at most k

2

� �
2k in its most extended form (Table 1 shows

both original and expanded triplet number).

We further tested 61 datasets from the UniProbe database [46] on protein-DNA binding

interactions in fully factorial datasets of 8 mutations. We use the expansion trick using 1000

randomly chosen starting point sequences as a wild-type from each fully factorial dataset. We

find that the optimal formulae for these datasets all fall close to the Pareto front (Fig 4C). The

results are near the noise-robustness archetype, suggesting that noise is a dominant source of

variation in these protein-binding microarray experiments.

A choice of a formula based on properties of the dataset

We see that optimal formulae for different datasets are close to the Pareto front. We next asked

how the properties of the dataset affect which formula is optimal for that dataset. To do so, we

generated synthetic datasets with different parameters, so that we could control the level of

Table 1. Datasets used in this paper.

System Name Perturbation Effect Number of data points

[expanded]

Details about the data Reference

A549 (cancer cell line) Drugs Cell Survival 896 Combinations of 3 anti cancer

drugs in 8 doses.

[50]

A549 extra (cancer cell

line)

Drugs Cell Survival 192 [50]

Doses not included

in the paper

Aspergilus niger

(Fungus)

Mutations Growth rate [486] Mutations in 8 locations. [51]

Beta lactamase

(Bacterium)

Mutations in

active site

Cefotaxine

resistance

[40] Fully factorial dataset of mutations

in 5 locations.

[52]

Digydrofolate reductase

(Protozoan)

Mutations in

active site

Pyrimethamine

resistance

10 [40] 4 amino acid replacements. [53]

E. coli antibiotics

(bacterium)

Antibiotics Exponential growth

rate

1232 8 drugs at various dosages. [30]

E. coli antibiotics 2

(bacterium)

Antibiotics Exponential growth

rate

20 6 drugs. [54]

E. coli fitness

(bacterium)

Mutations Growth rate [40] Fully factorial dataset of mutations

in 5 locations.

[55]

HeLa (cancer cell line) Drugs Cell Survival 16 [52] Fully factorial dataset of 6 drugs. [32]

H1299 (cancer cell line) Drugs Cell Survival 20 [160] Fully factorial dataset of 6 drugs. [32]

Sesquiterpene synthases

(enzyme)

Mutations Catalysis of

substartes

[1793] Fully factorial dataset on 9 sites. [56]

UniProbe (DNA

sequence)

Mutations Protein binding 61 datasets, 1000 data points

randomly sampled from each

Each dataset is fully factorial on 8

sites.

[46]

Yeast Gene deletions Growth rate 142442 Triplets were selected based on a

former pairs experiment

[49,57]

This is a short summary of properties of the datasets used in this paper. In the number of triplet column numbers in brackets refer to expanded form of a dataset, a form

in which different measurements were used as wild-types, in the expanded form we have S;6¼1.

https://doi.org/10.1371/journal.pcbi.1006956.t001
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noise and the level of interaction strength (deviation from the Bliss formula, see S1 Text), the

two factors that influence the performance of the formula.

To generate simulated data we used a third order polynomial f(x,y,z) with random coeffi-

cients, sampled at different random points, with Gaussian noise added (which varies between

datasets). The goal is to predict triplets from pairs and singles, that is to predict f(x,y,z) from

the projections on axes and planes (S1 Text) e.g. f(x,0,0), f(x,y,0) etc. The noise amplitude of

each dataset is the standard deviation of the Gaussian noise added to log effect. The interaction

strength (that is synergy/antagonism) of each dataset is given by its mean deviation from the

Bliss approximation I ¼ jsij� sisj j
jsisjj

. To control I, we sampled the function at various distance from

the origin (S1 Text), where the larger x y and z, the larger the nonlinearity and hence the

interaction.

For each such synthetic dataset, we computed its optimal formula among the log-linear

family and found that for datasets with small interaction strengths, the optimal formula falls

close to the curve defining the Pareto front (Fig 6A). Interestingly, when interaction strength

become larger, points go a bit beyond the second order precision archetype (Fig 6A, solid

arrow), and when interaction strength was increased even further, points start to go back to

the (0,0) point deviating from the Pareto front (Fig 6A, dashed arrow).

To see the trends described above we plotted the optimal values of γ and β as function of

noise and interaction strength (Fig 6B and 6C). We start by considering the region above the

solid arrow (small interaction strength), we see that in this region γ increases and β decreases

with interaction strength. This is the expected result since larger γ and smaller βmeans getting

closer to the second-order-precision archetype. Second-order precision becomes more impor-

tant relative to noise as interaction strength gets larger, noise robustness becomes more impor-

tant than second order precision when the noise in dataset is larger. These results summarize

the prediction of Pareto optimality theory.

Fig 5. Example of the expansion method to obtain three-pertrubation inetractions from small combinarorial datasets. (A) A graph of a fully factorial

dataset on four perturbations. In the exansion method, one uses a perturbed system as the wildtype. For example, an expanded triplet is marked in green. It

uses L1 as the wild-type and uses additional perturbations on this background. (B) Thus original pairs are now singles, original triplets are now pairs, and the

original quadruplet is a triplet.

https://doi.org/10.1371/journal.pcbi.1006956.g005
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Interestingly, there are simulated datasets for which the optimal formulae are beyond the

second order archetype (Fig 6A, right side). It was found that formulae of second order tend to

approximate higher order interactions better than expected [47]. The points beyond the Pareto

front are example of formulae of second order which are especially better in predicting the

value of the third order function.

In the region of large interaction strength (Fig 6B and 6C over the dashed arrow and, Fig

6A dashed arrow), we see the opposite trend of decreasing γ and increasing β with interaction

strength. The explanation of this surprising result is that formulae in this region no longer sat-

isfy the assumption of precision to 0th order. The interaction strengths in this case are so large,

such that the Taylor approximation approach no longer gives the optimal formulae. Fig 6D

shows that indeed the formulae found for higher interaction strength no longer gives predic-

tions which are accurate to the 0th order.

These results indicate that one can predict the optimal formula for a dataset if one can esti-

mate its noise and interaction strengths.

Estimating triplet interactions requires an accurate null model

One general question is to what extent high order interactions exist in biological systems that

can’t be explained by pairs. High order interactions in this context are defined as the deviation

Fig 6. Simulated data fall close to the Pareto front. We generated simulated datasets using random polynomial functions of three

variables. Datasets vary by their noise and interaction strength. (A) Optimal formula for the simulated datasets fall close to the Pareto

front. When interaction strength is increased and noise decrease, points tend towards the second order precision archetype (solid

arrow). When interaction strength increases further, points go back towards the noise direction (dashed arrow). (B) The value of γ
for the optimal formula of simulated datasets as function of their noise and interaction strength parameters. Above the solid arrow

(which corresponds to the solid arrow of (A)), γ increases with interaction strength and decreases with noise, as expected from the

noise-precision tradeoff we suggested. Above the dashed arrow (which corresponds to the dashed arrow of (A)), γ decreases with

interaction strength. The reason is deviation from zero order accuracy which we assume here. (C) same as (B) but for the parameter

β. Here also, results above solid arrow is expected from the trade-off, result above dashed line is explained by deviation from zero

order accuracy. (D) Deviation from zero order accuracy. Our theory assumes that the optimal formula should be accurate to zero

order. We see that in the small interaction strength regime this is indeed the case, while in the large interaction strength (dashed

arrow), the optimal regression formula is no longer accurate to order zero.

https://doi.org/10.1371/journal.pcbi.1006956.g006
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of the measurement form a null model that includes the effects of single and pair perturba-

tions. Thus, choice of null model can affect the results.

For example, a standard definition of pairwise interaction is:

�12 ¼ s12 � s1s2

This formula is based on a Bliss independence null model for the combined single effects:

s12 = s1s2.

Different studies of triplets use different null models [48,49]. For example, a recently study

measured the effects of about 150,000 triple gene deletions in yeast, and compared them to sin-

gle and pair deletions [49]. Third-order interactions were estimated using an Isserlis null

model (s123 = s1s23+s2s13+s3s12−2s1s2s3) yielding

�123 ¼ s123 � s1s2s3 � �12s3 � �13s2 � �23s1

Evaluating the triplet interaction using the absolute value of �123 as defined above gives a

mean absolute triplet interaction of 0.044. Significant triplet interactions were estimated to be

about 100 times more common than significant pair interactions.

We used the present approach to predict the optimal model using the noise and effect size

in the pair measurements in this study. The best null model is similar to the pairs model (Eq

3), which is less noise-prone than the Isserlis model. With this null model, the mean absolute

triplet effect is 23% lower.

Discussion

In this study, we find that the problem of predicting the combined effects of perturbations

does not have a unique optimal solution. Instead, different solutions and formulae are optimal

for different datasets. We analyze the Pareto front of models that trade-off noise robustness

and precision. This Pareto front of optimal formulae matches observations on the best formula

for a range of real and synthetic datasets.

The present study offers a way to predict the best formula based on the noise and effect size

of pairs data. By measuring interaction strength based on pairs, and experimental noise using

repeats, one can judge where on the Pareto front the optimal formula might lie for a given

dataset.

One important use of these formula is to estimate high-order effects between genes. For

example, a third-order effect �123 is defined by the measured effect of three perturbations

minus a null model based on single and pair perturbations. The better the null model, the

more accurate the estimation of the high-order effect. We find that the present approach can

improve the null model used for estimating the effects of triple yeast gene deletions in a recent

large scale study (Kuzmin,2018). The improved estimation lowers the number of apparent

three-gene interactions that can’t be explained by pairs. This is relevant for the design of sys-

tematic gene perturbation experiments, because it indicates that pairs may be enough to cap-

ture most of the interactions. Pair scans are much more feasible than triple-perturbation scans,

suggesting an optimistic outlook for understanding complex gene interactions.

This study used a Taylor expansion to define precision. Taylor series strictly apply only to

small perturbations. Despite this limitation the method seems to work well for mutation and

drug combination dataset. One reason for this is that higher-order effects in biological systems

seem to be smaller than low order ones [29], which is equivalent to the underlying assumption

of the Taylor approximation. It would be fascinating to use the present approach to analyze

additional classes of formula, and to understand the effects of multiple perturbations on addi-

tional biological systems.
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Methods

Computations of the maxima of the different performance functions (Fig 2), and the Pareto

fronts of multiple performance functions (Figs 3 and 4) were performed analytically, and are

detailed in the result section and S1 Text.

All simulations and Figs 1–4 and 6 were produced using MATLAB 2017.

Evaluation metric for formulae performance was RMSE. Therefore, the coefficients of the

optimal formula were computed using linear regression on a dataset (Figs 4 and 6).

In Fig 6, simulated data was generated using random symmetric polynomials of degree 3

according to the formula:

f ðx; y; zÞ ¼ a0 þ a1ðxþ yþ zÞ þ a2ðx
2 þ y2 þ z2Þ þ a3ðx

3 þ y3 þ z3Þ þ a4xyz þ a5ðxyþ xz
þ yzÞ þ a6ðx

2yþ y2xþ x2z þ z2xþ y2z þ z2yÞ

Where ai were sampled randomly and uniformly between 0 and 1. To get the simulated

dataset such random formulae were evaluated at random points in the box [0,�]×[0,�]×[0,�].

The approximation distance � varied logarithmically between [0.06,0.06�29]. To the synthetic

dataset we added random log-normal noise N(0,σ), where σ varied logarithmically between

[0.01,0.01�29]. Each point in Fig 6 is based on average of 10 different simulated dataset gener-

ated from 10 different random functions, each simulated dataset consists of 300 points.
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