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One of the first steps in the analysis of single-cell RNA sequencing (scRNA-seq) data is the assignment of cell types.

Although a number of supervised methods have been developed for this, in most cases such assignment is performed by

first clustering cells in low-dimensional space and then assigning cell types to different clusters. To overcome noise and

to improve cell type assignments, we developed UNIFAN, a neural network method that simultaneously clusters and an-

notates cells using known gene sets. UNIFAN combines both low-dimensional representation for all genes and cell-specific

gene set activity scores to determine the clustering. We applied UNIFAN to human and mouse scRNA-seq data sets from

several different organs. We show, by using knowledge about gene sets, that UNIFAN greatly outperforms prior methods

developed for clustering scRNA-seq data. The gene sets assigned by UNIFAN to different clusters provide strong evidence

for the cell type that is represented by this cluster, making annotations easier.

[Supplemental material is available for this article.]

The large increase in studies profiling RNA sequencing data in
single cells (Tanay and Regev 2017) raises several computational
challenges. One of the first, and most important, steps in the
analysis of such studies is cell type assignment (Clarke et al.
2021). Several methods have been developed for such assign-
ment, including (semi-)supervised and unsupervised methods.
(Semi-)supervised methods mainly use previously annotated
data sets to annotate new data sets (Abdelaal et al. 2019). This
is performed by directly classifying each cell (Alavi et al. 2018;
Pliner et al. 2019), by learning an alignment between the data
sets (Kiselev et al. 2018), or by joint training using multiple
data sets to classify groups of cells in a new study (Brbic ́ et al.
2020; Hu et al. 2020).

Although supervised methods are useful in some cases, they
cannot be applied to all cases because reference data sets are not
available for most organs, tissues, and conditions. Another chal-
lenge with supervised methods is their inability to identify new
cell types, which is often one of the major goals of the study
(Abdelaal et al. 2019). Thus, the most popular way to annotate
single-cell data is by using unsupervised methods. These are often
based on clustering cells in a low-dimensional space and manual-
ly annotating each cluster using known marker genes or cluster
specific differentially expressed genes. Several methods for clus-
tering single-cell data have been developed and used. These in-
clude SIMLR (Wang et al. 2017), which clusters cells by using
multiple kernel functions to construct a similarity matrix be-
tween cells; Leiden clustering (Traag et al. 2019) and Seurat v3
(Stuart et al. 2019), which use k-nearest neighbor (k-nn)–
based graph partitions to group cells; SCCAF (Miao et al. 2020),
which refines initial clusters using a self-projection-based ap-
proach; and methods based on deep neural networks, such as
DESC (Li et al. 2020), which uses autoencoders to reduce the di-

mensions of the data and then clusters cells in the reduced di-
mension space.

Although several clustering methods have been developed
and used for single-cell RNA sequencing (scRNA-seq) data, to
date these methods have only relied on the observed expression
data. However, there are several additional complementary data
sets that can be used to improve clustering and reduce noise-relat-
ed grouping. Specifically, gene sets (Subramanian et al. 2005)
have been compiled to characterize many processes, pathways,
and conditions. Although the exact processes or functions that
are activated in specific cells or clusters are unknown, we can
use these sets to guide the grouping of cells by placing more em-
phasis on coexpression of genes in known sets when clustering
single-cell data. Because cells of the same type likely share
many of the biological processes, such design can both improve
the identification of good clusters and help in annotating
them based on the function of the sets associated with each
cluster.

Here we introduce Unsupervised Single-cell Functional
Annotation (UNIFAN) to simultaneously cluster and annotate cells
with known biological processes (including pathways). For each
cell, we first infer its gene set activity scores based on the coexpres-
sion of genes in known gene sets. We also use an autoencoder that
outputs a low-dimensional representation learned from the ex-
pression of all genes. We combine both the low dimension repre-
sentation and the gene set activity scores to determine the cluster
for each cell. The process is iterative, and we define a target func-
tion and showhow to learnmodel parameters to optimize it. In ad-
dition to the cell clusters, the method also outputs the gene sets
associated with each cluster, and these can be used to annotate
and assign cell types to different clusters.
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Results

We developed UNIFAN to simultaneously cluster and annotate
cells (and cell clusters) with known biological processes or
pathways. By integrating prior information about gene sets
with observed expression data, UNIFAN can improve clustering
results while simultaneously making the clusters more inter-
pretable. Figure 1 presents an overview of UNIFAN. The method
starts with inferring gene set activity scores for each single cell,
based on the expression levels of genes in known gene sets.
Next, UNIFAN clusters cells by using the learned gene set activity
scores and a low-dimensional representation of the expression
of all genes in the cell. This is performed using an autoencoder-
based neural network. The “annotator” part of this network
uses the gene set activity scores to guide the clustering
such that cells sharing similar biological processes are more likely
to be grouped together. For details on the architecture of
UNIFAN and on how parameters are learned for UNIFAN, see
Methods.

UNIFAN correctly clusters cells and

identifies relevant biological processes

We first evaluated if UNIFAN can accu-
rately cluster cells and reveal key path-
ways and cellular functions activated in
cells assigned to different clusters. For
this, we used the “pbmc28k” scRNA-seq
data set (Methods). UNIFAN clusters suc-
cessfully captured different cell types
when compared with manual annota-
tions (adjusted Rand index [ARI] 0.81,
normalized mutual information [NMI]
0.77). Figure 2, A through C, presents
UMAP (Becht et al. 2019) visualizations
of ze output from UNIFAN for each cell.
As can be seen, clusters are mostly com-
posed of cells from the same type, which
is a large improvement over other meth-
ods, including Leiden clustering (shown
in Fig. 2C), aswediscuss below.By relying
on known gene sets, UNIFAN is robust to
noise and mainly focuses on relevant
coexpressed setsof genes, leading tomuch
more coherent clusters.We observed sim-
ilar results for the other data sets we tested
as can be seen in Supplemental Figures S6
through S8.

To annotate cell clusters, we exam-
ined the coefficients assigned by the “an-
notator” to different gene sets for each
cluster. Figure 2D presents some of
the top-ranked sets for the different clus-
ters. We observe that for cluster 0, the
set “GOBP POSITIVE REGULATION
OF T CELL RECEPTOR SIGNALING
PATHWAY” is assigned a large weight,
and this cluster is annotated as CD4+

T cells in the original paper. For cluster
5 (which mainly contains CD8+ T
cells), one of the top-scoring sets is
“REACTOME NEF MEDIATED CD8
DOWN REGULATION.” Cluster 1 cells

were labeled as CD56 (dim) natural killer (NK) cells in the original
paper. UNIFAN correctly assigns “GOBP REGULATION OF NK
CELL MEDIATED IMMUNITY” and “KEGG NK CELL MEDIATED
CYTOTOXICITY” as two of the top gene sets for this cluster.
Cluster 3 and 6 correspond to classical monocyte (cMonocyte)
and nonclassical monocyte (ncMonocyte), respectively.
Although UNIFAN assigns biological processes related to “antigen
presentation” and “inflammation” to both clusters, the biological
process related to wound healing, “GOBP REGULATION OF
INFLAMMATORY RESPONSE TO WOUNDING,” only appears in
cluster 6. One of the main differences between ncMonocyte and
cMonocyte is their role in wound healing (Schmidl et al. 2014),
and so, such assignment can make it much easier to correctly an-
notate this cluster of cells. In addition to the gene sets, we also eval-
uated genes highly weighted by the annotator by comparing them
to known cell typemarker sets. As shown in Figure 2E, themost en-
riched cell typemarker sets for each cluster correspond verywell to
the true cell labels, indicating thatUNIFAN can indeed identify the
marker genes for each cell type (cluster).

Figure 1. Overview of UNIFAN. (Top) Using the expression levels for genes in a cell y, UNIFAN first in-
fers gene set activity scores (r), using an autoencoder. The decoder is composed of binary vectors with
values indicating if a gene belongs to a known gene set or not. (Middle) Next, UNIFAN clusters cells by
using the learned gene set activity scores and a low-dimensional representation of the expression of all
genes in the cell (ze). For this, it uses an autoencoder-based neural network, which contains two parts:
the cluster assignment part (gray) and the “annotator” (green). The cluster assignment part assigns a
cell to clusters based on the low-dimensional representation (ze), whereas the “annotator” refines clus-
tering and annotates clusters with biological processes and highly variable genes. (Bottom) Cells assigned
to different clusters characterized by selected gene sets and genes. (FC layers) Fully connected layers;
(Bio-process) biological process.

Li et al.

1766 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276609.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276609.122/-/DC1


We observed similar performance in terms of cluster
annotations for other data sets we tested. For example, for the
“Atlas lung” data set, UNIFAN successfully separated macrophage
(cluster 2) and alveolar macrophage (cluster 5) as shown in
Supplemental Figure S6A. The annotator selected “GOBP
MACROPHAGE FUSION,” “WP MACROPHAGE MARKERS,” and
“GOBP NEGATIVE REGULATION OF RESPONSE TO
INTERFERON GAMMA” for both clusters. It also selected “GOBP
REGULATION OF COLLAGEN FIBRIL ORGANIZATION” for clus-
ter 8, which agrees well with the labels of cells in that cluster (fibro-
blasts). It selected “GOBP CILIUM MOVEMENT” for cluster 10,
again in agreement with the type of cells in this cluster (ciliated).

Similarly, the most enriched cell type marker sets for each cluster,
learned from the highlyweighted genes, corresponded very well to
the true cell type labels (Supplemental Fig. S6E).

UNIFAN improves upon prior methods

We compared UNIFAN’s clustering performance on all data sets
with several prior methods proposed for clustering scRNA-seq
data. The number of cells in the data sets we used to compare
the methods ranges from 366 (aorta in Tabula Muris) to 96,282
(“Atlas lung” data set), and so, they can provide a good representa-
tion of the scRNA-seq data sets being analyzed by researchers. The

A

D

B C

E

Figure 2. UNIFAN accurately clusters cells and correctly identifies biological processes/pathways. Results presented for the “pbmc28k” data set. (A–C)
UMAP visualization of the low-dimensional representation ze of cells output from UNIFAN: (A) colored by true cell type labels, (B) colored by the clusters
found by UNIFAN, and (C) colored by Leiden clustering. (D) Coefficients learned by the annotator for highly ranked gene sets for some of the clusters. (E)
Enrichment P-values of cell type marker sets in the highly weighted genes learned by the annotator. Here we show the result from the best run for both
UNIFAN and Leiden. Because of space limits, some gene set names inD and E are truncated (marked with ∗). For the full names, see Supplemental Tables S2
and S3.
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methodswe compared included two graph-basedmethods, Leiden
clustering (Traag et al. 2019) and Seurat v3 (Stuart et al. 2019); a
kernel-based method, SIMLR (Wang et al. 2017); a self-projec-
tion-based method, SCCAF (Miao et al. 2020); and a deep-learn-
ing-based method, DESC (Li et al. 2020). In addition to these
unsupervised methods, we also compared UNIFAN to two (semi-)
supervised deep-learning methods: MARS (Brbic ́ et al. 2020) and
ItClust (Hu et al. 2020). We allow these two (semi-)supervised
methods to use the true labels for 5% of the cells in a data set for
model learning. We also compared CellAssign (Zhang et al.
2019), which uses known cell type markers for cell type assign-
ment. For each data set, we ran each method 10 times using differ-
ent initializations. Results are presented in Figure 3 and
Supplemental Figure S9. As can be seen, for all data sets, UNIFAN
outperforms all other unsupervisedmethods regardless of the eval-
uation metric being used (e.g., average ARI/NMI of UNIFAN and
the best-performing unsupervised prior method on “pbmc28k”:
UNIFAN 0.72/0.74, Leiden 0.37/0.62; on “HuBMAP spleen”:
UNIFAN 0.75/0.71, DESC 0.31/0.64; on “Tabula Muris”: UNIFAN
0.70/0.75, SIMLR 0.53/0.65). The large improvement may result
from the ability of UNIFAN’s to focus on the more relevant sets
of coexpressed genes rather than on coexpression that may result
from noise or the large number of genes being profiled.

As for the (semi-)supervised methods, UNIFAN outperforms
MARS in all data sets and improves on ItClust for most of them
as well (e.g., average ARI/NMI of UNIFAN and the best-performing
[semi-]supervised prior method on “HuBMAP thymus”: UNIFAN
0.45/0.55, ItClust 0.37/0.46; on “HuBMAP lymph_node”:
UNIFAN 0.80/0.71, ItClust 0.44/0.48; on “pbmc28k”: UNIFAN
0.72/0.74, ItClust 0.70/0.70). UNIFAN is worse than ItClust for
“pbmc68k” (average ARI/NMI: UNIFAN 0.38/0.54, ItClust 0.45/
0.57) and “Atlas lung” (average ARI/NMI: UNIFAN 0.55/0.69,
ItClust 0.74/0.78). However, even for “Atlas lung,” UNIFAN im-

proves on ItClust when using another, likely more robust, level
of cell annotations (six general cell types vs. 38 used in the initial
comparison) as shown on the right of Figure 3 and Supplemental
Figure S9. For two other data sets, the performance is comparable
(average ARI/NMI on “HuBMAP spleen”: UNIFAN 0.75/0.71,
ItClust 0.73/0.75; on “Tabula Muris”: UNIFAN 0.70/0.75, ItClust
0.78/0.74).

For the CellAssign comparison, UNIFAN outperforms
CellAssign on most data sets (average ARI/NMI on “HuBMAP
lymph_node”: UNIFAN 0.80/0.71, CellAssign 0.05/0.15; on “Atlas
lung”: UNIFAN 0.55/0.69, CellAssign 0.12/0.24; on “pbmc68k”:
UNIFAN 0.38/0.54, CellAssign 0.35/0.53). CellAssign was unable
to annotate some tissues in the Tabula Muris data that do not
have matched cell type markers in the database (e.g., adipose
tissues). For those havingmatchedmarkers, UNIFANperforms bet-
ter than CellAssign in the majority of them, as shown in
Supplemental Figures S11 through S14. UNIFAN is worse than
CellAssign for “HuBMAP spleen” (average ARI/NMI: UNIFAN
0.75/0.71, CellAssign 0.87/0.72) and “HuBMAP thymus” (average
ARI/NMI: UNIFAN 0.45/0.55, CellAssign 0.60/0.56), for both of
which, the markers of many cell types are well documented in
the marker database. For “pbmc28k,” it is hard to tell which
method performs better given the disagreements between ARI
and NMI (average ARI/NMI: UNIFAN 0.72/0.74, CellAssign 0.73/
0.66).

Overall, these results indicate that UNIFAN providesmore ac-
curate cell type identification results especially in cases in which
true cell type labels or cell type markers are not available or very
few are known.

To further evaluate the different parts of UNIFAN in order to
determine which input or processing is contributing the most to
its success, we compared different versions of UNIFAN. These in-
cluded “UNIFAN no annotator,” which is composed of only the

Figure 3. UNIFAN significantly outperforms other methods. “UNIFAN genes & gene sets” is the default UNIFAN version using both gene set activity
scores and a subset of genes as features for the annotator. “UNIFAN gene sets” uses only the gene set activity scores. “Initialization” is the initialization
clustering results. The others are the prior methods we used for comparison. For the Tabula Muris data, we take the average over all tissues. For tissue-spe-
cific results, see Supplemental Figures S11 and S12. The “Atlas lung” data provide two levels of cell type annotations, and so, we show results for both (less
detailed annotation comparison shown on the right). SIMLR was unable to cluster the “pbmc68k” and “Atlas lung” data because it ran out of memory.
CellAssign does not have an average over all tissues for “Tabula Muris” because some of the tissues in that data set do not have matched cell type marker
genes. For details, see Supplemental Methods.
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clustering part without the annotator; “UNIFAN random,” which
uses randomly generated features for the annotator and several
other variations differing in the biological features used by the an-
notator, including “UNIFAN gene sets,” which uses only gene set
activity scores; and “UNIFAN genes & gene sets” (the default ver-
sion), which uses both gene set activity scores and the selected
genes.

As shown in Figure 3 and Supplemental Figure S10, the two
“UNIFAN” variations using gene sets constantly outperformed
the other versions which either did not use an annotator or
used randomly generated values as features for the annotator.
These results indicate that the use of the annotator to focus on
the relevant coexpressed sets of genes is crucial to the performance
of UNIFAN.

UNIFAN identifies novel cell subtypes

We tested the ability of UNIFAN to identify novel cell subtypes. For
this, we looked at clusters identified byUNIFAN that are combined
in the original annotations. Such clusters represent unique cell
subtypes according to UNIFAN, whereas in the original analysis
all cells in these clusters are assigned to the same cell type (for an
example, see Fig. 4). We found a number of such cases and have
looked at their biological relevance.

The first example is from UNIFAN’s results of the HuBMAP
thymus data set. Figure 4, A and B, shows a UMAP (Becht et al.
2019) visualization of ze output fromUNIFAN for each cell, colored
by the true cell types and clusters found by UNIFAN, respectively.
UNIFAN clusters 4 and 10 (circled in Fig. 4A,B) were both initially
labeled as “splenic fibroblast.” Gene sets and markers selected by
UNIFAN for both clusters (Fig. 4C,D) agree with the initial assign-
ment and include “TRAVAGLINI LUNG ADVENTITIAL
FIBROBLAST CELL.” They differ, however, in other selected gene
sets andmarkers, indicating that they may represent different sub-
types. Cluster 4 cells are enriched for thymus stromal, stellate, and
endothelial cell markers, whereas cluster 10 cells are enriched for
markers related to mesenchymal stromal cells (MSCs), including
“RUBENSTEIN SKELETAL MUSCLE FBN1 FAP CELLS,” and
“MURARO PANCREAS MESENCHYMAL STROMAL CELL” (FAP
cells, a short form for fibro/adipogenic progenitors, are also a
type of MSCs) (Wosczyna et al. 2019).

Examining UNIFAN’s results for the Brain_Non-Myeloid data
set from Tabula Muris (The Tabula Muris Consortium 2018) high-
lights another novel subtype. In this data set, we looked at cells
labeled as “neuronal stem cell” (shown by the circled clusters in
Fig. 4E,F). UNIFAN assigns these cells to two clusters, 6 and 12.
Cluster 6 seems to indeed contain mostly neuronal stem cells
because gene sets selected for it are related to the differentiation
processes of multiple different cell types (e.g., “GOBP
NEUROBLAST DIFFERENTIATION” and “GOBP CEREBRAL
CORTEX GABAERGIC INTERNEURON DIFFERENTIATION”) (see
Fig. 4G), indicating its multipotency. The marker set “FAN
EMBRYONIC CTX NSC 2” (NSC is the abbreviation for neuronal
stem cells) is also enriched in the selected genes (Fig. 4H).
Cluster 12, however, is likely related to oligodendrocyte precursor
cells (OPCs) as the selected genes for this cluster are enriched for
“ZHONG PFC C4 PTGDS POS OPC” (Fig. 4H). Gene sets related
to oligodendrocyte functions, including “GOBP POSITIVE
REGULATION OF TRANSMISSION OF NERVE PULSE” (Fields
2008), are also selected by UNIFAN for this cluster (Fig. 4G).

We also conducted simulation experiments to investigate if
UNIFAN is robust when the data contain novel cell types using

novel pathways that have not been included in the pathway data-
base used by UNIFAN. Results presented in Supplemental Figure
S18 show that UNIFAN accurately identifies the correct cell types
for such simulated data and is able to identify several of the path-
ways used by the simulated cell types. For details, see Supplemental
Results.

Models are transferable across tissues and species

Because different tissues from the same species or the same tissue
across species may share cell types, we next explored if an autoen-
coder for gene set activity scores that is pretrained on one tissue/
species can also be useful for another tissue/species. The impor-
tance of such pretraining is that training of the autoencoder for
gene set activity scores of UNIFAN is time consuming, and so if
this can be performed offline (i.e., using prior data), then the appli-
cation of the method to a new data set can be much faster.

For this, we pretrain a gene set activity scores model using all
available human data sets and apply the learnedmodel to infer the
gene set activity scores for Tabula Muris mouse data sets. We then
run the clustering and annotation using these inferred scores and
compare the results with those inferred from a model that was
directly trained on the Tabula Muris data as discussed above.
Given we focus on the usefulness of gene set activity scores, we
use only these scores as features for the annotator (“UNIFAN
gene sets”) for this comparison.

Figure 5 presents the results. As expected, we see an overall
decline in the average performance over tissues when comparing
the results of pretrained and de novo models. However, for those
mouse tissues that are also profiled in the human data sets we
used, we observe similar performance when using the pretrained
humanmodel. This ismost apparent for spleen, lung, and a fewad-
ipose tissues, including subcutaneous adipose tissue (SCAT) and
gonadal adipose tissue (GAT), as shown in Figure 5 and
Supplemental Figures S15 and S16. These adipose tissues contain
many immune cell types that are also present in many of the hu-
man tissuesweused for pretraining (spleen, thymus, lymphnodes,
and PBMC).We further tested pretrainedmodels for individual tis-
sues (i.e., training using spleen in human and testing only on
spleen in mouse). As shown in Figure 5, for such analysis the per-
formance is even better for themost part compared with using the
generally trained model. The only exception is thymus, where the
mouse and human annotations differ significantly in the data sets
we used. Themajor cell type in the Tabula Muris thymus data (thy-
mocyte) does not appear in the HuBMAP human thymus data.

Discussion

Cell type assignment is one of the most important steps in scRNA-
seq analysis. In most cases, such assignment is performed by first
clustering cells and then assigning each cluster with a cell type
based on differentially expressed genes or the expression of known
cell type markers.

Here we present UNIFAN, which improves both clustering
and cluster annotations by using a large collection of gene sets
(Subramanian et al. 2005). UNIFAN infers gene set activity scores
and uses them to regularize the clustering of cells. Such design im-
proves the ability to identify biologically meaningful coexpressed
genes and to use these to group cells. In addition to leading to im-
proved clustering, UNIFAN also assigns a subset of the gene sets to
clusters, which can help characterize their cell types. Finally, by re-
lying on known functional gene sets, UNIFAN can further refine
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cell subtype assignment, allowing it to obtain a better resolution
for cell type assignments. As we have shown for both human
and mouse data sets, such analysis can lead to the identification
of novel cell subtypes, which may be important as more scRNA-
seq data accumulates.

We comparedUNIFAN to several popularmethods for cluster-
ing scRNA-seq data using data sets spanning a large number of or-
gans from both human and mouse. As we show, UNIFAN

consistently outperforms other methods across these data sets.
We also compared UNIFAN with two (semi-) supervised methods
for cell type identification (MARS [Brbic ́ et al. 2020] and ItClust
[Hu et al. 2020]) and a method based on known cell type markers
(CellAssign) (Zhang et al. 2019). The semi-supervised methods re-
quire at least some labeled data, whereas CellAssign uses as input
known cell type markers. Still, as we show in Figure 3 and
Supplemental Figure S9, UNIFAN outperforms these methods for

A
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G H
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Figure 4. UNIFAN identifies novel cell subtypes for the HuBMAP thymus data and the Brain_Non-Myeloid data in Tabula Muris. (A–D) Results for the
HuBMAP thymus data. (E–H) Results for the Brain_Non-Myeloid data in Tabula Muris. (A,B,E,F ) UMAP visualization of the low-dimensional representation
ze of cells from UNIFAN. Cluster 4 and 10 are circled for the HuBMAP thymus data. Cluster 6 and 12 are circled for the Brain_Non-Myeloid data in Tabula
Muris. (A,E) Colored by original cell type labels. (B,F ) Colored by the clusters identified by UNIFAN. (C,G) Coefficients learned by the annotator for highly
ranked gene sets for the two clusters. (D,H) Enrichment P-values of cell type marker sets in the highly weighted genes learned by the annotator.
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most data sets. We also observed that, for CellAssign and ItClust,
when very high-quality marker sets and labels were available for
specific tissues, the performance of these two methods was better
than UNIFAN. Thus, we conclude that although UNIFAN is better
for general use, in cases inwhichhigh-confidencemarker lists or la-
bels are available for a certain tissue in a certain species, methods
using labels ormarkers, suchas ItClust orCellAssign,maybebetter.
Wealso analyzed the gene sets selectedbyUNIFAN for various clus-
ters and showed that they match well with the known cell types
(Supplemental Figs. S5–S8, S17).

Analysis of the various parts ofUNIFAN identified the annota-
tor and the gene sets and genes it uses as the main sources for the
improvement. The fact that adding variable genes as input im-
proves performance is likely the result of the fact that current
gene sets, although very useful, are incomplete. It is likely that we
are still missing from current collections sets of genes characteriz-
ing some less-known biological processes. In such cases, the select-
ed genes capture groupings that aremissed by the knowngene sets.

UNIFAN can be slow on large data sets (Supplemental Table S4
in Supplemental Results). The main time-consuming part is train-
ing the gene set activity score model for the data being clustered.
To speed up the analysis, we have applied UNIFAN to a new data
set using a gene set activity score model pretrained on another
data set. This greatly reduced run time (Supplemental Results) but
did lead to drop in performance for tissues whose cell types were
not well represented in the pretraining data set. As we obtain
more data from tissues and conditions, we expect that we can fur-
ther improve the ability to use pretraining to improve runtime.

Methods

Data sets and data preprocessing

We used both human and mouse data sets from several tissues to
test our method. The human samples include three scRNA-seq

data sets from The Human BioMolecular Atlas Program
(HuBMAP) consortium (HuBMAP Consortium 2019). These in-
clude “HuBMAP spleen,” “HuBMAP thymus,” and “HuBMAP
lymph_node.”We use SCANPY (Wolf et al. 2018) for the data pre-
processing, leading to 34,515 cells and 26,092 genes for “HuBMAP
spleen,” 22,367 cells and 24,396 genes for “HuBMAP thymus,”
and 24,311 cells and 20,946 genes for “HuBMAP lymph_node.”
The “Atlas lung” uses the healthy control samples from Adams
et al. (2020). After filtering, this data set is composed of 96,282 cells
and 17,315 genes. The “pbmc28k” data are from Van Der Wijst
et al. (2018) and have 25,185 cells and 19,404 genes. The
“pbmc68k” data are from Zheng et al. (2017), having 68,551 cells
and 17,788 genes. Mouse data sets are from the Tabula Muris paper
(The Tabula Muris Consortium 2018). Following Brbić et al.
(2020), we end up with 21 data sets each for a single tissue. They
all have 22,904 genes, and the number of cells ranges from 366
(aorta) to 4433 (heart). For the preprocessing details, see
Supplemental Methods.

In addition to expression data, UNIFAN uses gene sets to
guide clustering. For this, we use 7481 gene sets derived from the
GO Biological Process ontology (termed c5.go.bp in MSigDB)
(Subramanian et al. 2005), 2922 gene sets from pathway databases
(c2.cp in MSigDB) (Subramanian et al. 2005), and 335 sets of tar-
gets of transcription factors from Ernst et al. (2007). Names for bi-
ological process sets start with “GOBP.” Pathway sets use a prefix
representing the pathway database they are extracted from (e.g.,
“KEGG,” “WP,” “REACTOME”). We purposely did not use cell
type marker gene sets (c8.all in MSigDB) because we wanted to
keep the method unsupervised, and marker lists are often based
on DE analysis of labeled cell type data.

Clustering and annotating single cells using gene sets

To enable the use of prior knowledge of gene function and regula-
tion for clustering single cells, we developed a deep-learning mod-
el, UNIFAN. For each single cell, UNIFAN first infers gene set
activity scores associated with this cell using the input gene sets.

Figure 5. Performance on the Tabula Muris data when using gene set activity scores models pretrained on human tissues. The plot on the left shows the
ARI for some example tissues, and the one on the right shows the average ARI across tissues. All versions of UNIFAN methods use models pretrained on
human tissues except for “UNIFAN gene sets,” which used models trained on the same data sets as we discussed before. “UNIFAN gene sets merged hu-
man” uses the model pretrained on all available human tissues. “UNIFAN gene sets HuBMAP” uses the model pretrained on the corresponding HuBMAP
tissue (HuBMAP spleen or thymus). “UNIFANgene sets Atlas” uses themodel pretrained on the “Atlas lung” data set.We included only the best-performing
prior methods on the Tabula Muris data (SIMLR, MARS, ItClust) for comparison. We see that themodel pretrained on human data is helpful for mouse gene
set activity scores inference and for clustering, specifically for tissues having similar cell types between human and mouse such as spleen and lung. For thy-
mus and Brain_Non-Myeloid, whose cell types are not well represented in the pretraining set, the performance drops.
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Next, UNIFAN clusters cells by using the learned gene set activity
scores and a reduced dimension representation of the expression
of genes in the cell. The gene set activity scores are used by an “an-
notator” to guide the clustering such that cells sharing similar bi-
ological processes are more likely to be grouped together. Such a
design allows themethod to focus on the key processes when clus-
tering cells and so can overcome issues related to noise and drop-
out while simultaneously selecting marker gene sets that can be
used to annotate clusters.

Learning gene set activity scores for cells

For each cell, we first infer its gene set activity scores, r [ RL
≥0

(L: number of gene sets), which represent the activity of known bi-
ological processes or pathways in the cell. For this, we design a spe-
cial autoencoder whose decoder, instead of being fully connected,
is composed of a binarymatrixD∈RG×L, whereG is the total num-
ber of genes profiled. Each column in D corresponds to a known
gene set for a biological process or pathway where the values are
indicators for whether a gene belongs to this set or not. For a cell
with expression y, the encoder, which is composed of fully con-
nected layers, outputs a low-dimensional representation, r. r is
then multiplied by the binary matrix D, which leads to a recon-
structed expression vector, ŷ, as shown in Figure 6. Values in r
serve as weights/coefficients for known gene sets for this cell.
Parameters for the fully connected encoder are optimized such
that the combination of the gene sets, weighted by r, can be
used to reconstruct the observed expression y for all genes in the
cell. Thus, r can be seen as the activity levels of pathways and pro-
cesses in the cell.

To construct the gene set matrix D, which serves as an input
to UNIFAN, we collected gene sets representing biological process-
es (including canonical pathways and targets of specific regulators)
from MSigDB (Subramanian et al. 2005) and Ernst et al. (2007),
which resulted in a total of roughly 10,000 sets. We expect that
only a small subset of these biological processes is active for each
single cell, and so, we use regularization to select active gene sets

for each cell. First, we constrain r to be nonnegative by using
ReLU for the output layer, which results in most values in r being
assigned to zero. Next, we use a regularizer inspired by the classical
set cover algorithm, which aims to find the least number of sets
that cover all elements (in our case, profiled genes of the cell). By
using this regularizer, we aim to find a small subset of nonoverlap-
ping gene sets that can cover as many of genes as possible (Lu et al.
2008). For this, our regularizer optimizes the following function:
a ‖ r ‖1 −bTDr, where α and β are hyperparameters (for selecting
values for hyperparameters in our model, see section Training
UNIFAN and Hyperparameter Selection). Using mean-squared er-
ror for the reconstruction loss, our overall loss function for a single
cell is

Lactivity(y, ŷ) =‖ y− ŷ ‖2 +a ‖ r ‖1 −bTDr.

Clustering cells using gene set activity scores

To cluster cells using the inferred gene set activity scores, we use an
autoencoder-basedmethod. It is composed of two parts: an expres-
sion-based cluster assignment part (Fig. 7, “gray” parts) and the
“annotator” part (Fig. 7, “green” parts), which uses the gene set ac-
tivity scores discussed above as input.

The cluster assignment part only uses the expression profile for
each cell. It consists of an encoder and two decoders (Decoder [e]
and [q] in Fig. 7), modified based on Fortuin et al. (2019) and Van
den Oord et al. (2017). For a single cell, we first use an encoder on
the expression of genes in the cell y, resulting in a low-dimensional
representation, ze, as shown in Figure 7. After initialization, we start
with a guess of M clusters and cluster centroids. Among M cluster
centroids S= {s1, s2, …, sM}, we identify the centroid closest to ze
by first calculating the Euclidean distances between ze and all cen-
troids and then transforming the distances using a t-distribution ker-

nel kt (d) = 1+ d2

v

( )− v+1
2
, followingLi et al. (2020),Xie et al. (2016),

and Van der Maaten and Hinton (2008). d stands for the distance,

Figure 6. Assigning single-cell gene set activity scores using an autoencoder. The autoencoder is designed such that the decoder is composed of binary
vectors with values indicating if a profiled gene belongs to a known gene set or not. The output of the encoder, r, serves as coefficients for the gene set
vectors, showing how related a cell is to a known pathway/biological process. r thus can be seen as the gene set activity scores for this cell. The set cover loss
is designed to select uncorrelated pathways/processes to better annotate cells. (FC layers) Fully connected layers, (Bio-process) biological process.
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and v stands for the degrees of freedom, which is fixed at 10 for all
experiments. We then take the closest centroid as the discrete repre-
sentation zq of the cell and assign the cell to the corresponding clus-
ter. We obtain the reconstructed expression ŷq using decoder (q)
which only takes zq as input, and so, all cells in the same cluster
have the same reconstructed expression. We optimize the recon-
struction error ‖ y− ŷq ‖2 to find the best zq, cluster centroids S,
and decoder (q), in a manner similar to finding the best cluster cen-
troids in k-means clustering.

Because we assign cell clusters using k-means (i.e., discrete
assignment), the encoder cannot be learned using backpropaga-
tion. To enable the iterative refinement of model parameters using
gradients, we follow Fortuin et al. (2019) by adding another
decoder, decoder (e). Decoder (e) takes ze as input and outputs an-
other reconstructed expression, ŷe. By optimizing ‖ y− ŷe ‖2, we
can now update ze and the encoder. The overall loss function for
a single cell in the cluster assignment part is thus
Lreconstruction(y, ŷe, ŷq) =‖ y− ŷe ‖2 + ‖ y− ŷq ‖2. All neural net-
works mentioned above are composed of fully connected layers.

So far, we only discussed clustering using expression data.
We next use the learned gene set activity scores for each cell
to refine cluster assignments as well as to annotate cell clusters.
For this, we add an “annotator,” a logistic classifier, to the
network model. For each cell, the annotator uses the gene set
activity scores r for that cell as input and outputs p(r), the pro-
bability of the cell being assigned to each cluster. We use the
annotator’s output to refine the cluster assignment by adding
Lannotator(r, y, S) =

∑M
i pi(r)d

2
i = ∑M

i pi(r) ‖ ze − si ‖2 to the exist-
ing loss function. Because it uses both, the low-dimensional repre-
sentation of the cell ze and the cluster centroids S, such loss
encourages cells being assigned to clusters based on the probability
specified by p(r). In other words, by using Lannotator and the anno-
tator, we are using prior knowledge about gene membership in
key biological processes to guide thedimension reduction and clus-
ter assignment.Gene sets selectedaspredictive by the annotator, in
turn, provide useful annotations for each cell cluster.

To allow the selection of marker genes for each cluster,
we also tested the use of the UNIFAN with a subset of the

most variable genes selected using Seurat v3 (Stuart et al.
2019). Using such set the annotator loss becomes
Lannotator(r, y, S) =

∑M
i pi(r, ys) ‖ ze − si ‖2, where ys are the ex-

pression of the selected genes. The overall loss function for the
cluster assignment part is thus

Lcluster(y, ŷe, ŷq, r, S) = Lreconstruction(y, ŷe, ŷq)+ tLannotator(r, y, S),

where τ is a weighting hyperparameter.
The annotator is trained to optimize its own loss func-

tion. We use cross-entropy loss to train the annotator:
Laccuracy(r, ys, c) = −∑M

i ci log ( pi(r, ys)), where ci=1(cell clus-
tered to i). To select marker gene sets and genes specific to each
cluster, we use the exclusive LASSO regularizer (Zhou et al.
2010) for the annotator. The regularizer takes the form of

Lexclusive(B) =
∑L

j=1
∑M

k=1 |Bjk|
( )2

, where B are the parameters of

the logistic classifier. Thus, the overall loss function for the
annotator is

Lclassification(r, ys, c, B) = Laccuracy(r, ys, c)+ gLexclusive(B),

where γ is a weighting hyperparameter.

Training UNIFAN and hyperparameter selection

The loss functions described in the section above are defined for a
single cell. During training, we take the mean of loss over all cells.
We first train the autoencoder for the gene set activity scores and
obtain the gene set activity scores for all cells. We then pretrain
the encoder and the decoder (e) of the autoencoder for clustering
on the expression data to obtain an initial low-dimensional repre-
sentations of the cells. We then run Leiden clustering (Traag et al.
2019) on these representations to obtain a guess of the number of
clustersM, the initial cluster assignment, and the cluster centroids
S. Both the number of clustersM and cluster centroids S are refined
later as part of the training. Specifically, clusters with no cell as-
signed to them are removed. The annotator is then pretrained us-
ing the inferred gene set activity scores and the selected genes, if

Euclidean

Figure 7. Jointly clustering and annotating cells. The autoencoder contains two parts: the cluster assignment part (gray) uses a low-dimensional repre-
sentation, ze, to assign a cell to clusters; the “annotator” (green) uses the learned gene set activity scores and selected genes’ expression to refine clustering
and annotate clusters. Gene sets and genes selected as predictive by the annotator, in turn, provide useful annotations for each cell cluster. We set the
number of clusters M as six in this figure for illustration purposes.
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available. We use the cluster assignment initialized as described
above as the true labels to pretrain the annotator.

Finally, we train the annotator together with the cluster as-
signment part (the encoder and decoder [e] and decoder [q]). In
each epoch, the annotator is trained by using the clustering results
as the true label for each cell. The output from the annotatorp(r) is
in turn used to evaluate the annotator loss Lannotator for the cluster
assignment part. As described previously, the annotator is opti-
mized using its own loss function, separately from the cluster as-
signment part. For details in training, see Supplemental Methods.

We use 32 dimensions for the low-dimensional representa-
tion ze of a cell. To select the values for hyperparameters, including
the neural network configuration and the weighting hyperpara-
meters for the loss functions, we conducted a grid search using
the Tabula Muris data set and selected those hyperparameters val-
ues leading to the best performance over tissues. Unless specifically
mentioned, the same set of values was applied to all data sets in all
experiments. For details on how we select the values, see
Supplemental Methods. As shown in Supplemental Figures S1
and S2, our method is robust to different choices of hyperpara-
meter values. We also show in Supplemental Figures S3 and S4
that our method is robust to the resolution value used in Leiden
clustering initialization and to the number of clustering epochs.

Performance evaluation and comparison to other methods

To evaluate the performance of UNIFAN and to compare it to prior
methods, including Leiden clustering (Traag et al. 2019), Seurat v3
(Stuart et al. 2019), SIMLR (Wang et al. 2017), DESC (Li et al. 2020),
SCCAF (Miao et al. 2020), MARS (Brbic ́ et al. 2020), ItClust (Hu
et al. 2020), and CellAssign (Zhang et al. 2019), we run eachmeth-
od on each data set 10 times with different initializations. For the
Tabula Muris data, we run methods on each tissue separately. We
use the ARI and NMI implemented in scikit-learn (Pedregosa
et al. 2011) to compare clusters with ground truth annotations.
Because calculating ARI for large data sets is time consuming, we
use stratified random sampling when computing ARI for large
data sets (more than 5×104 cells).

For the two (semi-) supervisedmethodsMARS and ItClust, for
each data set, we use random sampling stratified according to the
true cell types to select 5% of the cells for training where themeth-
ods take also the true labels as input, following Wei and Zhang
(2021). We leave the remaining 95% of the cells for testing and
use these to calculate ARI andNMI.We resample the cells for train-
ing each timewe run the twomethods. For CellAssign,which takes
known cell typemarkers as input, we use themarker gene sets from
PanglaoDB (Franzén et al. 2019), as described by Zhang et al.
(2019). Using all available cell type markers as input for a data
set increases run time dramatically, and so, we only use cell type
markers for the tissue that best matches the tissue of the data set
(e.g., we use marker genes for “Immune system” for the data set
“pbmc28k”). For details, see Supplemental Table S1.

For details on how we used prior methods, including hyper-
parameter settings for these methods and for information on the
evaluation strategy, including howwe compute enrichment P-val-
ues of the cell type marker sets in the highly weighted genes
learned by the annotator, see Supplemental Methods. Also, for de-
tails on how we conducted the simulation experiments, see
Supplemental Methods.

Software availability

UNIFAN is written in Python using PyTorch (Paszke et al. 2017). It
is available under a MIT license at GitHub (https://github.com/
doraadong/UNIFAN) and as Supplemental Code.
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