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INTRODUCTION

The ability of RNA viruses to exhibit high rates of mutation and replication has been proven
for over half a century and has been well documented with the advent of -omics technologies
during the last two decades. These high rates of mutation relative to their hosts, allow them to
evolve through the genomic evolutionary space, to broaden their variability and in some cases
may afford them to acquire advantageous phenotypes in response to environmental pressures, e.g.,
anti-viral treatments, the latter changes can then become established in the particular evolutionary
lineage of the virus (1, 2). Two additional, distinct but not mutually exclusive types of genetic
exchange operate in RNA viruses, as a mechanism to acquire advantageous genomic changes, as
well to be able to purge accumulated deleterious mutations. These are: firstly re-assortment, for
viruses with segmented viral genomes such as Influenza, where antigenic shift in Influenza A is
a well documented occurrence (3, 4). The second mechanism is recombination, which can occur
both in segmented (5, 6) and non-segmented viruses, when such a mechanism exists; effectively
when a “donor” sequence is introduced into a single contiguous genome to produce a new
recombinant one. There is much excellent, recent literature summarizing the current knowledge
and characterization of recombination for different RNA viruses at a population level (7–10).

Specifically in the Coronavirus family, recombination has been observed previously on a
number of genomic studies. For example, recombination was reported in the MERS-CoV species
(11, 12), while further phylogenetic analysis of the MERS-CoV full-genome sequences revealed
recombination signatures that defined at least five major phylogenetically stable lineages, all of
which contained human and camel MERS-CoV sequences (13). Similarly, for SARS-CoV there
has been evidence for potential recombination events during its evolution (14, 15), as has also
been suggested for human coronavirus HCoV-NL63, the latter exhibiting signs of having arisen
from multiple recombination events from its nearest relative over its evolution (16, 17). As
such, it is often reported that recombination is a normal consequence of coronavirus replication,
required for the generation of the sub-genomic mRNAs and is also implicated in novel strain
emergence (18–20).

THE CASE OF SARS-COV-2

In light of the above, it is of interest to consider the current evidence of recombination observed in
the case of SARS-CoV-2. The SARS-CoV-2 virus was hypothesized to have emerged as a result of a
recombination event between strains of beta-coronaviruses endemic to certain species of bats and
pangolins (21), however this theory has invited intense debate as regards convincingly proving
the proximal origin of the virus (22, 23). Specifically for the SARS-CoV-2 origins hypotheses,
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several authors provided arguments supporting the possibility
that the SARS-CoV-2 genome is a chimera of the RaTG13 and
Guangdong Pangolin coronavirus (i.e., a virus found in dead
Malayan pangolins in the Guangdong province of China) (24–
26) or in the place of the latter of close relatives of the bat
CoV ZC45 and ZXC21 strains (24). Similarly, according to
current hypotheses, evidence was presented that SARS-CoV-2
might be the result of recombination into RaTG13 from some
unknown CoV strains (27). Such recombination events remain
likely hypotheses at present, especially as in previous outbreaks
intermediate hosts were implicated in the β-CoVs transmission
(e.g., civets for SARS-CoV and camels for MERS-CoV) (20),
suggesting that SARS-CoV-2 may have co-circulated with other
coronaviruses in the wild in the same intermediary hosts, and also
may have been transmitted to humans in this way.

To date, the SARS-CoV-2 genetic diversity increases slowly
compared to other RNA viruses: given the many millions of
infections globally and hundreds of thousands of genomes
deposited in public databases (e.g., in the GISAID database)
(28), there are only 7–8 major circulating clades observed, being
identified based on multiple variants common to large numbers
of isolates. It is this relative genomic stability of the circulating
viral forms that allowed for the rapid development of effective
vaccines and therapeutics, as well as supporting the deciphering
of the SARS-CoV-2 pathology. However, inter- and intra-host
recombination events in coronaviruses are well studied and
evidenced to occur frequently (29, 30). As such the question arises
on the lack of recombination events reported for circulating
SARS-CoV-2 viruses. There have been a limited number of
publications reporting any such recombination events (31–34).

It is becoming evident that while homologous recombination
exists, recombinants seem to circulate at low levels for SARS-
CoV-2 (31, 35, 36) with current estimates that at most
5% of circulating strains in the United Kingdom and USA
are recombinants (36), or 16 recombinant sequences from
the whole UK dataset of 279,000 sequences up to March
7, 2021 (31). On the other hand, it is also technically
challenging to demonstrate homologous recombination when
the genomic lineage evolution is driven by a limited number
of single nucleotide polymorphisms. Furthermore, in order for
homologous recombination to occur, the same cells within an
individual need to be co-infected by genetically distinct viruses.
Such co-infection of an individual requires that multiple viral
lineages co-circulate within a population and, given the short
duration of most SARS-CoV-2 infections, is most likely to be
observed when virus prevalence is high in the population. Thus,
the potential window of opportunity for the currently circulating
SARS-CoV-2 variants is of limited time. To date, no heterologous
recombination events have been reported, for example between
SARS-CoV-2 and other co-circulating seasonal coronaviruses.

Having said that, the existing literature has demonstrated that
the coronavirus proofreading exoribonuclease (nsp14-ExoN)
is required to maintain the rates and loci of recombination
generated during infection, and strongly supports that
recombination mechanisms have been conserved across
different evolutionary trajectories and host species specificity
(18). Specifically, group 2a (MHV), 2b (SARS-CoV-2), and 2c

(MERS-CoV) β-CoVs demonstrated many strong similarities
in their patterns of recombination junctions across the
genomes and in the types of recombined RNAs produced (18).
Furthermore, during mixed infections of cell cultures with
murine coronaviruses, at least 10% of progeny viruses were
recombinants showing multiple independent recombination
breakpoints (37). While such events appear unbiased in culture,
in nature, events of recombination will be guided by natural
selection pressures in regions with roles in host interactions.
Among coronaviruses such areas of interest are centered in
spike proteins (38). In light of the above, a particular case in
SARS-CoV-2 can be hypothesized, with an upper ceiling of
homologous recombination frequency (as evidenced by the
experiments in culture) and potential recombination hotspots
(spike protein) where the identification of such events would be
most likely.

DISCUSSION

The coronavirus family is inclusive of many members, and the
relative levels of recombination might be very different between
different viruses even of the same family. In particular, the exact
molecular mechanisms and determinants of RNA recombination
in coronaviruses are only now becoming understood in greater
detail, through the scaled-up surveillance and whole genome
sequencing analyses (39), though the exact mechanisms and
determinants of CoV recombination are not known (18).
Additionally, for some outbreaks, there is little reason to suspect
recombination, e.g., negative sense single-stranded RNA viruses
are thought to recombine over evolutionary, not population-
level, time scales (40). As more mutations and lineages of SARS-
CoV-2 get fixed in the population and sequenced over a number
of consecutive SARS-CoV-2 waves, a recombination event caused
by a co-infection of a single patient with genetically distinct clades
may lead to emergence of novel lineages, posing risks to the
efficacy of future treatments.

Therefore, the following actions need to be considered: (i) a
rapid and consistent surveillance of the sequenced SARS-CoV-
2 genomes both for novel mutations and recombinations; (ii) a
unified collection of genomic, epidemiological and clinical data;
and (iii) further developed bioinformatics pipelines that allow for
such recombination events to be detected within the limitations
of the SARS-CoV-2 low genomic variation. While the first point
is largely in place, the latter two points vary greatly between
different geographic locations between and within countries.
The UK presents a useful example in this respect, as the high
rate of genomic surveillance and unified collection of genomic,
epidemiological, and geographic data provide multiple lines of
evidence for evaluating the identification of recombinant viruses.
Establishing and operating such an integrated approach to viral
surveillance on a consistent basis, remains critical to the ongoing
identification of recombinants.
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