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Abstract: We identifi ed gene expression signatures predicting responsiveness to a Kinesin-5 (KIF11) inhibitor (Kinesin-5i) 
in cultured colon tumor cell lines. Genes predicting resistance to Kinesin-5i were enriched for those from chromosome 20q, 
a region of frequent amplifi cation in a number of tumor types. siRNAs targeting genes in this chromosomal region identifi ed 
AURKA, TPX2 and MYBL2 as genes whose disruption enhances response to Kinesin-5i. Taken together, our results show 
functional interaction between these genes, and suggest that their overexpression is involved in resistance to Kinesin-5i. 
Furthermore, our results suggest that patients whose tumors overexpress AURKA due to amplifi cation of 20q will more 
likely resist treatment with Kinesin-5 inhibitor, and that inactivation of AURKA may sensitize these patients to treatment.

Keywords: chromosome20q, aurora a kinase, KSP, KIF11, RNAi

Introduction
The variable effi cacy of chemotherapeutics among patients highlights the need to identify the factors 
that predict patient response. Many cancer patients will suffer adverse effects of chemotherapy with no 
effective response in the tumor. The window of opportunity for treatment of cancer patients can be 
limited as the patient’s condition deteriorates. The inability to predict the lack of response to therapy 
can therefore result in loss of valuable time with negative consequences for patient outcome. Genome-
wide expression profi ling offers the ability to identify patterns of gene expression that correlate with, 
and predict, responsiveness to cancer therapy(33, 34, 49, 71). We have used expression profi ling to 
identify transcripts whose expression level correlates with cellular resistance to a small molecule 
inhibitor of the kinesin Kinesin-5 (KSP-1A(63, 64), hereafter referred to as Kinesin-5i).

Members of the kinesin family of microtubule motor proteins play exclusive and essential roles in 
mitotic spindle function and are potential targets for novel antimitotic cancer therapies. Kinesin-5 
(kinesin spindle protein), also known as KIF11, KSP or HsEg5, is a kinesin that plays an essential role 
in the formation of a bipolar mitotic spindle and is required for cell cycle progression through mito-
sis(7, 24, 26, 32, 47, 51, 56). Multiple studies, including use of small molecule inhibitors or RNA 
interference, demonstrate that failure of Kinesin-5 function leads to cell cycle arrest in mitosis with a 
monopolar mitotic spindle(7, 32, 47, 72), eventually leading to apoptotic cell death or mitotic catastro-
phe. Kinesin-5 inhibitors are effective in cell lines resistant to Taxol(44), potentially providing a route 
to overcoming Taxol resistance in the clinic. In addition, Kinesin-5 is expressed only in actively divid-
ing cells and functions exclusively in mitosis, so Kinesin-5 inhibitors may be able to avoid the side 
effects of Taxol and related tubulin-binding molecules, including peripheral neuropathy(52, 66). The 
therapeutic potential of Kinesin-5 inhibition has been evaluated through use of antisense oligonucle-
otides to reduce tumor growth in xenografts(35), and through tumor formation induced by overexpres-
sion of Kinesin-5 in transgenic animals(11). Given the potential for improved specifi city and unique 
mechanism of action, Kinesin-5 inhibitors have recently entered clinical trials for cancer therapy. Here 
we have used expression profi ling and RNA interference to identify genes whose expression predicts 
cellular responsiveness to a Kinesin-5 inhibitor. Furthermore, we have used RNA interference to deter-
mine which of the correlated genes are the drivers of resistance, and whose inhibition may sensitize 
patients to therapy with this inhibitor.
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Materials and Methods

Cell culture and transfections
All cell lines were obtained from ATCC 
(Bethesda, MD). HCT-8, COLO320DM, COLO201, 
COLO205, SNU-C2B, and NCI-H716 were grown 
in RPMI, all other cell lines were grown in DMEM. 
In all cases, media were supplemented with 
10%FBS and 100U/ml of penicillin and strepto-
mycin. See Supplemental Table 1 for cell lines used 
in this study. Kinesin-5i was titrated (1:3 dilutions 
in DMSO) from a starting concentration of 2 uM. 
Taxol was titrated from a starting concentration of 
723 nM. Cell viability was measured by Alamar 
blue reagent (BioSource International, Camarillo, 
CA) 72 hours after addition of Kinesin-5i or Taxol, 
and is reported as percent viability relative to 
mock-treated cells (DMSO only). EC50 values were 
determined using GraphPad Prism® software as 
the dose of inhibitor providing a response 50% 
between maximum and minimum. For siRNA 
transfections, cells were transfected in 6-well plates 
using DhamaFect1 (Dharmacon, Lafayette, CO) 
and the indicated doses of siRNA duplex. Where 
not specifi ed, the concentration of siRNA was 
100 nM. Kinesin-5i was added 4 hours following 
siRNA transfection, and cell viability was mea-
sured by Alamar blue reagent 72 hours later.

Microarray analysis
RNA from each individual cell line was hybridized 
against a reference pool containing RNA from 10 
of the cell lines. Total RNA was purifi ed by Qiagen 
RNeasy kit, and processed as described previ-
ously(27) for hybridization to Agilent microarrays 
containing oligonucleotides corresponding to 
approximately 21,000 human genes. Ratio hybrid-
izations were performed with fl uorescent label 
reversal to eliminate dye bias. Data shown are 
signature genes that display a difference in expres-
sion level (p � 0.01) in 3 cell lines relative to the 
reference pool. No cuts were placed on fold change 
in expression. Blue indicates decreased expression; 
magenta indicates increased expression; black 
indicates no change in expression. Data were ana-
lyzed using Rosetta Resolver® and MatLab (Math-
works) software. Transcript regulation was 
calculated as the error-weighted mean log10 ratio 
for each transcript across the fl uor-reversed pair. 
Microarray data has been deposited at the NCBI 
Gene Expression Omnibus, GSE 7969.

Determining AURKA and TPX2
mRNA levels
Total RNA was harvested from exponentially 
growing cells using the RNeasy Mini kit (#74104 
Qiagen, Carlsbad, CA). Reverse transcriptase reac-
tions were performed using the High Capacity 
cDNA Archive Kit (#4322171 Applied Biosys-
tems, Foster City, CA). Quantitative PCR was 
performed with TaqMan Universal PCR Master 
Mix (#43108157, Applied Biosystems) on the 
7900HT Sequence Detection System (Applied 
Biosystems). The GUSB endogenous control, 
AURKA and TPX2 primer/probe sets were Applied 
Biosystems #4310888E, Hs0026921_m1, and 
Hs00201616_m1 respectively.

Determining AURKA protein levels
Protein lysates were harvested 48 hours post-
transfection, and were run on 4%–12% Bis-Tris 
Gels with MOPS Running Buffer. Gels were trans-
ferred to nitrocellulose membranes and probed 
with mouse monoclonal antibody to AURKA 
(1:1000 dilution, ab13824, Abcam) or with rabbit 
polyclonal antibody to Actin (1:10000 dilution, 
ab8227, Abcam).

Determining AURKA and TPX2
DNA copy number
DNA was isolated from cell lines using the DNeasy 
minid kit (#69504, Qiagen). Primer/probes were 
designed by Applied Biosystems Assays by Design 
to introns of AURKA and TPX2 and the endogenous 
controls B2M, GUSB, and GAPD. Quantitative 
PCR was performed with TaqMan Universal PCR 
Master Mix (#43108157, Applied Biosystems). 
Blood genomic DNA (#636401, Clontech, Moun-
tain View, CA) was used to calibrate the expected 
diploid delta CTs between AURKA and TPX2 and 
the endogenous controls so that the ploidy of the 
tumor cell lines could be determined. The ploidy 
given is an average of the ploidy determined using 
the delta CTs between AURKA or TPX2 and each 
of the 3 endogenous controls.

siRNA screens
HeLa cells were plated at 600 cells/well in 384-well 
plates. Cells were transfected with 100 nM each 
siRNA pool using DharmaFect1 (Dharmacon, 
Lafayette, CO), and cell viability was measured 
by Alamar blue (BioSource International, 
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Camarillo, CA) assay 72 hours post-transfection. 
Each transfection was performed in duplicate. 
Viability for each siRNA pool was calculated as 
percent of viability for control siRNA targeting 
luciferase. Genes sensitizing to Kinesin-5i were 
selected based on viability of 2 SD from the mean 
of the population calculated per plate. Data was 
analyzed using Rosetta iLiminator® software.

Monoaster analysis and fl ow
cytometry
Cells were plated at 30,000 per well in 24-well 
plate in DMEM/10%FBS and transfected with the 
10 nM siRNAs using Oligofectamine (Invitrogen). 
Four hours post-transfection, cells were treated 
with the indicated doses of Kinesin-5i for 24 hours. 
For monoaster analysis, wells were aspirated and 
washed once with TBST before exposure to mouse 
anti-alpha tubulin antibody (SIGMA, #T-9026) at 
1:500 and goat anti-mouse Alexa 488-labeled 
secondary antibody (Molecular Probes, #A21121) 
at 1:200 in TBST + 5 mg/ml BSA for 4 hours at 
room temperature. Cells were washed with 
TBST + Hoechst stain (10 µg/ml), 2 × 10 minutes, 
followed by a 10 minute wash in TBST without 
stain. Microphotographs were acquired using a 
20X objective on a Leica DMIL inverted fl uores-
cence microscope. For fl ow cytometry, cell wells 
were aspirated, washed, and trypsinized. The 
reserved aspirant, wash, and trypsin cell suspension 
were combined and pelleted. Cells were resus-
pended in 1X PBS and ethanol-fixed prior to 
propidium iodide staining and RNAse treatment 
for 20 minutes at 37 °C. Flow cytometry was con-
ducted on a Becton-Dickinson FACSCalibur 
cytometer, followed by analysis using FlowJo 
(Treestar).

Results
We utilized cancer cell lines to identify constitu-
tive gene expression signatures that correlate with 
in vitro response to a Kinesin-5 inhibitor, KSP-
1A(63, 64), referred to here as Kinesin-5i. The 
derivation of this compound, (1S)-1-{[(2S)-4-
(2,5-difl uorophenyl)-2-phenyl-2,5-dihydro-1H-
pyrrol-1-yl]carbonyl}-2-methylpropylamine, has 
previously been described (see compound 17 
in(18)). We measured the effi cacy of this inhibitor 
in a panel of 26 colorectal cancer cell lines. 
Colorectal cancer was chosen as the initial model 
to test this approach, due to the fact that G2 

checkpoint defects, found in the majority of 
colorectal cancers(9), are synthetically lethal with 
loss of function of CIN8, the Kinesin-5 homolog 
in S. cerevisiae(19). A recent report further sup-
ports the idea that the status of the G2 checkpoint 
in human cancer cells contributes to the cellular 
response to Kinesin-5 inhibitor(64). We analyzed 
26 colorectal cancer cell lines with doubling time 
less than 48 hours for dose response to Kinesin-5i, 
using seven-point drug titration curves. Three 
days after addition of the drug, cell survival was 
measured by Alamar Blue assay, and reported 
relative to control (DMSO treated) cells. The cell 
lines segregated into two clearly distinguishable 
populations differing in sensitivity to Kinesin-5i 
(Fig. 1A). These populations differed in endpoint 
response to the inhibitor, as well as EC50, which 
ranged from 22 nM in the most sensitive line 
(RKO-AS45-1) to 137 nM in the most resistant 
line (LS123, see Supplemental Table 1 for all EC50 
values). Cell lines also segregated according to 
colon cancer type, with the microsatellite instabil-
ity (MIN) type colon cancers generally showing 
sensitivity to Kinesin-5i, and the chromosome 
instability (CIN) type colon cancer lines showing 
resistance to the inhibitor. These two distinct 
types of colon cancers arise from distinct molec-
ular mechanisms(42,55). Our data suggest that 
these different tumorigenic mechanisms correlate 
with responsiveness to Kinesin-5i, and that MIN 
colon tumors will likely respond more favorably 
in the clinic to this Kinesin-5 inhibitor.

We subsequently used microarray profi ling to 
identify basal (pre-existing) gene expression pat-
terns that correlated with cellular response to 
Kinesin-5i. RNA from each individual cell line was 
compared to a reference pool containing RNA from 
a subset of the samples (N = 10). This approach 
enabled the identifi cation of transcripts whose 
expression has signifi cant variation from the refer-
ence population. It is important to note that the cell 
lines were not treated with Kinesin-5i prior to 
expression profi ling, because we wanted to identify 
transcript expression patterns predictive of 
response, rather than genes whose expression 
changes in response to the inhibitor. Transcripts 
whose expression differed from the reference 
population (p � 0.01) in 3 or more cell lines were 
selected for further analysis. The cell lines were 
rank-ordered according to the log10(EC50) calcu-
lated from the in vitro growth assays, and expres-
sion signatures correlating with this parameter 
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were identifi ed using a threshold of �0.5 or �−0.5 
correlation. Using these criteria, 932 transcripts 
were identifi ed using 26 cell lines. The expression 
of these transcripts in each of the cell lines in the 
panel is shown in Figure 1B. The cell lines are 
ranked from most resistant (top) to most sensitive 
(bottom) according to log10(EC50). Therefore, 
transcripts more highly expressed (pink) in cell 
lines in the top portion of the panel are positively 
correlated with resistance to Kinesin-5i.

The performance of the reporters identifi ed 
through this process was evaluated through the 
leave-one-out validation procedure. Namely, each 

time we left out cell line(s) derived from the same 
patient, and used the remaining cell lines to identify 
the reporters and to construct the prediction model 
for log10(EC50). The prediction model was simply 
a linear fi t between the average expression of cor-
related (or anti-correlated) reporters and the 
log10(EC50) . The left-out sample(s) were predicted 
using this linear model. The process was repeated 
26 times until each sample was left out once. The 
advantage of this approach is that all of the data 
can be used for training, and none has to be held 
back for a separate test set. This is especially use-
ful when the sample size is limited, and avoids the 
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Figure 1. Identifi cation of reporter genes correlating with in vitro response to Kinesin-5i. (A) 26 colon cancer cell lines were tested in 
vitro for responsiveness to Kinesin-5 inhibitor using a 72-hour Alamar blue assay. (B) RNA from each individual cell line was profi led against 
a reference pool corresponding to RNA from 10 of the colon cancer cell lines. Shown is a heat-map analysis of cell lines rank-ordered 
according to log10EC50 for Kinesin-5i response (Y axis) and clustered (X axis) with genes correlated (�0.5 or �−0.5) with log10EC50 for 
Kinesin-5i. The cell lines are ranked from most resistant (top) to most sensitive (bottom) according to log10(EC50). Pink indicates genes that 
are more highly expressed in a single cell line compared to the reference pool. Blue indicates genes that are expressed at a lower level in 
a single cell line compared to the reference pool. Microarray data has been deposited at the NCBI Gene Expression Omnibus, GSE 7969. 
(C) All the Kinesin-5i reporters or just the positive reporters were evaluated for chromosomal distribution. The enrichment of reporter genes 
on each chromosome was calculated relative to a background set composed of all genes for that chromosome that were present on the 
microarray. Shown is the –log10(e-value) for enrichment of reporter genes (p-value with Bonferroni correction). (D) The chromosomal location 
(x-axis) for each gene from chromosome 20 present on the microarray was compared to the correlation of that gene (x-axis) with log10(EC50) 
in the colon tumor lines. Genes with a correlation �0.5 or �−0.5 are indicated in black. The location of the centromere (cen) for chromosome 
20 is indicated. The p arm of the chromosome is to the left of the centromere, the q arm is to the right of the centromere.
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possible bias introduced by relying on any one 
particular division into test and training compo-
nents. By this leave-one-out process, we found that 
the baseline expression of negatively-correlated 
reporter transcripts predicted the log10(EC50) for 
Kinesin-5i response with a correlation of 0.56 and 
p-value = 1.6e−3. The baseline expression of posi-
tively-correlated reporter transcripts predicted the 
log10(EC50) for Kinesin-5i response with a 
correlation of 0.68 and p-value = 2.6e−5. Among 
932 genes identifi ed using all 26 cell lines, 304 
genes were positively correlated (were more highly 
expressed in the resistant cell lines), and 628 genes 
were negatively correlated (were expressed at 
lower levels in the resistant lines).

Log10(EC50) reporter genes were analyzed for 
chromosomal localization. Negatively correlated 
reporters showed enrichment for genes located on 
chromosomes 17, 18, and 22 (e-values �1e−10, 
2e−7, and 2e−5 respectively, with Bonferroni cor-
rection). Positively correlated reporters showed a 
signifi cant enrichment for genes located on chro-
mosome 20 (e-value �10−23 with Bonferroni cor-
rection, Fig. 1C). There was no enrichment for 
other chromosomes among the positive reporters. 
Furthermore, reporter genes from chromosome 20 
had much of the predictive power of the entire set 
of positively correlated reporters, demonstrating 
that one or more genes harbored on chromosome 
20 are implicated in resistance to Kinesin-5i. Nei-
ther the positively nor negatively correlated Kine-
sin-5i reporter genes predicted response to Taxol 
(correlation = 0.01, p = 4.8e−1 for chromosome 20 
reporters, not shown). Response to Taxol was 
instead dominated by the expression level of 
ABCB1, also known as MDR1 (multi-drug resis-
tance). ABCB1 expression predicts response to 
Taxol, but does not predict response to Kinesin-5i 
(Supplemental Fig. 1). Cell lines were also tested 
for response to nocodazole and camptothecin (data 
not shown). Genes whose expression correlated 
with Kinesin-5i EC50 predicted in vitro responsive-
ness to this inhibitor, but did not predict response 
to any of the other drugs tested. In contrast, genes 
whose expression correlated with fi nal cell killing 
by Kinesin-5i were predictive of response to all of 
the drugs tested. There was good overlap among 
the genes correlated with endpoint response to all 
of the drugs tested. Thus, endpoint cell killing was 
more refl ective of general drug response while 
EC50 was more refl ective of response to the par-
ticular drug under study. Since the genes whose 

expression correlates with Kinesin-5i EC50 appear 
to be selective for responsiveness to this inhibitor, 
these reporters might therefore play a direct role 
in Kinesin-5 function. Given the considerable 
enrichment for Kinesin-5i resistance reporters on 
chromosome 20, we focused on the chromosome 
20 reporters for further analysis.

The chromosomal coordinate (Fig. 1D, x-axis) 
of each gene from chromosome 20 present on the 
microarray was compared to the correlation of that 
gene’s expression with log10(EC50) in the colon 
tumor lines (Fig. 1D, y-axis). Genes whose expres-
sion displayed a correlation of �0.5 or �−0.5 with 
log10(EC50) for Kinesin-5i were enriched for those 
on the q arm of chromosome 20 (Fig. 1D, 
p-value = 8e−17, see Supplemental Table 3 for data). 
Thus, genes whose expression correlated with 
resistance to Kinesin-5i were clustered on chromo-
some 20q. Chromosome 20q is frequently 
amplified in colon, breast, and ovarian can-
cers(25,39,48,61,69,70) and cancer cell lines(17), 
and has been implicated in metastasis and poor 
prognosis(2,36,62). Chromosomal amplifi cation is 
the only known mechanism to explain coordinate 
over-expression of genes mapping to an entire 
chromosomal arm. Among these will be dominant 
oncogenes that provide a survival advantage to 
tumors.

To functionally test for the driver(s) of Kinesin-
5i resistance, we screened for siRNAs that sensitize 
cells to growth inhibition by a sublethal dose 
(∼EC20) of this inhibitor. HeLa cells were selected 
for this screen because they are readily transfect-
able with siRNAs, and preliminary experiments in 
this cell line demonstrated the ability of KINESIN-5 
and AURKA siRNAs to enhance the phenotype of 
Kinesin-5i. The colon cancer cell lines identifi ed 
in this study as resistant to Kinesin-5i, which would 
be the natural choice for such a screen, have proven 
diffi cult to transfect with siRNAs in high-throughput 
format for the purpose of a screen. HeLa cells were 
transfected with a siRNA library targeting ∼3,500 
genes, including all 378 genes on chromosome 
20q. Each gene was represented by a pool of 
3 siRNAs. Cell viability was measured 72 hours 
following addition of 30 nM Kinesin-5i. Genes 
whose silencing sensitized HeLa cells to the lethal 
effects of Kinesin-5i would show reduced viability 
in the presence of Kinesin-5i (y-axis) relative to 
the absence of Kinesin-5i (x-axis), and therefore 
would fall into the lower right quadrant of the 
correlation plot in Figure 2. Three independent 
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screens were performed to identify genes whose 
silencing enhanced the lethal effect of Kinesin-5i. 
The results from a representative experiment are 
shown in Figure 2 (see Supplemental Table 4 for 
data).

Fifty-one genes were identifi ed for which target 
silencing enhanced cell killing by Kinesin-5i 
(2 standard deviations from the mean in any 2 of the 
3 screens, Fig. 2). This set of 51 genes displays no 
signifi cant functional annotation as determined by 
GO Biological Process, although individual genes 
such as KINESIN-5 (the target of Kinesin-5i), 
additional mitotic kinesins (KIF13B, KIF15), and a 
mitotic regulator (PLK4), are consistent with the 
mitotic function of Kinesin-5i (see Supplemental 
Table 2 for full list of genes). Also among these 
genes was AURKA, for which 3 independent siRNA 
pools enhanced the Kinesin-5i phenotype. Only four 
other genes from chromosome 20q were identifi ed 
as genes whose silencing enhanced the Kinesin-5i 
phenotype, SULF2, TPX2, MYBL2, and ARFRP1. 
TPX2, AURKA, and KINESIN-5 function in the same 
pathway(4,16,22), and silencing of TPX2 or AURKA 
sensitizes cells to the lethal effects of Kinesin-5i 
similarly to silencing of KINESIN-5 itself.

To confi rm that target silencing for these 5 
chromosome 20q genes enhances the phenotype 
of Kinesin-5i, and to conform to best practices for 
siRNA validation(13), the pools were deconvoluted 
to determine the ability of each individual siRNA 
to enhance the lethal effect of Kinesin-5i. For these 
follow-up assays, we decided that dose-titration 
curves would be more informative than single-
point assays. We initially tested 2 dose-titration 
methods to investigate the impact of gene silencing 
on growth inhibition in combination with Kinesin-5i. 
We initially tested a constant concentration of a 
single siRNA while titrating Kinesin-5i. An 
AURKA siRNA did shift the dose-response of 
Kinesin-5i (∼5-fold reduction in EC50, Fig. 3A, 
left panel). We also tested a constant concentration 
of Kinesin-5i with a titration of the siRNA to 
modulate the amount of target gene silencing. 
Kinesin-5i shifted the dose-response of AURKA 
siRNA (∼10-fold reduction in EC50, Fig. 3A, right 
panel). The 2 methods yielded similar results 
showing that the combination of siRNA with drug 
produced more growth inhibition than either treat-
ment alone. However, the siRNA titration provided 
more points in the linear range of the curve. We 
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Figure 2. Silencing of several genes on chromosome 20q sensitizes HeLa cells to Kinesin-5 inhibitor. HeLa cells were transfected with 
siRNA pools (3 siRNAs per gene) to each of ∼3500 individual genes, including 378 genes on chromosome 20q, in the presence (Y-axis) or 
absence (X-axis) of 30 nM Kinesin-5i. Cell survival was measured 72-hours post transfection by Alamar blue assay. Each dot indicates survival 
of cells transfected with siRNAs targeting a single gene. Blue dots indicates genes whose silencing affects viability in response to Kinesin-5i (2SD 
from the mean of the population). Red dots indicate Kinesin-5i enhancers composed of siRNA pools targeting genes on chromosome 20q.
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therefore opted to perform our siRNA hit confi rma-
tion with this method.

In the absence of Kinesin-5i, 3 additional siR-
NAs (representing one pool) targeting AURKA 
produced some reduction in cell viability (Fig. 3B). 
The addition of Kinesin-5i shifted the dose 
response curve for the AURKA siRNAs 5-10-fold 
to the left (Fig. 3B). The levels of AURKA mRNA 
silencing and protein silencing were also measured 
at each dose of the siRNAs. All 3 siRNAs showed 
similar dose-dependent reduction in protein and 
mRNA levels (Fig. 3C, D, respectively). At the 
lowest doses of siRNA, there was still detectable 
AURKA mRNA and protein. Doses of siRNA 
greater than 12.5 nM resulted in maximal decrease 
of AURKA mRNA (∼90%) and protein. These 
doses of siRNA also resulted in maximal growth 
inhibition, suggesting that the growth inhibition 
was due to AURKA disruption. Addition of Kine-
sin-5i caused a shift in dose-response for all 3 TPX2 
siRNAs (Fig. 4A). Although one siRNA was toxic, 

producing 80% reduction in cell growth, there was 
additional lethality upon addition of Kinesin-5i. 
Thus, Kinesin-5i enhances the effects of AURKA 
and TPX2 siRNAs on cell growth. The impact of 
the siRNAs on silencing of the target protein is 
important for interpreting differences in phenotype, 
but unfortunately we were unable to identify TPX2 
antibodies of suffi cient specifi city and sensitivity 
to measure TPX2 protein silencing. Since the con-
centration of Kinesin-5i used in these experiments 
did not affect cell growth on its own, the effect of 
Kinesin-5i on AURKA and TPX2 siRNA activity 
is greater than additive.

SULF2 has no known link to AURKA or KINE-
SIN-5. Thus, either we have identifi ed a novel 
function for SULF2, or this represents an off-target 
effect. Two separate detection methods, qPCR and 
microarray, indicate that the SULF2 transcript is 
not expressed in HeLa cells (detection is below 
background). In addition, 1 of the siRNAs in the 
SULF2 pool has a seed region that is complementary 
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Figure 3. Silencing of AURKA sensitizes HeLa cells to Kinesin-5 inhibitor. (A) Comparison of Kinesin-5i titration (left panel) to siRNA 
titration (right panel) for growth inhibition. Left panel: Kinesin-5i was titrated in the absence of siRNA (dotted line) or the presence of 100 nM 
AURKA siRNA (solid line). Right panel: AURKA siRNA was titrated in the absence of Kinesin-5i (dotted line) or the presence of 10 nM 
Kinesin-5i (solid line). Cell survival was measured 72-hours post transfection by Alamar blue assay. (B) 3 siRNAs from a single pool targeting 
AURKA or negative control luciferase were transfected into HeLa cells at the indicated doses. Cells were then grown in the absence (dotted 
lines) or presence (solid lines) of 10 nM Kinesin-5i. Cell survival was measured 72-hours post transfection by Alamar blue assay. Silencing 
of AURKA protein (C) and mRNA (D) following transfection of HeLa cells with the indicated concentrations of siRNA. Protein was harvested 
48 h post-transfection. RNA was harvested 24 h post-transfection.
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to the AURKA transcript sequence. siRNA seed 
region sequence complementarity has been impli-
cated in silencing of unintended transcripts(28,29). 
The SULF2 siRNA with seed region complemen-
tarity to AURKA, as well as the SULF2 pool, 
silences the AURKA transcript by 70%–80%, 
similar to the extent of silencing by the AURKA 
siRNAs (Supplemental Fig. 2). Six additional 
SULF2 siRNAs failed to sensitize HeLa cells to 
Kinesin-5i. Therefore, the enhancement of Kinesin-
5i lethality by the SULF2 siRNA pool is likely an 
off-target effect of silencing AURKA.

We identifi ed ARFRP1 as a positive reporter for 
Kinesin-5i resistance by expression profi ling and 
as a gene whose silencing enhances Kinesin-5i 
lethality. Deconvolution of the ARFRP1 pool 
revealed that only 1 of the 3 individual siRNAs 
sensitized HeLa to Kinesin-5i, and this 1 siRNA 
only silenced the ARFRP1 transcript by 40% (Data 
not shown). The other 2 siRNAs silenced the target 

by 70%–80%, but did not sensitize to Kinesin-5i. 
Thus, ARFRP1 is an off-target hit. Although 
ARFRP1 expression is a reporter of Kinesin-5i 
responsiveness, silencing of this gene does not 
sensitize cells to Kinesin-5i. Therefore, ARFRP1 
is likely a bystander of chromosome 20q amplifi ca-
tion rather than a driver gene.

MYBL2 (BMYB) is myeloblastosis oncogene-
like 2, a transcription factor whose expression is 
regulated at the G1/S border of the cell cycle, and 
is involved in the regulation of apoptosis, cell divi-
sion and cell differentiation(30,54). All 3 MYBL2 
siRNAs silenced the target by �90% at all doses, 
and all 3 sensitized HeLa cells to Kinesin-5i (Fig. 
4B), confi rming that MYBL2 silencing enhances 
cell killing by Kinesin-5i. Despite testing several 
MYBL2 antibodies, we were unable to identify an 
antibody with suffi cient specifi city and sensitivity 
to measure silencing of MYBL2 protein. A role for 
MYBL2 in the function of Kinesin-5i is currently 
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Figure 4. Silencing of TPX2 and MYBL2 sensitize HeLa cells to Kinesin-5 inhibitor. siRNAs targeting (A) TPX2 or (B) MYBL2 were 
transfected into HeLa cells at the indicated doses. Cells were then grown in the absence (dotted lines) or presence (solid lines) of 25 nM 
Kinesin-5i. Cell survival was measured 72-hours post transfection by Alamar blue assay. Right panels: Percent target mRNA remaining fol-
lowing transfection of HeLa cells with the indicated concentrations of siRNAs.
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uncharacterized. However, the demonstration that 
all individual siRNAs tested for this gene sensitized 
HeLa cells to the lethal effects of Kinesin-5i sug-
gests a functional role for MYBL2 in response to 
this inhibitor and a possible role of MYBL2 in the 
Kinesin-5 pathway. Of 387 genes on chromosome 
20q tested, 3 genes were confi rmed to enhance the 
effect of Kinesin-5i upon target silencing, and 2 of 
these, AURKA and TPX2, function in the Kinesin-5 
pathway.

For chromosome 20q amplifi cations, a likely 
candidate gene for driving tumorigenesis is 
AURKA(14), also known as STK6, STK15, or 
BTAK. AURKA DNA amplifi cation is correlated 
with overexpression of its transcript in cancers and 
cell lines(6, 57), suggesting that AURKA is a target 
of chromosome 20q13 amplifi cation. Furthermore, 
Kinesin-5 is a substrate of AURKA in vitro(21, 22), 
suggesting a possible functional consequence of 
AURKA amplification on Kinesin-5 function. 
AURKA was not among the reporter genes derived 
by expression profi ling using the criteria described 
above, but did show a correlation of 0.42 with 
Kinesin-5i response. Therefore, the expression of 
AURKA correlated with Kinesin-5i responsiveness, 
but the correlation fell just below our threshold of 
0.5. The decreased correlation of AURKA could 
occur if the microarray probe for this transcript 
reports expression level with a compressed 
dynamic range. To determine by another method 
whether AURKA amplifi cation is correlated with 
resistance to Kinesin-5i, we measured AURKA 
DNA and mRNA copy number in a subset (n = 17) 
of the colon tumor cell lines by PCR. AURKA DNA 
and mRNA levels were correlated in the colon lines 
(r = 0.66, Supplemental Fig. 3A). AURKA DNA 
copy number (r = 0.6, Supplemental Fig. 3B) and 
mRNA level (r = 0.65, Supplemental Fig. 3C) were 
each correlated with Kinesin-5i EC50. AURKA 
mRNA levels showed 2-to-5-fold increased expres-
sion in the resistant cell lines. Another gene on 
chromosome 20q, TPX2, activates AURKA(15, 
16, 65), in part through promotion of AURKA 
autophosphorylation (4), and targets AURKA to 
the microtubules proximal to the spindle pole(38). 
The mRNA level of TPX2 was also correlated with 
Kinesin-5i EC50 (r = 0.4, data not shown), and the 
mRNA level is increased approximately 2-fold in 
the resistant lines. In contrast, Kinesin-5 mRNA 
levels were consistent across cell lines, and were 
not correlated with Kinesin-5i EC50 (Data not 
shown). Given their role in the Kinesin-5 pathway, 

amplifi cation and/or overexpression of AURKA 
and TPX2 could affect cellular response to Kinesin-
5i through a direct or indirect impact on Kinesin-5 
function. The fi nding that AURKA and TPX2 tran-
script levels correlate with Kinesin-5i response is 
not suffi cient to prove a causal role for these genes, 
but this fi nding, together with the demonstration 
that silencing of these transcripts enhances the 
lethal effect of Kinesin-5i, suggests a pivotal role 
for these genes in Kinesin-5i resistance.

Subsequently, we tested the ability of AURKA 
siRNAs to sensitize SW480 cells (relatively high 
levels of AURKA, resistant to Kinesin-5i) and 
HCT116 cells (low levels of AURKA, sensitive to 
Kinesin-5i) to Kinesin-5i. siRNA targeting AURKA 
or negative control luciferase were titrated in each 
of the cell lines, followed by addition of an EC10 
concentration of Kinesin-5i. Silencing of AURKA 
had a slight effect on cell viability in SW480 cells, 
but this effect was increased upon addition of 
Kinesin-5i (∼2-fold increase in percent growth 
inhibition across the dose-response, Fig. 5). The 
curves for growth inhibition in the presence and 
absence of Kinesin-5i are parallel but different. 
The addition of Kinesin-5i did not enhance cell 
killing in combination with silencing of luciferase. 
Since Kinesin-5i did not affect SW480 cells trans-
fected with a control siRNA, the increased cell 
killing in cells transfected with the AURKA siRNA 
is greater than additive. We have also observed 
sensitization by TPX2 siRNAs in SW480 cells 
(data not shown). Thus, genes identifi ed as Kine-
sin-5i enhancers in HeLa cells also enhanced 
Kinesin-5i effi cacy in a resistant colon cancer cell 
line. Silencing of AURKA alone decreased cell 
viability in HCT116 cells, but this effect was not 
enhanced by addition of Kinesin-5i (Fig. 5). One 
interpretation of these results is that HCT116 cells 
are already sensitive to Kinesin-5i due to low lev-
els of AURKA, such that further silencing of 
AURKA has no impact on cellular response to the 
inhibitor.

To demonstrate that AURKA disruption directly 
impacts the effect of Kinesin-5i, we measured the 
effect of AURKA silencing on the formation of 
monoasters, a characteristic of Kinesin-5 disrup-
tion(32, 47). Silencing of AURKA alone produced 
monoasters in 5% of HeLa cells (Fig. 6). Addition 
of 25 nM Kinesin-5i increased the frequency of 
monoasters 4-fold (20% of cells), while the same 
concentration of Kinesin-5i did not increase the 
frequency of monoasters in cells transfected with 

Cancer Informatics 2008:6



156

Jackson et al

a control siRNA targeting luciferase. Thus, the 
increase in monoaster formation by AURKA silenc-
ing in Kinesin-5i-treated cells is greater than addi-
tive. A higher concentration of Kinesin-5i produced 
monoasters even in the control cells (40% of cells), 
but the frequency was still greater in cells with 
AURKA disruption (60% of cells). Consistent with 
an impact on the spindle formation function of 
Kinesin-5, AURKA silencing caused an increase 
in the percentage of cells in the G2/M phase of the 
cell cycle (Supplemental Fig. 4). Thus, silencing 
of AURKA interferes directly with Kinesin-5 
function in spindle formation and subsequent cell 
cycle progression.

Discussion
Early attempts to predict patient response to che-
motherapy on the basis of genetic information have 
focused on one or a few individual genes (MDR, 
TP53, TS, EGFR, etc). In contrast, we have used 
two unbiased approaches, siRNA screening and 
genome-wide expression profi ling, to investigate 
the genetic basis of cellular response to the che-
motherapeutic agent Kinesin-5i. Our data demon-
strate that transcripts whose expression correlates 
with Kinesin-5i resistance are enriched for those 
localized to chromosome 20q. Thus, expression of 
one or more genes on chromosome 20q determines 

resistance to Kinesin-5i. Predictive approaches 
to cell line chemosensitivity through gene 
expression-based classifi ers have previously been 
reported(3,5,45,59,71). In the current study we 
expand upon this correlative type of analysis to 
provide evidence that a subset of the predictive 
transcripts is functionally involved in the cellular 
response to Kinesin-5i. The demonstration here 
that of 378 genes on chromosome 20q targeted by 
siRNAs, only AURKA, TPX2, and MYBL2 sensi-
tized cells to Kinesin-5i, implicates one or more 
of these genes as the drivers for resistance to this 
inhibitor.

AURKA is a ser/thr protein kinase that phos-
phorylates Kinesin-5 in Xenopus(22). AURKA is 
an oncogene(14), is amplifi ed in cancer cell lines 
and primary tumors(6), and is overexpressed in 
poor prognosis breast cancer patients(12,67,68). 
Furthermore, increased expression of AURKA cor-
relates with the level of amplifi cation in breast 
cancer cell lines and colorectal cancers(6,57). 
TPX2 binds to AURKA and stimulates its auto-
activation(4,16). Located on chromosome 20q11, 
TPX2 is amplified in giant-cell tumor of the 
bone(58), and is overexpressed in squamous cell 
lung cancer(43), neuroblastoma(37), poor progno-
sis breast cancer(53,67) and endometrial cancer, 
where its expression level is correlated with stage, 

HCT116

1 10 100
0

20

40

60

80

100

120

140

Luc+Kinesin-5i

AURA_8449+Kinesin-5i

Luc

AURKA_8449

siRNA (nM)

%
 n

o 
si

R
N

A 
gr

ow
th

SW480

1 10 100
0

20

40

60

80

100

120

Luc+Kinesin-5i

AURKA_8449+Kinesin-5i

Luc

AURKA_8449

siRNA (nM)

%
 n

o 
si

R
N

A 
gr

ow
th

Figure 5. Silencing of AURKA enhances cell killing by Kinesin-5 inhibitor in a resistant colon cancer cell line. siRNAs targeting AURKA 
or negative control luciferase were transfected into SW480 or HCT116 colon cancer cells at the indicated doses. Cells were then grown in the 
absence (dotted lines) or presence (solid lines) of Kinesin-5i. Cell survival was measured by Alamar blue assay 72 hours post-transfection.
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grade, and myometrial invasion(8). MYBL2 is 
amplified in breast cancers(23,41) and breast 
cancer cell lines(17), as well as in colorectal tumors 
of the chromosomal instability type(40). Although 
chromosomal amplifications are common in 
cancer, only a minority of genes residing within 
the amplicon show increased expression(50). This 
suggests that rare “target” or “driver” genes pro-
vide the selective advantage of chromosomal 
amplifications. For resistance to Kinesin-5i, 
AURKA and TPX2 fulfi ll both criteria for defi ning 
a target gene for amplifi cation: the putative target 
gene is located within the core of the amplifi cation 
region, and amplifi cation leads to over-expression 
of the gene(70). This suggests that AURKA and 
TPX2 are strong candidates for the target of chro-
mosome 20q amplifi cation, and play critical causal 
roles in cancer development. A correlation between 
amplifi cation and expression of MYBL2 has not 

yet been tested, so we cannot yet conclude whether 
MYBL2 is a driver gene based on this type of 
analysis.

We have used transcript expression profi ling of 
cell lines to demonstrate that Kinesin-5i and Taxol 
have distinct responder populations. While ampli-
fi cation of AURKA is linked to resistance to both 
Kinesin-5i and Taxol, global gene expression iden-
tifi ed distinct transcript signatures correlated with 
resistance (high EC50) to these two chemothera-
peutics. Resistance to Kinesin-5i was dominated 
by amplifi cation of chromosome 20q, while resis-
tance to Taxol was dominated by overexpression 
of the multi-drug resistance gene (MDR1). The 
Kinesin-5i reporter signature was not able to pre-
dict response to Taxol, nor was expression of 
MDR1 able to predict response to Kinesin-5i. Thus, 
global expression profi ling can identify complex 
signatures of transcripts whose coordinate 
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regulation is uniquely predictive of cellular 
response, and therefore defi ne responder popula-
tions, for an individual drug. This ability to defi ne 
patient populations according to likelihood of 
response could have profound effects on the out-
come of clinical trials and on patient outcome.

We demonstrate that AURKA and TPX2 are 
frequently amplifi ed in cell lines from colon cancer 
of the chromosome instability (CIN) phenotype. 
The amplifi cation of AURKA and TPX2 in these 
cell lines is correlated with resistance to Kinesin-5i. 
AURKA is amplifi ed in colon cancers(6,57) and is 
associated with the degree of aneuploidy(14), and 
AURKA mRNA expression is increased in sporadic 
colon cancers with CIN relative to those with-
out(20). Amplifi cation of the specifi c region on 
chromosome 20q that encompasses AURKA occurs 
in ∼90% of CIN-positive colon cancers(31). 
MYBL2 has also been reported to be amplifi ed 
preferentially in CIN-type versus MIN-type 
(microsatellite instability) colon cancers(40). 
siRNA-induced silencing of MYBL2, AURKA, and 
TPX2 each sensitized cells to Kinesin-5i, demon-
strating that expression of these genes is linked to 
Kinesin-5i resistance. Carter et al.(10) recently 
reported an expression signature of chromosomal 
instability derived by correlating gene expression 
levels to the level of functional aneuploidy in a 
diverse set of tumors. Net overexpression of this 
signature was predictive of poor clinical outcome 
in several cancer types. The top-ranking genes in 
the signature included TPX2 and AURKA, further 
strengthening the fi nding that amplifi cation and/or 
overexpression of TPX2 and AURKA are associated 
with poor clinical outcome. Overexpression of 
AURKA promotes CIN and has been implicated in 
resistance to other agents that impact on the 
spindle checkpoint, such as taxanes, by overriding 
the mitotic spindle assembly checkpoint(1). Con-
sistent with these fi ndings, Phase I/II studies in 
colorectal cancer, of which approximately 85% are 
of the CIN type, have failed to demonstrate a 
clinical benefi t following treatment with taxanes 
(reviewed in(60)). If this failure is due to overex-
pression of AURKA, our data suggest that these 
patients would also fail to respond to Kinesin-5i. 
The patients in these trials were not assessed for 
the CIN phenotype or chromosome 20q amplifi ca-
tion. A subset of the colon cancer patient population 
whose tumors do not display CIN may have 
responded to the taxane therapy, but this response 
would be masked by the CIN-positive cohort. 

Likewise, patients whose tumors do not display 
CIN or chromosome 20q amplifi cation would be 
good candidates for response to Kinesin-5i 
therapy. In the case of colon cancer, this would be 
the MIN-type tumors, representing ∼15% of the 
patient population. Measurement of AURKA, 
TPX2, and MYBL2 expression in clinical biopsies 
could potentially distinguish the responder patient 
cohort (low expression) from the non-responder 
patient cohort (high expression) for Kinesin-5i 
therapy.

An additional conclusion from our results is that 
inhibition of AURKA function could enhance the 
effect of Kinesin-5i. Our demonstration of growth 
inhibitory activity of AURKA siRNAs suggests that 
this gene is essential for tumor cell growth and 
supports investigation of AURKA as an anti-tumor 
target. AURKA is a target of small molecule 
inhibitors under development for cancer therapy 
by a number of pharmaceutical companies 
(reviewed in(46)). The interactions between siR-
NAs targeting AURKA and Kinesin-5i suggest that 
combination therapy with these compounds might 
be more effective than therapy with either com-
pound alone, and could help to overcome tumor 
resistance to either single therapy.

Screening tumor samples for AURKA, TPX2, 
and MYBL2 expression is feasible, and could be 
incorporated into design of clinical trials for 
Kinesin-5i response. Prediction of patient response 
to some therapies will undoubtedly be more 
complex than measurement of one or a few genetic 
determinants. The combined expression profi ling 
and RNAi enhancer screen methodology described 
here can identify a subset of candidate markers 
implicated in responsiveness to a given chemo-
therapeutic. Our results indicate that this method-
ology reveals reporter genes specific for the 
therapeutic agent, providing a unique opportunity 
to identify a specifi c responder population. The 
combined measurement in clinical samples of the 
genes identifi ed through this type of analysis will 
improve the ability to predict patient response, and 
move us one step closer to individualizing patient 
treatment.
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Supplemental Figure 1. ABCB1 expression correlates with response to Taxol, but not Kinesin-5i. The log10 (ratio) expression level of 
the ABCB1 transcript was determined by microarray for each colon cancer cell line, and was compared to the log10(EC50) for either Taxol 
(left panel) or Kinesin-5i (right panel).
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Supplemental Figure 2. SULF2 siRNA alignment with AURKA. The sequences for 3 SULF2 siRNAs were aligned by FASTA with the 
sequence for AURKA. Nucleotides of identity between the siRNA sense strand (passenger strand) and the AURKA transcript are highlighted 
in green. The sequence of the siRNA complementary to the seed region is indicated with a black line. The ability of each SULF2 siRNA to 
silence AURKA or to enhance cell lethality by Kinesin-5i is indicated.
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Supplemental Figure 3. Correlation of AURKA mRNA and DNA copy number with Kinesin-5i EC50. (A) Correlation of AURKA DNA 
copy number with Kinesin-5i EC50. (B) Correlation of AURKA mRNA levels with AURKA DNA amplifi cation. (C) Correlation of AURKA mRNA 
copy number with Kinesin-5i EC50. Red dots indicate HeLa cells.
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