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ABSTRACT

Due to their relatively low-cost per sample and broad,
gene-centric coverage of CpGs across the human
genome, Illumina’s 450k arrays are widely used in
large scale differential methylation studies. However,
by their very nature, large studies are particularly
susceptible to the effects of unwanted variation. The
effects of unwanted variation have been extensively
documented in gene expression array studies and
numerous methods have been developed to mitigate
these effects. However, there has been much less re-
search focused on the appropriate methodology to
use for accounting for unwanted variation in methy-
lation array studies. Here we present a novel 2-stage
approach using RUV-inverse in a differential methy-
lation analysis of 450k data and show that it outper-
forms existing methods.

INTRODUCTION

DNA methylation, which is the addition of a methyl (CH3)
group to the cytosine of a CpG dinucleotide, is the most
widely studied epigenetic modification in human develop-
ment (1) and disease (2–4). As interest in epigenetics has
grown, Illumina’s Infinium HumanMethylation450 (450k)
arrays have emerged as a popular platform for genome-
wide methylation analysis, particularly for projects requir-
ing large numbers of samples. Its broad coverage of the
human genome (>450 000 CpGs) and relatively low cost
per sample has resulted in the extensive use of 450k methy-
lation arrays in several large studies such as The Cancer
Genome Atlas (TCGA), Encyclopaedia of DNA Elements
(ENCODE) and numerous Epigenome-Wide Association
Studies (EWAS) (5–7).

Unfortunately, large studies can be particularly suscep-
tible to the effects of unwanted technical variation due to
the large number of samples requiring processing. For ex-
ample, processing may have to occur over several days or be
performed by multiple researchers thus increasing the like-
lihood of technical differences between ‘batches’. Further-
more, unwanted technical variation is often present against
a background of unwanted biological variation. For ex-
ample, EWAS are often performed using blood as it is an
easily accessible tissue; however, blood is a heterogeneous
collection of various cell types, each with a distinct DNA
methylation profile. Many recent studies have highlighted
the need to account for cell composition when analysing
DNA methylation (8–10) as it has been shown to influence
differential methylation (DM) calls (6,11–15).

The impact of unwanted variation such as batch effects,
has been extensively documented in the literature on gene
expression microarrays (16,17) and numerous methods have
been developed for correcting for unwanted variation in
expression array studies. When the sources of unwanted
variation are ‘known’, it is common to incorporate an ad-
ditional factor into a linear model to explicitly account
for batch effects, or to apply a method such as ComBat,
which uses an empirical Bayes (EB) framework to adjust for
‘known’ batches (18). However, sometimes the source(s) of
unwanted variation are unknown. For example, a sample of
sorted cells may contain contaminating cells of another type
and the level of contamination may vary between samples.
This introduces unwanted variation into the data, however
the source of the variation may not be obvious and is thus
impossible to model. In such cases, methods such as Surro-
gate Variable Analysis (SVA) (19,20) and Independent Sur-
rogate Variable Analysis (ISVA) (21) attempt to infer the
unwanted variation from the data itself. Recently, Gagnon-
Bartsch and Speed (22) published a new method, Remove
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Figure 1. A schematic representation of a DM analysis using RUVm. The
RUVm approach has two stages. The red circles indicate a DM analysis
step. The blue rectangles represent the inputs that are required for each
stage. The green rectangles are the outputs that are produced by each stage.
Stage 1: perform an initial DM analysis using RUV-inverse with Illumina
negative control probes (INCs); CpGs are ranked by P-value based on the
strength of their association with the factor of interest. Stage 2: use the
list of CpGs from Stage 1 to select a set of ECPs which are then used in a
DM analysis with RUV-inverse. (*) Stage 2 can be performed one or more
times.

Unwanted Variation, 2-Step (RUV-2), which introduced the
concept of estimating the unwanted variation using nega-
tive control features that should not be associated with the
factor of interest but are affected by the unwanted varia-
tion. More recently, the authors have extended their work
on RUV-2 to develop RUV-inverse and several other varia-
tions (23).

RUV-2 uses factor analysis of the negative control fea-
tures to estimate the components of unwanted variation. A
number, k, of the unwanted factors are then included in a
linear model to perform the adjustment. The choice of k is
critical to the performance of the algorithm but there is no
straightforward way to select k (22). RUV-inverse removes
the need to empirically determine the ‘best’ k and, unlike
RUV-2, is also relatively robust to the misspecification of
negative control features (23).

RUV-2 has been successfully applied to metabolomics,
gene expression and 450k methylation array data (8,22,24).
Compared to RUV-2, RUV-inverse has shown improved
performance on gene expression data (23). Given that RUV-
inverse offers both usability and performance improve-
ments over RUV-2 (23) it could prove useful in mitigat-
ing the effects of unwanted variation in 450k array studies.
However, as different data types have different properties, it
is not obvious how to apply the method to 450k data to ob-
tain the best results. For example, 450k arrays contain over
450 000 features as opposed to the ∼20 000 present on gene
expression arrays and there is no direct analogue of house-
keeping genes in the methylation context. As such we have
developed a novel, 2-stage approach specific to using RUV-
inverse with 450k methylation data (Figure 1).

The ability to robustly correct for unwanted variation
in 450k methylation array data would not only aid in im-
proving the results of individual studies, it would also en-
able the effective integration of data on the same samples
from different studies/sources, resulting in increased statis-
tical power to detect true DM. Linear regression with ad-

justment, ComBat (18), SVA (19,20) and ISVA (21) have all
been applied to different types of methylation array data in
various contexts (21,25–29), however there has not been a
comprehensive assessment of the relative performance of all
these methods in a single study, focused on 450k data. Here
we present our 2-stage approach, RUVm, for the applica-
tion of RUV-inverse to 450k methylation data and evaluate
it against the methods previously outlined. We show that
our approach is robust and consistent and often outper-
forms other methods in a differential analysis of 450k data.
We make the method for 450k analysis freely available in the
missMethyl Bioconductor package.

MATERIALS AND METHODS

Data processing and analysis

All 450k data was imported into the R statistical comput-
ing environment (3.1.0) (30) using the Bioconductor (3.0)
package minfi (1.12.0) (31). Data was filtered based on the
following criteria: poor quality samples (mean detection P-
value > 0.01) were discarded; probes with a detection P-
value > 0.01 in at least one sample within a dataset were also
discarded, as were X and Y chromosome probes, probes
with SNPs at the CpG or single base extension site and the
cross-reactive probes identified by Chen et al. (32).

All DM analyses were performed on M-values (M =
log2(methylated/unmethylated)) as recommended by Du
et al. (33). Regression analysis was performed using the
empirical Bayes methodology available in limma (3.22.1)
(34,35). We used the reference implementations of the Com-
Bat (36) and SVA (19,20) methods in the sva package
(3.12.0) (37). Known batches were passed as a variable to
the ComBat function and we allowed SVA to estimate all
the surrogate variables. Both methods were used in conjunc-
tion with limma. We also used the reference implementation
of ISVA (21) from the isva CRAN package. As with SVA,
we allowed ISVA to estimate all the surrogate variables.
RUVm analysis was performed using Bioconductor miss-
Methyl (1.1.1) package implementation, with method =
‘inv’. Unless otherwise stated, all P-values reported were ad-
justed for false discovery rate (FDR) using the Benjamini–
Hochberg method (38). The R code for all the analyses is
available in Additional Files 2–6.

RUV-inverse

With RUV-inverse, differential methylation is estimated us-
ing a generalized least squares (GLS) regression. The co-
variance matrix that is used is the empirical covariance ma-
trix of the negative controls. Some difficulty arises in the cal-
culation of the standard errors. The ‘traditional’ GLS stan-
dard errors end up being the same for every CpG; however,
this is undesirable, as we believe that some CpGs are more
variable than others. To solve this problem, and allow dif-
ferent CpGs to have different standard errors, we calculate
the standard errors using the ‘inverse method,’ described in
detail in Gagnon-Bartsch et al. (23), and also summarized
briefly in Additional File 1.

The basic idea of the inverse method is to re-fit the model,
but including an extra, randomly-generated column in the
design matrix. The estimated regression coefficient for this
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random column should be about zero, because there is no
‘true effect’ associated with this random column. The extent
to which the estimated regression coefficient is not precisely
equal to zero for any particular CpG gives us information
about the variability of that CpG. This information can be
used (after repeating the procedure many times) to calculate
a standard error for the CpG.

Ageing data

Test set. The birth versus 1.5 years (Study 1) methyla-
tion data was published by Martino et al. (39) (GSE42700).
Briefly, buccal cells were collected from 30 individuals at
birth and 1.5 years. The cohort included 10 monozygotic
twin pairs and 5 dizygotic twin pairs.

The birth versus 1 year (Study 2) methylation data was
published by Martino et al. (40) (GSE34639). Blood sam-
ples were collected from 48 individuals at birth and again
at 1 year of age. Half of the samples from each time point
were cultured in either standard media or media contain-
ing anti-CD3 antibody; CD4+ T-cells were then isolated by
positive selection. DNA from two individuals was pooled
into a single sample at each time point, resulting in 12 con-
ventional and 12 anti-CD3 birth samples and 12 conven-
tional and 12 anti-CD3 1 year samples. As the authors did
not find any significant methylation differences between the
conventional and anti-CD3 treated samples we elected to
only utilize the conventional samples in this study, leaving
12 birth and 12 1 year samples.

The birth versus 100 year (Study 3) methylation data was
published by Heyn et al. (41) (GSE30870). Peripheral blood
was taken from 20 healthy centenarian donors and umbil-
ical cord blood was taken from 20 newborns. For 19 of
the newborn and centenarian samples, DNA was extracted
from either CBMCs or PBMCs, respectively. DNA was ex-
tracted from CD4+ T cells purified from the remaining birth
and 100 year sample. We only used data from the 38 un-
sorted samples in this study.

The 30 Study 1 samples, 24 Study 2 samples and 38
Study 3 samples were then combined into a single dataset
and filtered as previously described, leaving 401 057 probes.
The combined dataset was also pre-processed using two
methods: SWAN (42) and Stratified Quantile Normaliza-
tion (SQN) (43), producing two different datasets. The sam-
ple identifiers and descriptions can be found in Supplemen-
tary Table S1.

Truth set. The birth versus 18 years data was published by
Cruickshank et al. (44) (GSE51180). The study was com-
prised of 24 subjects; 12 who were born prematurely and 12
who were born at term. DNA was extracted for each sub-
ject at birth from a neonatal Guthrie card and at 18 years of
age from a dried blood spot; resulting in a total of 48 DNA
samples. One of the term birth samples was excluded by the
authors as it failed quality control, leaving 47 samples.

The data was pre-processed using SWAN (42) and filtered
as previously described, leaving 395 173 CpGs. Blood cell
type proportions were estimated using the ‘estimateCell-
Counts’ minfi function, which implements the method de-
scribed by Jaffe and Irizarry (8). The regression analysis for
detecting DM between birth and 18 years was performed

using limma; to adjust for differences in cell type composi-
tion between the ages, the cell type proportions previously
estimated using ‘estimateCellCounts’ were included as co-
variates in the linear model.

Smoking data

Test set. The smoking methylation data was originally
published by Liu et al. (6) (GSE42861) as part of their
study examining the association between methylation and
rheumatoid arthritis. We used the 200 current smoker and
193 never smoker samples in our analysis (Supplementary
Table S2). These included a mix of rheumatoid arthritis pa-
tients and controls of both sexes and a range of ages. The
DNA was extracted from EDTA-treated blood.

An additional 656 methylation samples with unknown
smoking status were obtained from the dataset originally
published by Hannum et al. (45) (GSE40279). DNA was
extracted from whole blood samples collected from both
male and female individuals, of two different ethnicities and
a range of ages. In this study, we used 70 randomly selected
samples from the Hannum data and combined them with a
random sample of 80 current smokers and 50 never smok-
ers from the Liu data to create a dataset with significant un-
wanted variation (Supplementary Table S3). We generated
another two datasets using the same approach but with dif-
ferent combinations of randomly selected samples (Supple-
mentary Tables S4 and S5).

Truth set. We used the 187 CpGs smoking-associated
CpGs published by Zeilinger et al. (46) as the ‘truth’ set for
our analysis (Supplementary Table S6). These CpGs were
originally identified by the authors in a discovery cohort of
262 current smokers and 749 never smokers and were subse-
quently replicated in a second cohort of 236 current smok-
ers and 232 never smokers (46). The DNA was extracted
from whole blood.

Cancer data

Test set. The Lung Adenocarcinoma (LUAD) data, which
is comprised of 427 tumour and 31 normal samples, was
obtained from TCGA. All data was downloaded from the
TCGA Data Portal as unprocessed IDAT files. In our anal-
ysis, we used all 31 normal samples and 75 tumour sam-
ples that were on the same BeadChips as the normal sam-
ples (Supplementary Table S7). The data was pre-processed
using both SWAN (42) and minfi functional normalization
(FNORM) (47), producing 2 different datasets. Each of the
pre-processed datasets was filtered as described previously,
leaving 411 735 CpGs.

Truth set. The LUAD bisulfite sequencing data was pub-
lished by Zheng et al. (48) (GSE56712). Five lung tumour
and 5 matched normal samples were taken from 5 patients
with LUAD. DNA was extracted and captured using the
Agilent SureSelect Methyl-Seq system, followed by bisulfite
sequencing, resulting in 15–40 million 90bp paired-end Il-
lumina reads per sample (48).

We obtained the raw FASTQ files from the Sequence
Read Archive (SRA). The reads were assessed for qual-
ity using FastQC (0.10.1). Trimming was performed with
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Trim Galore (0.3.7); 10bp were trimmed from the 5’ end
of each read and 5bp were trimmed from the 3’ end of
each read following quality trimming and adapter removal.
Read pairs were discarded if at least one read from the
pair was less than 20bp long. The reads were then mapped
to the human genome (hg19) using Bismark (0.12.5) and
Bowtie2 (2.1.0). Duplicates were removed with the dedu-
plicate bismark tool. Methylation calls were made using
the bismark methylation extractor. The pipeline for pro-
cessing the bisulfite sequencing data was implemented in
bpipe (0.9.8.6) (49) and is available at https://github.com/
JovMaksimovic/methyl-seq bpipe. The data was then im-
ported into R (3.1.0) for downstream analysis. CpGs not
covered by at least 1 read in all 10 sequenced samples were
discarded, leaving 1 656 501 loci per sample. We then iden-
tified the CpGs that were covered in both the filtered LUAD
450k dataset and the bisulfite sequencing dataset, which left
221 694 CpGs for downstream analysis. Differential methy-
lation analysis of the 5 tumour versus 5 normal methyl-
seq samples was performed using the Bayesian hierarchical
model and Wald test approach implemented in the Biocon-
ductor DSS package (50).

RESULTS

RUVm: A 2-stage approach for differential methylation anal-
ysis of 450k data using RUV-inverse

As with RUV-2, performing a DM analysis using RUV-
inverse relies on having negative control features to accu-
rately estimate the components of unwanted variation (see
Methods) (22,23). Gagnon-Bartsch and Speed (22) empha-
sise that the choice of negative control features can be cru-
cial in determining the effectiveness of the method. Nega-
tive control features are probes/genes that are known a pri-
ori not to be associated with the biological factor of inter-
est, but are affected by unwanted variation. For example, in
a microarray gene expression study, these could be house-
keeping genes or a set of spike-in controls (22). Although
there is some evidence that the CpGs in the CpG islands of
housekeeping gene promoters are generally unmethylated
(51), to our knowledge, there is no general list of ‘house-
keeping’ CpGs for researchers to draw from that could be
used as negative control features in a differential methyla-
tion analysis with RUV-inverse.

Given that CpG methylation varies greatly between dif-
ferent cell types, tissues etc. (52,53), it would be beneficial to
be able to empirically determine CpG probes that are not as-
sociated with a particular factor of interest for each individ-
ual experiment. However, empirically identifying negative
control probes shares the same difficulties inherent to de-
termining which probes are differentially methylated, par-
ticularly in the presence of unwanted variation. Gagnon-
Bartsch and Speed (22,23) outlined a strategy in which an
initial DM analysis is used to determine empirical control
probes (ECPs) for use in a subsequent DM analysis. A sim-
ilar iterated model was also previously proposed by Leek
and Storey (20). The basic requirements for this strategy to
work are that the initial DM analysis is ‘good enough’ and
that the subsequent DM analysis is somewhat robust to an
imperfect set of negative control features.

Based on these criteria, we propose using a 2-stage ap-
proach for the DM analysis of 450k data (Figure 1). Stage 1
involves performing a DM analysis using RUV-inverse with
the 613 Illumina negative controls (INCs) present on the
450k array to rank all the CpG probes by p-value based on
their association with the factor of interest. The INCs are
randomly permuted sequences that should not hybridize to
the DNA template and are generally used to define the sys-
tem background. Thus, they are not expected to contain any
biological signal but do capture some technical variation be-
tween samples, chips, batches etc. which can result in an im-
provement in probe rankings over an unadjusted analysis.
However, as the INCs only produce a background level sig-
nal and can only capture technical variation they are not an
ideal set of negative control features. Hence, our approach
uses the results from Stage 1 to empirically select a more in-
formative set of negative controls from the CpG probes on
the 450k array. This involves designating a proportion of the
least associated CpG probes as ECPs for use in Stage 2. In
Stage 2, the ECPs are used to perform a second DM anal-
ysis of the original dataset with RUV-inverse. If necessary,
Stage 2 can be performed multiple times to further refine
the set of ECPs, although this often not necessary (23). For
simplicity, the 2-stage approach described will henceforth
be referred to as ‘RUVm’.

Ageing methylation data

Batch effects occur because measurements can be affected
by factors such as laboratory conditions, differences in
reagents and/or equipment or because different personnel
processed different samples (16,17). To determine how var-
ious methods perform at correcting for large batch effects
in 450k methylation data, we created a dataset with a pro-
nounced batch effect by merging data from three different
studies concerned with examining changes in methylation
due to age. The three contributing studies (Study 1–3) all
compared methylation at birth to methylation in older in-
dividuals (see Methods for details). In the resulting dataset,
which will henceforth be referred to as the ‘ageing+’ data,
the batch effects are, in fact, much larger than the factor
of interest (Figure 2c-f). This is analogous to many EWAS
in which the collection and processing of numerous samples
makes them susceptible to batch effects that are much larger
than the effect of interest (case versus control).

In gene expression studies, relative log expression (RLE)
plots are commonly used to show deviation from the me-
dian gene expression level, to determine the overall quality
of the dataset and to identify poor arrays. In the case of 450k
data, we look at the deviation from the median methylation
level for each array on the M-value scale. The RLE plot in
Figure 2a highlights the existence of 3 clear batches in the
ageing+ data with the application SWAN (42) within-array
pre-processing. Using SQN pre-processing (43), which nor-
malises between arrays as well as between probe types, im-
proves the appearance of the RLE plot (Figure 2b), however
there are still differences between the 3 studies, particularly
Study 1 compared to 2 and 3, indicating that the batch ef-
fects have not been eliminated.

Multi-dimensional scaling (MDS) plots of the data us-
ing the 1000 most variable probes show that the largest

https://github.com/JovMaksimovic/methyl-seq_bpipe
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Figure 2. Relative Log Expression (RLE) and Multi-Dimensional Scaling (MDS) plots of the ageing+ data. These RLE plots show the deviation from
the median methylation level (M-value) for each of the 450k arrays from the three ageing studies combined. An MDS plot is analogous to a principal
components analysis plot. The axes represent the major sources of variation in the data based on the top 1000 genes with the largest standard deviations
between samples; dimension 1 represents the largest source of variation, dimension 2 represents the next largest orthogonal source of variation, followed by
dimension 3, etc. (A) RLE plot: SWAN pre-processed data. The samples are coloured by the study the data originated from: Study 1, 2 or 3. (B) RLE plot:
SQN pre-processed data. The samples are coloured by the study the data originated from: Study 1, 2 or 3. (C) The MDS plot of the first two dimensions
of the SWAN pre-processed data shows that the largest source of variation between samples is tissue type. (D) The MDS plot of the first 2 dimensions of
the SQN pre-processed data shows that the largest source of variation between samples is tissue type. (E) The MDS plot of dimension 3 versus dimension
1 of the SWAN pre-processed data shows that age is the third largest source of variation in the data. (F) The MDS plot of dimension 3 versus dimension 1
of the SQN pre-processed data shows that age is the third largest source of variation in the data.
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source of variation is cell type, regardless of the type of pre-
processing used (Figure 2c and d). Unsurprisingly, the buc-
cal cell samples from Study 1 are distinct from the blood-
derived samples from Studies 2 and 3. Furthermore, the
Study 2 samples, which were extracted from purified CD4+
T-cells, show significantly less variability than the Study 3
whole blood samples. Both the birth and 1 year Study 2
samples cluster closer to the Study 3 birth samples than to
the Study 3 centenarian samples. Examining a higher di-
mension reveals that age is associated with the third largest
dimension of variation in the data (Figure 2e and f). Fig-
ure 2f also shows that using SQN (54) pre-processing re-
duces the variation between Studies 2 and 3 compared to
using SWAN (42) (Figure 2e).

Defining the ageing ‘truth’ set. To compare the relative per-
formance of methods for removing batch effects in methyla-
tion array data, an appropriate ‘truth’ dataset was required.
We used an unrelated dataset, published by Cruickshank
et al. (44), which measured methylation in blood at birth
and 18 years of age in a cohort of 24 individuals to iden-
tify CpGs that change in methylation with age (see Meth-
ods). However, as Jaffe and Irizarry (8) recently demon-
strated, changes in DNA methylation can be confounded
with changes in cell type proportions when methylation is
measured in a mixed cell population, such as blood. Con-
sequently, as Cruickshank et al. (44) data was derived from
Guthrie cards and dried blood spots, we needed to ensure
that the ‘truth’ set was not contaminated with spurious
associations due to changes in cell type proportions con-
founded with age.

Firstly, we sought to characterise whether there was sig-
nificant confounding between the age at which the samples
were taken and changes in blood cell type composition be-
tween birth and 18 years. We used the method developed by
Jaffe and Irizarry (8) to estimate the proportions of the vari-
ous blood cell sub types in the birth and 18 year old samples.
Supplementary Figure S1a shows that although there were
some differences in cell type proportions that correlated
with age, the confounding is not extreme. In their study,
Jaffe and Irizarry (8) showed that in the Heyn et al. (55)
birth versus centenarian data, the centenarian samples were
almost entirely comprised of granulocytes, meaning that a
comparison of methylation between ages in that dataset is
effectively a comparison between cell types. We recapitu-
lated their results in this study (Supplementary Figure S1b)
to illustrate that the Cruickshank et al. (44) data was not
as dramatically affected by changes in cell type proportions.
Furthermore, examining the methylation distribution of the
600 probes identified by Jaffe and Irizarry (8) as discrimi-
nating between blood cell sub types (Supplementary Figure
S2), indicates that there is no significant difference in the
distribution of these probes between birth and 18 years (K-
S Test P-value = 0.29) in the Cruickshank et al. (44) data
(Supplementary Figure S1c). In contrast, the difference is
statistically significant for the Heyn et al. data (K-S Test P-
value < 2×10−16) (Supplementary Figure S1d), due to the
large difference in cell type proportions between the new-
born and centenarian samples. It is also apparent that the
methylation distribution of the probes from the centenar-
ian samples most closely resembles that of the granulocytes,

which further supports the proportion estimate shown in
Supplementary Figure S1b. Finally, a DM analysis using
only the 600 cell type discriminating probes resulted in 268
significant associations (FDR adj. P-value < 0.05) with age
for the Cruickshank et al. data and 506 for the Heyn et al.
(Supplementary Figure S1e).

Despite demonstrating that the Cruickshank et al. (44)
data does not show dramatic differences in estimated cell
type proportions between the birth and 18 years samples,
differences do exist that may contribute to false associations
between methylation and age. To mitigate these effects we
included the estimated cell type proportions as covariates in
the limma linear model used to identify differential methy-
lation between birth and 18 years. Prior to adjusting for
cell type proportions we identified 100 800 significantly DM
CpGs at FDR adj. P-value < 0.05. However, after includ-
ing the cell type proportion estimates in the linear model,
our analysis ultimately identified 2238 ‘true’ positives (FDR
adj. P-value < 0.05) and 188 895 ‘true’ negatives (FDR adj.
P-value > 0.9).

Differential methylation analysis of ageing+ data. Before
comparing the performance of RUVm to that of other
methods, we were interested in evaluating the effect of ECP
selection on the performance of RUVm. The selection of
ECPs must be based on some criteria for determining the
proportion of probes that are the ‘least’ associated with the
factor of interest. One possibility is to choose ECPs based
on a cut-off using FDR adjusted P-values (23). This will
often work, but may fail if the P-values are biased (either
systematically inflated or deflated). Another option is to se-
lect a fixed percentage of the lowest ranked probes based
on expected amount of DM in the data; for example, it is
expected that a DM study of cancer versus normal would
identify many DM probes whereas an EWAS investigat-
ing the effect of maternal smoking during pregnancy is ex-
pected to result in very few DM loci. To evaluate how se-
lection of ECPs affected the performance of RUVm, we
performed several analyses on the ageing+ data, which was
pre-processed in two different ways (SWAN and SQN) and
varied how ECPs were selected (FDR > 0.1–0.9 or bottom
10–90%). We gauged relative performance by constructing
(Receiver Operating Characteristic) ROC curves using the
truth data described in the previous section.

Supplementary Figure S3 shows that the proportion of
probes selected as ECPs decreases linearly with increasing
FDR cut-off in the range of 0.1–0.9. It also shows that pre-
processing affects the proportion of probes selected as ECPs
by FDR cut-off, which is unsurprising as normalization
techniques are designed to reduce the variability between
samples and thus influence P-values (56–58). Supplemen-
tary Figure S4 shows that, for the ageing+ data, the perfor-
mance of RUVm is relatively robust to the choice of ECPs.
This result is consistent irrespective of pre-processing or the
criteria used to select ECPs: either FDR cut-off or fixed per-
centage.

We then compared the performance of RUVm to several
other methods in a DM analysis of the ageing+ data; an un-
adjusted limma regression analysis, an ‘adjusted’ limma re-
gression analysis including a factor for study, ComBat (18)
with study as the batch variable, ISVA (21) and SVA (19,20).
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We used the 2-stage RUVm approach previously described
with ECPs selected at FDR adjusted P-value > 0.2. Evalu-
ating the quality of an adjustment on real data is not triv-
ial. Gagnon-Bartsch and Speed (22) suggest several useful
strategies such as looking at P-value distributions (19, 20)
and the rankings of ‘true’ positives. If ‘true’ negatives are
also available, an ROC curve can be particularly useful as it
allows the visualization of the rate of false positives versus
the rate of true positives.

The P-value histograms resulting from the DM analy-
ses of the ageing+ data using various approaches are not
a dramatic departure from the ideal shape, which is ex-
pected to be almost uniform with a spike near zero (Sup-
plementary Figure S5). However, regardless of the type of
pre-processing used, the P-value histogram for the limma
analysis without the batch factor does have a significantly
shorter bar and the most pronounced slope in the height of
the bars between 0.05 and 1 (Supplementary Figure S5a, b).
This suggests that, as expected, the ‘batch adjusted’ analy-
sis is an improvement for limma. However, as the P-value
histograms for the other methods look very similar, using
P-value histograms alone is insufficient to discern the rela-
tive performance of the other algorithms.

An ROC analysis using the Cruickshank et al. (44) ‘truth’
data shows that RUVm outperforms other methods regard-
less of the type of pre-processing used (Figure 3). When
the data was pre-processed with SWAN (42), RUVm per-
formed the best, followed closely by ISVA. ComBat was
the next best performing method, although its performance
was substantially lower than that of ISVA, followed by
limma with a factor for study and SVA. Unsurprisingly,
the unadjusted limma analysis performed the poorest (Fig-
ure 3a). As SWAN is only a within-array probe type ad-
justment method it cannot remove the large technical vari-
ation present between the samples in the ageing+ dataset;
therefore, we also applied SQN (43), which incorporates
between-array normalization. On the SQN pre-processed
data, RUVm once again performed the best. Surprisingly,
the performance of ISVA decreased substantially when the
method was applied to data pre-processed with SQN (Fig-
ure 3b, Supplementary Figure S6e). The limma analysis in-
cluding a factor for study performed better than ComBat
on the SQN pre-processed data whilst the relative perfor-
mance of the other methods remained the same (Figure 3b).
Compared to SWAN, the use of SQN was of greatest bene-
fit to the limma analyses (with and without adjustment for
study) (Supplementary Figure S6a, b). The choice of pre-
processing method had virtually no effect on RUVm (Sup-
plementary Figure S6f) whilst the use of SQN was detrimen-
tal to ISVA (Supplementary Figure S6e).

Smoking methylation data

Although the ageing+ data contains very large batch effects
and other unwanted variation, the mean absolute differ-
ence in methylation between birth and later time points is
in the order of ∼25%, which can be considered a relatively
large effect size. Many EWAS aim to identify associations
between methylation and diseases or environmental factors
that have relatively small effects on the methylome (<10%).
Unwanted variation can be a significant problem for such

studies, particularly if the number of samples is not large.
Consistent, but small, DNA methylation changes associ-
ated with smoking have been identified in multiple studies
(46,59–61). The differences in methylation between smokers
and non-smokers are small (∼5%) and affect relatively few
loci, genome-wide. Thus, the effect of smoking on methyla-
tion is a good example of a typical EWAS where unwanted
variation in the data could be very problematic.

As such, we sought to evaluate the performance of
RUVm and other adjustment methods in a DM analysis of
450k data of 200 current and 193 never smokers. The data
was originally used to identify associations between methy-
lation and rheumatoid arthritis by Liu et al. (6) and thus the
samples came from both rheumatoid arthritis patients and
controls, of both sexes and across a range of ages. The data
was pre-processed with SWAN and filtered as described
in the methods, leaving 398 313 probes. To assess perfor-
mance we used a list of 187 CpGs identified by Zeilinger
et al. (46) and subsequently replicated in a second cohort,
as ‘true’ positives (Supplementary Table S6). ECPs for use
with RUVm were selected as the bottom 90% of probes from
Stage 1.

Although the samples came from both rheumatoid
arthritis patients and controls with mixed sex and age, the
data did not appear to contain any large batch effects or
other systematic technical variation (Supplementary Fig-
ure S7a). As there were no ‘known’ batch effects we could
only apply methods that did not require a batch to be spec-
ified. All of the analysis methods that incorporated an ad-
justment for unwanted variation (SVA, ISVA, RUVm) per-
formed similarly, however, the unadjusted limma analysis
was significantly less sensitive than the other approaches
(Supplementary Figure S7b).

We then constructed a dataset with a large batch effect
using a combination of samples from the Liu smoking data
and samples from a second dataset, published by Hannum
et al. (45). The Hannum dataset examined the association
between methylation and ageing and did not provide in-
formation about smoking habits. However, as it consists of
656 samples, it is likely that they represent both smokers
and non-smokers. To create the batch effect we randomly
sampled 80 current smokers and 50 never smokers from the
Liu data and then combined these with 70 random sam-
ples from the Hannum data, 20 of which were assigned as
‘smokers’ and 50 as ‘never smokers’ (Supplementary Ta-
ble S3). This resulted in a dataset of 100 ‘smokers’ and 100
‘never smokers’, which will be referred to as the ‘smoking+’
data (Figure 4a). This was intended to simulate two types
of severe unwanted variation that may occur in an EWAS:
a batch effect due to differences in sample collection and
processing and unwanted variation due to misreported phe-
notypes and/or sample mix-ups.

We performed a DM analysis on the smoking+ data us-
ing the same methods applied to the ageing+ data and as-
sessed performance using the 187 ‘true’ positive CpGs pre-
viously described (46). ECPs for use with RUVm were once
again selected as the bottom 90% of probes from Stage 1.
Figure 5b shows that all the methods are significantly less
sensitive on the smoking+ data than the Liu smoking data
alone, as the unwanted variation is much more severe. How-
ever, RUVm is significantly more sensitive than the other
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Figure 3. Performance of various adjustment methods in a DM analysis of the ageing+ data. (A) ROC curve showing the false positive rate versus the true
positive rate for the various adjustment methods on the SWAN pre-processed data. (B) ROC curve showing the false positive rate versus the true positive
rate for the various adjustment methods on the SQN pre-processed data.
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Figure 4. DM analysis of the smoking+ data. (A) MDS plot of the first two dimensions of the SWAN pre-processed smoking+ data shows that the largest
source of variation between samples is the study of origin and there is no visible clustering by smoking status. The smoking+ data consists of a combination
of 80 smokers and 50 never smokers from the Liu data and 70 samples from the Hannum data, 20 of which were assigned as ‘smokers’ and 50 as ‘never’
smokers. (B) Performance of various analysis methods in a DM analysis of the smoking+ data. The lines represent the cumulative number of true positives
ranked in the top 1000 CpGs produced by the different methods.

adjustment methods on the smoking+ data (Figure 4b);
RUVm manages to rank almost 100 of the 187 ‘true’ smok-
ing CpGs in the top 1000, whilst the other adjustment meth-
ods achieve ∼60 and the unadjusted limma analysis only
manages ∼30.

We generated another two datasets using the same ap-
proach but with different randomly selected samples and
different numbers of samples from the Liu and Hannum
datasets (Supplementary Table S4 and S5). RUVm, once
again, performed better than the other methods in terms
of sensitivity (Supplementary Figure S8), with a particu-
larly marked improvement in the case with more extreme
unwanted variation (Supplementary Figure S8a).

Cancer methylation data

It has been observed that considerable heterogeneity exists
in methylation within and between tumours (62). When per-
forming a DM analysis of cancer versus normal samples
the methylation data not only contains the expected methy-
lation heterogeneity between tumours, it also contains un-
wanted biological variation arising from factors such as
variable tumour purity due to the presence of normal tis-
sue, immune cells, etc. However, as cancer has a profound
effect on the methylome the differences between cancer and
normal can be very large (>50% of CpGs) and such com-
parisons also result in many more DM loci compared with
other types of EWAS. Thus, unless a study has significant
artefacts, cancer status is often the largest source of varia-
tion. Regardless of this, the presence of unwanted variation
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Figure 5. RLE and MDS plots of a subset of the TCGA LUAD 450k methylation data; includes all 31 normal samples and 75 of the tumour samples that
shared chips with the normal samples. (A) SWAN pre-processed data; coloured by tumour/normal status. (B) FNORM pre-processed data; coloured by
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450k data pre-processed using SWAN. (F) As for (E); 450k data pre-processed using FNORM.
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can affect how probes are ranked and whether they reach
statistical significance, particularly if the sample size is not
large. To investigate how the various adjustment methods
perform in this scenario, we used the TCGA LUAD dataset.
The ‘truth’ was defined from an independent LUAD Agilent
methyl-seq capture bisulfite sequencing dataset (see ‘Mate-
rials and Methods’ section).

We used all 31 of the TCGA LUAD normal samples,
however, given that the complete LUAD dataset contains
427 tumour samples, we elected to use only the tumour
samples that were assayed on the same chips as the nor-
mal samples, resulting in a more manageable number of 75
tumour samples. The 450k LUAD data was pre-processed
using both SWAN (42) and minfi functional normaliza-
tion (FNORM), which is a between-array normalization
method for 450k data that is suitable for cancer (47). Af-
ter separately filtering the TCGA LUAD 450k and methyl-
seq datasets (see ‘Materials and Methods’ section), we in-
tersected the remaining CpGs to identify the loci covered
by both platforms, leaving 221 694 CpGs. RLE plots of
the 450k data show that there is between-array variation
that appears to be related to both cancer/normal status and
chip (Figure 5). MDS plots of the 450k data also show evi-
dence of clustering by chip and/or plate, particularly for the
normal samples (Supplementary Figure S9a–d). Chip and
plate effects can also be seen in the MDS plots of the 500
most variable INCs (Supplementary Figure S9e and f). An
MDS plot of both the 450k and methyl-seq data using the
1000 most variable CpGs shows the separation between the
cancer and normal samples and the relationship between
the samples from different platforms (Figure 5). Using the
methyl-seq samples, we defined 2051 ‘true’ positives (adj. P-
value < 0.05) and 170 629 ‘true’ negatives (adj. P-value >
0.9) by performing a DM analysis of the five tumour versus
five normal methyl-seq samples using the Bayesian hierar-
chical model and Wald test approach implemented in the
Bioconductor DSS package.

We then performed Stage 1 of the RUVm analysis. Exam-
ining the potential list of ECPs for use with RUVm shows
that although the relationship between FDR cut-off and
proportion of probes selected is still linear between 0.1 and
0.9, a high proportion (∼40%) of probes is significantly
associated with cancer status at FDR adjusted P-value <
0.1 (Supplementary Figure S10). Consequently, the perfor-
mance of RUVm is notably reduced when ≥80% of CpGs
from the bottom of the list are designated as ECPs (Sup-
plementary Figure S11c and d) but is consistent when they
are selected based on FDR cut-off (0.1–0.9) as significantly
cancer-associated probes are avoided (Supplementary Fig-
ure S11a and b).

We next compared the performance of four different
methods in a DM analysis of the 450k LUAD data (31
normal versus 75 tumour samples); limma, SVA, ISVA and
RUVm. RUVm was applied as previously described with
the bottom 50% of probes from the Stage 1 ranked list des-
ignated as ECPs for Stage 2. An examination of the P-value
histograms did not reveal a significant departure from the
ideal for any of the methods (Supplementary Figure S12),
although ISVA had visibly lower peaks near zero than any
of the other methods (Supplementary Figure S12e and f). In
an ROC analysis of the SWAN pre-processed data, limma,

RUVm and SVA perform similarly. Limma performed only
slightly better than RUVm, which in turn was marginally
better than SVA. ISVA showed significantly reduced perfor-
mance relative to the other methods (Supplementary Figure
S13a). Using FNORM instead of SWAN pre-processing did
not change the relative performance of the methods (Sup-
plementary Figure S13b). Unexpectedly, apart from ISVA,
all of the methods showed a slight decrease in performance
with FNORM relative to SWAN (Supplementary Figure
S14).

Although we did not utilize the entire TCGA LUAD
450k dataset, the 106 samples included in our analysis still
provide a lot of power for detecting DM, as is evidenced by
the competitive performance of limma, despite the signifi-
cant amount of variability in the data. To investigate how
the various analysis methods perform on a smaller num-
ber of samples we applied a subsampling strategy to the
106 samples used in the initial analysis. To retain approxi-
mately realistic chip effects, we first randomly selected chips
from the 14 available chips (without replacement). The ran-
dom selection of chips continued until the minimum num-
ber of samples required from each group was represented on
the selected chips; for example, for an analysis of five can-
cer versus five normal samples, chips would be randomly
sampled until there were at least five cancer and five nor-
mal samples present across the randomly selected chips. As
this approach often resulted in more than the required num-
ber of samples, we then randomly sampled the exact num-
ber samples required from each group (e.g. five) from only
the samples present on the initially selected chips. We per-
formed the subsampling 10 times for 5, 10, 15 and 20 sam-
ples per group, which produced 40 different datasets. This
was done for both the SWAN and FNORM pre-processed
data, resulting in 80 distinct datasets. A DM analysis was
performed on each of the 80 datasets using the four meth-
ods previously mentioned.

Comparing the area under the curve (AUC) of the DM
analyses of the subsampled data demonstrates that RUVm
performed consistently well regardless of the number of
samples and/or structure of the data (Figure 6). RUVm per-
formed particularly well with only five samples per group,
irrespective of the type of pre-processing used. SVA was
also reasonably competitive, particularly with larger sam-
ple sizes and FNORM pre-processing; however, RUVm was
computationally much faster. The AUC results are reflected
in the ROC curves produced using the same data (Supple-
mentary Figure S15).

DISCUSSION

Due to their relatively low-cost per sample and single-
nucleotide resolution coverage of >450 000 CpG sites
across the human genome, Illumina’s 450k arrays are widely
used in both small and large scale DM studies. However, de-
spite the abundance of literature describing and evaluating
methods for mitigating unwanted variation in the context
of microarray gene expression studies there has been much
less research focused on methylation data.

Here we present the novel approach, RUVm, which pro-
poses the application of RUV-inverse in two stages (23) to
450k DM studies and show that it outperforms existing
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Figure 6. Performance of the various adjustment methods in DM analyses of smaller datasets subsampled from the TCGA LUAD data. The performance
is expressed in terms of AUC. Each row represents the results for the same datasets pre-processed using either (A) SWAN or (B) FNORM. The individual
panels in each row show the results at different levels of subsampling: 5, 10, 15 and 20 samples per group. The different colours correspond to the analysis
methods used. A solid circle indicates that a particular method has the highest AUC for a single dataset.

methods. In the first stage, we use the INCs for an initial
DM analysis with RUV-inverse. In the second stage, we use
the resulting rankings of the CpG probes to select ECPs
for a second DM analysis with RUV-inverse. As the INCs
capture various types of technical variation such as plate
or chip (Supplementary Figures S10 and S16), their use in
Stage 1 is often an improvement over an unadjusted anal-
ysis. However, caution is advised if the INCs are affected
by unwanted variation that is strongly correlated with the
factor of interest as this is likely to be detrimental to the
performance of RUVm. Cases displaying strong correlation
between technical variation and the factor of interest are of-
ten reflective of poor experimental design and the results of
any method must be treated with scepticism.

An important consideration for the application of RUVm
is selection of ECPs. ECPs need to be selected on a case by
case basis and the results should be carefully evaluated. We
investigated the effect of ECP selection on the overall per-
formance of RUVm for both the ageing+ and LUAD can-
cer data. We considered selection of ECPs based on a series
of FDR cut-offs as well as selecting a fixed percentage of
probes from the bottom of the ranked list. Our investiga-
tion showed that examining the results of the DM analy-
sis performed in Stage 1 provides a reasonable indication of
the final amount of DM and is thus a valuable guide to se-
lecting ECPs. Supplementary Figures S3 and S10 highlight
the difference between the ageing+ and cancer studies, re-
spectively, in terms of DM and the acceptable number of
probes that ECPs should be drawn from. Fewer DM CpGs
are expected to be found in the ageing+ data compared with
the cancer data and, as expected, more probes can be des-

ignated as ECPs in the ageing+ study compared to the can-
cer study, without detriment to performance. Based on our
analyses, we suggest that selecting ECPs based on an FDR
cut-off around 0.5 or approximately the bottom 50% of the
ranked list should work well in the absence of other infor-
mation.

Although the use of ECPs is likely to be a good option
for many methylation studies, they are not the only option
for using RUVm to analyse methylation data. Recalling that
the criteria for selecting a good set of negative controls are
(i) that they should not be truly associated with the factor
of interest and (ii) that they should be affected by unwanted
variation, one can take a number of approaches to choos-
ing negative controls. For example, a researcher may know
a priori that, for their particular experiment, there is a set of
CpGs that should be invariant with respect to the effect they
are investigating and as such could be useful negative con-
trols. Alternatively, a set of negative controls could be de-
fined using data from previous experiments, as in the study
by Jaffe and Irizarry (8). Whatever strategy is employed,
it is always prudent to evaluate how an adjustment is per-
forming; examples of some useful approaches can be found
in this study and are also discussed in detail in Gagnon-
Bartsch and Speed (22) and Gagnon-Bartsch et al. (23).

We have demonstrated that the RUVm can correct for
various types of unwanted variation in a DM analysis of
450k data. In particular, we have found that RUVm con-
sistently outperforms other methods when the effect of un-
wanted variation in the data is larger than the factor of
interest. Specifically, using the ageing+ dataset, which was
dominated by a very large cell type batch effect and cell-
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type heterogeneity issues, we showed that RUVm performed
better than other methods irrespective of the type of pre-
processing applied to data. With a more subtle phenotype,
such as smoking, all methods that adjusted for unwanted
variation performed similarly on data with no discernible
batch effects (Figure 5). However, on the smoking+ data,
which incorporated a large a batch effect and several misal-
located samples, RUVm ranked almost twice as many true
positives in its top 1000 CpGs than any of the other adjust-
ment methods. Consequently, we expect that RUVm should
be particularly beneficial for the analysis of very ‘messy’
datasets such as those that seek to combine samples from
multiple labs/studies.

Cell-type composition has also been demonstrated to be
an issue in methylation studies (11–15). For the analysis of
the ageing+ data, to ensure that the methods we were eval-
uating were identifying CpGs with real age-associations,
we carefully assessed the ageing ‘truth’ data to ensure that
cell type composition changes were not significantly con-
founded with age. We also adjusted for cell type propor-
tion estimates when defining ‘true’ positives and negatives.
We thus expected that, in addition to accounting for the
batch effect, methods that were able to adjust for cell type
composition should rank ‘truly’ age-associated CpGs more
highly than cell type associations. RUVm was able to re-
cover almost 80% of ‘true’ positives irrespective of the
pre-processing method with a relatively low false positive
rate. RUVm also performed more consistently than other
methods when comparing normal tissue and solid tumours,
which are often very heterogeneous, particularly when the
sample size was low. We propose that this demonstrates that
RUVm is able to adjust for fluctuations in cell type composi-
tion, enabling it to prioritize true associations over spurious
effects. Jaffe and Irizarry (8) made a similar observation in
their study when they applied RUV-2 (22). Nevertheless, we
would still advise that any methylation study of a mixed-cell
population incorporate rigorous checking for serious con-
founding between cell type composition and the factor of
interest.

The RUVm approach proposed herein is a versatile
method that effectively accounts for unwanted variation
in DM analyses of 450k data across a wide variety of
studies. RUVm performs particularly well in situations
where the sources of unwanted variation are large rel-
ative to the factor of interest and therefore we believe
this method will be of great utility to the EWAS com-
munity. All of the core RUV methods, including RUV-
inverse, have been implemented in R and are available
in the CRAN package ruv (http://cran.r-project.org/web/
packages/ruv/index.html). Functions extending the ruv
package to align it with the limma framework and for its
application to 450k data have been implemented in the miss-
Methyl Bioconductor package (http://www.bioconductor.
org/packages/release/bioc/html/missMethyl.html).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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