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Tumor progression includes the obtainment of progenitor and stem cell-like features
and the gradual loss of a differentiated phenotype. Stemness was defined as the
potential for differentiation and self-renewal from the cell of origin. Previous studies have
confirmed the effective application of stemness in a number of malignancies. However,
the mechanisms underlying the growth and maintenance of multiple myeloma (MM)
stem cells remain unclear. We calculated the stemness index for samples of MM by
utilizing a novel one-class logistic regression (OCLR) machine learning algorithm and
found that mRNA expression-based stemness index (mRNAsi) was an independent
prognostic factor of MM. Based on the same cutoff value, mRNAsi could stratify MM
patients into low and high groups with different outcomes. We identified 127 stemness-
related signatures using weighted gene co-expression network analysis (WGCNA) and
differential expression analysis. Functional annotation and pathway enrichment analysis
indicated that these genes were mainly involved in the cell cycle, cell differentiation, and
DNA replication and repair. Using the molecular complex detection (MCODE) algorithm,
we identified 34 pivotal signatures. Meanwhile, we conducted unsupervised clustering
and classified the MM cohorts into three MM stemness (MMS) clusters with distinct
prognoses. Samples in MMS-cluster3 possessed the highest stemness fractions and
the worst prognosis. Additionally, we applied the ESTIMATE algorithm to infer differential
immune infiltration among the three MMS clusters. The immune core and stromal score
were significantly lower in MMS-cluster3 than in the other clusters, supporting the
negative relation between stemness and anticancer immunity. Finally, we proposed a
prognostic nomogram that allows for individualized assessment of the 3- and 5-year
overall survival (OS) probabilities among patients with MM. Our study comprehensively
assessed the MM stemness index based on large cohorts and built a 34-gene based
classifier for predicting prognosis and potential strategies for stemness treatment.
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INTRODUCTION

Multiple myeloma (MM), a clonal B-cell malignancy (Bataille and
Harousseau, 1997), is characterized by the aberrant proliferation
of bone marrow plasma cells and the overproduction of light-
chain or monoclonal immunoglobulin (Röllig et al., 2015; Dhakal
et al., 2016). Among the diseases with abnormal plasma cells,
MM is the second most common hematologic malignancy (Röllig
et al., 2015). Owing to the development of immunomodulators
and proteasome inhibitors, patients with MM have significantly
improved survival over the past decade. However, progressive
disease remains a common cause of fatal outcomes (Martinez-
Lopez et al., 2011). As a result, it is essential to understand
the underlying mechanisms that contribute to disease relapse
and progression in MM, as well as novel targets for therapeutic
improvements or prognostic prediction.

Stemness was defined as the potential for differentiation
and self-renewal from the cell of origin (Seguin et al., 2015;
Prasetyanti and Medema, 2017). It has been reported that the
gradual loss of differentiation capacity and acquisition of stem
cell-like characteristics are important factors that promote tumor
progression (Seguin et al., 2015). A growing body of research
has confirmed the existence of cancer stem cells in multiple
tumors, including hematological malignancies (Lapidot et al.,
1994; Singh et al., 2004; O’Brien et al., 2007). Cancer stem cells
play a key role in tumorigenesis, progression, metastasis, and
drug resistance. Therapies targeting cancer stem cells are of great
value for tumor prevention and treatment. For example, the use
of retinoic acid to induce the maturation and differentiation
of malignant proliferating cells has achieved great success in
the clinical treatment of promyelocytic leukemia (Nowak et al.,
2009). With the application of serial transplantation models and
clonogenic in vitro assays, MM stem cells have been suggested
to be part of a subset of CD38−CD19+CD27+ B-cell precursors
that do not express the classic MM markers CD38 or CD138
(Matsui et al., 2008). These cells with clonogenic potential could
mediate tumor regrowth and chemoresistance. The one-class
logistic regression (OCLR) machine learning algorithm is an
effective method of quantifying the cancer stemness index using
two independent indices (Malta et al., 2018; Lian et al., 2019).
One is the stemness index [mRNA expression-based stemness
index (mRNAsi)] based on gene expression that reflects mRNA
expression, and the other is mDNAsi, which reflects epigenetic
characteristics (Sokolov et al., 2016). Previous studies have
proven the effective application of stemness indices calculated by
the OCLR algorithm in a variety of malignant tumors. However,
there are few studies on the role and prognostic value of MM
stemness (MMS); hence,it is an urgent need to develop prognostic
or predictive biomarkers associated with stemness index.

In this study, we collected a total of 1,095 newly diagnosed
or pre-treatment MM patients with expression data and clinical
information and systematically evaluated the MM stemness index
(mRNAsi) using the OCLR algorithm. By combining weighted
gene co-expression network analysis (WGCNA) with MM
mRNAsi, we searched for key genes related to stemness in 1,095
MM patients. The analysis of gene and module functions showed
significance in MM. We classified MM patients into different

subgroups based on the expression of stemness-related genes.
Finally, mRNAsi was integrated with other clinicopathological
characteristics to construct a nomogram to predict the prognosis
of patients with MM.

MATERIALS AND METHODS

Data Collection and Pre-processing
The workflow of this study is shown in Figure 1. In this
study, two MM cohorts were downloaded from the Gene
Expression Omnibus (GEO)1 database. The related information
contained clinical, molecular, and microarray datasets. Samples
in the GSE4204 cohort (N = 538) were pre-treated with bone
marrow aspirates from MM patients (Driscoll et al., 2010). The
GSE24080 cohort consisted of 559 newly diagnosed MM patients
(Shi et al., 2010).

The gene expression values in the two cohorts were analyzed
using the robust multi-array average algorithm for background
correction, quantile normalization, and final summarization.
After excluding samples without survival information, a total
of 1,095 samples were selected for subsequent analysis (558
cases from the GSE24080 cohort and 537 cases from the
GSE4204 cohort).

Calculation and Prognosis Evaluation of
mRNAsi
Malta et al. (2018) provided a novel OCLR machine learning
algorithm to assess oncogenic dedifferentiation that considered
mRNAsi. We utilized the method to calculate the mRNAsi for
each MM patient. The gene expression-based stemness index
was mapped from zero to one. We assessed the prognostic value
of mRNAsi and its relationship with other clinical features in
different cohorts. First, we utilized univariate and multivariable
Cox proportional hazard regression to calculate the hazard ratios
(HRs) for overall survival (OS). Second, each cohort of MM
patients was divided into low and high mRNAsi groups based
on the same cutoff value of mRNAsi (0.4124166, identified
by the Survminer package), and the Kaplan–Meier method
and log-rank tests were used to determine the significance of
survival differences.

Identification of Key Modules and Genes
Associated With mRNAsi by WGCNA
The WGCNA was developed to discover correlations among
genes by constructing significant modules (Langfelder and
Horvath, 2008). The mRNAsi and expression modules were
calculated using WGCNA to identify key modules and genes
associated with mRNAsi. Module eigengenes (MEs) were defined
as the first principal component of each gene module and were
adopted as the representative of all genes in each module. Gene
significance (GS), as the mediator p-value (GS = lgP) for each
gene, represented the degree of linear correlation between gene
expression of module and mRNAsi or other clinical features.

1https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Workflow of this research.

MRNAsi-related modules were defined according to P < 0.01,
and a higher GS value was used for further analysis. Finally,
we selected the intersection of the key genes identified in
different data sets.

Screened Differentially Expressed Genes
The limma R package was used to screen differentially expressed
genes (DEGs) between the high and low mRNAsi groups (Ritchie
et al., 2015). The selection criteria were as follows: adjusted
P-value < 0.0001 and | log2 fold change| > 0.5.

Functional Annotation and Pathway
Enrichment Analysis
We first selected the intersection between the modular genes
identified by WGCNA and the DEGs identified by differential
expression analysis and then adopted a univariate Cox regression
model to assess the prognostic significance of the overlapping
genes. Only genes with a P-value < 0.05 were considered as
prognosis-related hub genes. Functional annotation and pathway
enrichment analysis of these hub genes was performed using
Metascape (Zhou et al., 2019).2

2https://metascape.org/gp/index.html#/main/step1

Consensus Clustering and Prognostic
Analysis Based on mRNAsi-Related Hub
Genes
Protein-protein interaction enrichment analysis was conducted,
and the molecular complex detection (MCODE) algorithm
(Bader and Hogue, 2003) was used to identify densely connected
network components. Based on the 34 mRNAsi-related hub
genes identified by the MCODE algorithm, we subsequently
performed unsupervised clustering on MM patients. The R
package ConsensusClusterPlus was used to conduct unsupervised
clustering (1,000 iterations, 80% resampling), and k-means and
Euclidean distances were used as the clustering algorithm and
distance metric, respectively (Wilkerson and Hayes, 2010). We
then assessed the prognosis in each MMS-cluster via Kaplan–
Meier analysis. Meanwhile, mRNAsi was also compared in
distinct MMS clusters.

Development and Validation of a
Nomogram for Prognosis Prediction of
MM Patients
To develop a clinically applicable method of predicting MM
prognosis, we integrated mRNAsi and other clinicopathological
covariates to build a nomogram. Predictive factors included
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mRNAsi, cytogenetic abnormalities, albumin (ALB), beta-2
microglobulin (B2M), and lactate dehydrogenase (LDH). The
nomogram was verified using receiver operating characteristic
(ROC) curves and calibration curves.

Statistical Analyses
The Wilcoxon rank-sum test was used to compare two groups
with non-normally distributed variables, while Student’s t-test
was conducted to compare groups with normally distributed
variables. The one-way analysis of variance or Kruskal–Wallis
tests were used to compare differences between three or more
groups. Based on the correlation between mRNAsi and patient
survival, the cutoff point of mRNAsi was determined using
the Survminer R package. The “surv-cutpoint” function, which
repeatedly tested all potential cut points to find the maximum
rank statistic, was applied to dichotomize mRNAsi, and the
patients were then divided into high and low mRNAsi groups
based on the maximally selected log-rank statistics to decrease the
batch effect of calculation. The survival curves for the prognostic
analysis were generated using the Kaplan–Meier method, and
log-rank tests were used to determine the significance of
differences. Independent prognostic factors were ascertained
using the multivariable Cox regression model.

RESULTS

The Association Between mRNAsi and
Patient Survival
We collected 1,095 MM samples with clinical information and
corresponding expression data to systematically characterize
the stemness features of MM. The overall characteristics
of the MM cohort are listed in Table 1. MM samples
were sorted according to their mRNAsi values (from low
to high stemness index) and examined whether any clinical
characteristic/molecular/demographic was associated with either
a low or high stemness index (Figures 2A, 3A). We did not find
significant differences in mRNAsi in terms of gender and race, but
we found that patients who died and patients who experienced
adverse events occurred often showed a higher mRNAsi.

Correlations of mRNAsi With Clinical
Prognosis in MM
We further explored the prognostic value of mRNAsi in patients
with MM. First, the multivariate Cox regression model analysis
in different cohorts confirmed mRNAsi as an independent
and robust prognostic biomarker for evaluating MM patient
outcomes (Table 2 and Supplementary Tables 1, 2). Second,
based on the cutoff point (0.4124166) identified by the Survminer
R package, each MM cohort was separated into low and high
mRNAsi groups. The Kaplan–Meier analysis confirmed that the
high-mRNAsi group had shorter OS and event-free survival
(EFS) than the low mRNAsi group in the GSE24080 cohort
(Figures 2B,C). Consistent with this, in the GSE4204 cohort, the
Kaplan–Meier analysis indicated that the high-mRNAsi group
had shorter OS than the low mRNAsi group (Figure 3B).

TABLE 1 | Baseline characteristics of multiple myeloma (MM) patients.

Characteristic Overall GSE24080 GSE4204

Project (%) 1,095 558 537

GSE24080 558 (51.0) 558 (100.0) 0 (0.0)

GSE4204 537 (49.0) 0 (0.0) 537 (100.0)

OS CENSOR (%)

Alive 832 (76.0) 387 (69.4) 445 (82.9)

Dead 263 (24.0) 171 (30.6) 92 (17.1)

OS TIME (median
[IQR])

37.10
[19.06,53.55]

48.23
[34.63,64.07]

23.97
[12.07,39.67]

Treatment (%)

TT2 688 (62.8) 344 (61.6) 344 (64.1)

TT3 407 (37.2) 214 (38.4) 193 (35.9)

SUBGRP7 (%) 127 (23.6) 0 (NaN) 127 (23.6)

CD1 28 (5.2) 0 (NaN) 28 (5.2)

CD2 59 (11.0) 0 (NaN) 59 (11.0)

HY 114 (21.2) 0 (NaN) 114 (21.2)

LB 58 (10.8) 0 (NaN) 58 (10.8)

MF 37 (6.9) 0 (NaN) 37 (6.9)

MS 67 (12.5) 0 (NaN) 67 (12.5)

PR 47 (8.8) 0 (NaN) 47 (8.8)

AGE (%)

<60 317 (56.8) 317 (56.8) 0 (NaN)

≥60 241 (43.2) 241 (43.2) 0 (NaN)

Gender (%)

Female 222 (39.8) 222 (39.8) 0 (NaN)

Male 336 (60.2) 336 (60.2) 0 (NaN)

RACE (%)

White 496 (88.9) 496 (88.9) 0 (NaN)

Other 62 (11.1) 62 (11.1) 0 (NaN)

EFS CENSOR (%)

No 310 (55.6) 310 (55.6) 0 (NaN)

Yes 248 (44.4) 248 (44.4) 0 (NaN)

EFS TIME (median
[IQR])

42.40
[29.23,56.66]

42.40
[29.23,56.66]

NA [NA,NA]

ISOTYPE (%) 15 (2.7) 15 (2.7) 0 (NaN)

FLC 84 (15.1) 84 (15.1) 0 (NaN)

IgA 133 (23.8) 133 (23.8) 0 (NaN)

IgD 3 (0.5) 3 (0.5) 0 (NaN)

IgG 312 (55.9) 312 (55.9) 0 (NaN)

Non-secretory 6 (1.1) 6 (1.1) 0 (NaN)

NSE 2 (0.4) 2 (0.4) 0 (NaN)

NA 3 (0.5) 3 (0.5) 0 (NaN)

B2M (%) 1 (0.2) 1 (0.2) 0 (NaN)

<3.5 319 (57.2) 319 (57.2) 0 (NaN)

≥5.5 118 (21.1) 118 (21.1) 0 (NaN)

3.5-5.5 120 (21.5) 120 (21.5) 0 (NaN)

CRP (median [IQR]) 4.40 [1.20,
11.00]

4.40 [1.20,
11.00]

NA [NA, NA]

CREAT (median
[IQR])

1.00 [0.80,
1.20]

1.00 [0.80,
1.20]

NA [NA, NA]

LDH (median [IQR]) 156.50
[127.00,
199.00]

156.50
[127.00,
199.00]

NA [NA, NA]

ALB (median [IQR]) 4.10 [3.70,
4.40]

4.10 [3.70,
4.40]

NA [NA, NA]

(Continued)
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TABLE 1 | Continued

Characteristic Overall GSE24080 GSE4204

HGB (median [IQR]) 11.30 [9.80,
12.60]

11.30 [9.80,
12.60]

NA [NA, NA]

ASPC (median
[IQR])

40.00 [23.00,
60.00]

40.00 [23.00,
60.00]

NA [NA, NA]

BMPC (median
[IQR])

45.00 [21.25,
70.00]

45.00 [21.25,
70.00]

NA [NA, NA]

MRI (median [IQR]) 5.00 [0.00,
16.00]

5.00 [0.00,
16.00]

NA [NA, NA]

Cyto_Abn (%)

No 352 (63.1) 352 (63.1) 0 (NaN)

Yes 206 (36.9) 206 (36.9) 0 (NaN)

OS CENSOR, (dead = event) overall survival censor (dead); EFS CENSOR,
(yes = event) event-free survival censor (disease relapse or progression); AGE,
age at registration (years); B2M, beta-2 microglobulin (mg/l); CRP, C-reactive
protein (mg/l); CREAT, creatinine (mg/dl); LDH, lactate dehydrogenase (U/l); ALB,
albumin (35 g/l); HGB, hemoglobin (g/dl); ASPC, aspirate plasma cells (%); BMPC,
bone marrow biopsy plasma cells (%); MRI, number of magnetic resonance
imaging (MRI)-defined focal lesions (skull, spine, pelvis). Cytogenetic abnormality
an indicator of the detection of cytogenetic abnormalities. Yes = abnormalities were
detected, No = were not detected or were absent.

Surprisingly, we found that in both the GSE24080 and GSE4204
cohorts, the treatment regimen (TT2 or TT3) did not improve
the survival of MM patients (Figures 2D, 3C). Regardless

of the treatment plan (TT2 or TT3), it failed to improve
the survival disadvantages of patients in the high-mRNAsi
group (Figures 2E,F, 3D,E). Consistently with previous reports
(Zhan et al., 2006), our analysis found that among the seven
subgroups of MM, the PR subgroup had the worst prognosis,
followed by the MS and MF subgroups (Figure 3F). Finally,
we investigated the association between mRNAsi and other
clinical characteristics. We found that the difference in mRNAsi
among the groups was statistically significant when comparing
groups of patients with B2M ≥ 3.5 and those with B2M < 3.5
(Figure 4A). There was no significant difference in mRNAsi
between the different isotype groups (Figure 4B). However,
for the seven subgroups of MM, consistent with poor survival,
patients in the PR subgroups possessed the highest mRNAsi
(Figure 4C). In terms of cytogenetic abnormalities, patients with
cytogenetic abnormalities tended to have higher mRNA levels
(Figure 4D). Since different therapies (TT2 or TT3) failed to
improve the survival of MM patients, we further investigated
whether there were any differences in mRNAsi among MM
patients who received different therapies. Consistent with our
conjecture, different treatment regimens failed to effectively affect
mRNAsi (Figures 4E,F). Based on the ESTIMATE algorithm,
we calculated the individual stromal and immune scores to
evaluate the level of infiltrating stromal and immune cells in
any given MM sample (Yoshihara et al., 2013). We found that

FIGURE 2 | Clinical characteristics related to the mRNA expression-based stemness index (mRNAsi) in the GSE24080 cohort. (A) Overview of the association
between demographic characteristics and mRNAsi in MM. Columns represent samples sorted by mRNAsi from low to high (top row), and rows represent the
demographic factors associated with mRNAsi. (B,C) The Kaplan–Meier curve was used to determine the overall survival (OS) (B) and event-free survival (EFS) (C) of
patients in the multiple myeloma (MM) group with high and low mRNAsi. (D) The Kaplan–Meier curve was used to determine the OS of patients treated with the TT2
or TT3 regimen. (E) The Kaplan–Meier curve was used to determine the OS of high and low mRNAsi patients treated with the TT2 regimen. (F) The Kaplan–Meier
curve was used to determine the OS of high and low mRNAsi patients treated with the TT3 regimen.
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FIGURE 3 | Clinical characteristics related to the mRNAsi in the GSE4204 cohort. (A) Overview of the association between subtype and mRNAsi in MM. The
columns represent samples sorted by mRNAsi from low to high (top row), while the rows represent the demographic factors associated with mRNAsi. (B) The
Kaplan–Meier curve was used to determine the OS of patients in the MM group with high and low mRNAsi. (C) The Kaplan–Meier curve was used to determine the
OS of patients treated with the TT2 or TT3 regimen. (D) The Kaplan–Meier curve was used to determine the OS of high and low mRNAsi patients treated with the
TT2 regimen. (E) The Kaplan–Meier curve was used to determine the OS of high and low mRNAsi patients treated with the TT3 regimen. (F) The Kaplan–Meier curve
was used to determine the OS of patients of different MM subtypes.

the high-mRNAsi group had lower immune and stromal scores
than the low mRNAsi group, which suggested that MM patients
with high mRNAsi had a lower level of infiltration of tumor
microenvironment (TME) cells (Figures 4G,H).

Weighted Gene Co-expression Network
Analysis: Identification of the Most
Significant Modules and Genes
Weighted gene co-expression network analysis was used to
build a gene co-expression network to classify all genes into
biological gene modules based on average linkage hierarchical
clustering and further identify genes strongly associated with
MM stemness (Figures 5A,D, 6A,D). The soft-thresholding
powers in the WGCNA were determined based on scale-free
R2 (Figures 5B,C, 6B,C). The pink module had the highest
correlation with mRNAsi in the GSE24080 cohort (Figures 5E,F).
Additionally, the tan and green modules were highly associated
with mRNAsi in the GSE4204 cohort (Figures 6E–G). The
pink module contained 643 genes (Figure 5F), and tan and
green contained 313 and 623 genes, respectively (Figures 6F,G).
There were 379 overlapping genes in the three modules
(Figure 7A). A total of 379 overlapping genes were retained for
further analysis.

Differentially Expressed Genes Between
Low and High mRNAsi Groups of MM
Patients
Since the prognosis of MM patients in the high and low
mRNAsi groups differed significantly, we conducted a differential
expression analysis between high and low mRNAsi groups to
identify the differentially expressed key genes that regulate
stemness. We identified 370 DEGs, of which 326 were
upregulated and 44 were downregulated in the high-mRNAsi
group. After merging the 370 DEGs with the 379 co-expressed
genes identified by WGCNA, 128 hub genes were retained for
further analysis (Figure 7B).

Pathway and Process Enrichment
Analysis of Hub Prognostic Genes
The prognostic evaluation of the 128 hub genes was performed
using the Cox proportional hazards regression analysis in
the GSE24080 cohort dataset. In total, 127 hub genes
were identified as significantly prognostic of the outcome
(Supplementary Table 3, P < 0.05). Functional enrichment
analysis was performed using Metascape to elucidate the
biological functions of the 127 hub prognostic genes (Figure 7C).
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TABLE 2 | Univariate and multivariable cox regression analysis of clinical features and OS in the GSE24080 cohort of MM patients.

Univariate Cox regression analysis Multivariable Cox regression analysis

HR (95%CI) p value HR (95%CI) p value

Treatment 0.82431 (0.57344–1.1849) 0.29671 0.85959 (0.56569–1.3062) 0.4785

Age 1.4345 (1.0616–1.9385) 0.018833 1.2299 (0.88208–1.715) 0.22238

Gender 0.95881 (0.70659–1.301) 0.78707 1.1181 (0.7849–1.5929) 0.53626

Race 1.0527 (0.65329–1.6965) 0.83276 0.98993 (0.58153–1.6851) 0.97025

B2M 1.0834 (1.0647–1.1025) 2.21E-19 1.1043 (1.0627–1.1475) 4.20E-07

CRP 1.0032 (0.99834–1.0081) 0.19614 0.99659 (0.98718–1.0061) 0.47955

CREAT 1.2329 (1.1382–1.3354) 2.79E-07 0.92317 (0.79575–1.071) 0.29151

LDH 1.0062 (1.0046–1.0079) 3.84E-13 1.0044 (1.0022–1.0065) 5.47E-05

ALB 0.58079 (0.471–0.71618) 3.73E-07 0.73108 (0.54743–0.97634) 0.033821

HGB 0.87091 (0.80301–0.94456) 0.00084631 1.0076 (0.90369–1.1235) 0.89144

ASPC 1.0102 (1.004–1.0164) 0.0011275 0.99881 (0.98875–1.009) 0.81831

BMPC 1.0096 (1.0038–1.0155) 0.0012532 1.0003 (0.99088–1.0099) 0.94347

MRI 1.0172 (1.0083–1.0261) 0.00012887 1.0089 (0.99865–1.0193) 0.088955

Cyto_Abn 2.2708 (1.6805–3.0685) 9.32E-08 1.7924 (1.2669–2.5358) 0.00098068

mRNAsi 28.219 (10.696–74.45) 1.50E-11 5.0703 (1.3013–19.756) 0.019312

StromalScore 0.9994 (0.99881–0.99998) 0.04337 1.0003 (0.99956–1.0011) 0.39522

ImmuneScore 0.99958 (0.99906–1.0001) 0.12077 1.0002 (0.99946–1.0009) 0.64608

FIGURE 4 | Clinical characteristics in low mRNAsi and high mRNAsi MM patients. (A,B) Differences in mRNAsi between distinct B2M groups (A) and isotype groups
(B) in patients with MM. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent median values. (C,D)
Difference in mRNAsi between distinct subgroups (C) and cytogenetic abnormalities groups (D) in patients with MM. (E,F) Difference in mRNAsi between distinct
treatment regimen groups in patients of the GSE24080 cohort (E) or the GSE4204 cohort (F). (G,H) Difference in stromalscore and immunescore between high and
low mRNAsi samples of the GSE24080 cohort (G) or the GSE4204 cohort (H). ****p < 0.0001.

The enrichment analysis suggested that these genes were
significantly enriched in pathways and processes related to
cell cycle, cell differentiation, and DNA replication and repair
(Figure 7D, hypergeometric test P < 0.01). Finally, based on
the MCODE algorithm, the 127 hub prognostic genes were

divided into four densely connected network components.
The MCODE networks identified for the individual gene lists
are shown in Figure 7E. A total of four major gene modules
(MCODE 1–4) were identified, including 34 hub prognostic
genes (Supplementary Table 4).
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FIGURE 5 | Weighted gene co-expression network of MM of the GSE24080 cohort. (A) Sample dendrogram and trait heatmap. The colors represent the proportion
of clinical traits. (B) Left panel: the scale-free topology fit index for soft-thresholding powers. Right panel: mean connectivity for soft-thresholding powers.
(C) Scale-free R2 (R2 = 0.91). (D) Clustering dendrogram of genes in patients with MM. (E) Pertinence between clinical traits and gene modules. (F) Scatter plots of
gene significance (GS) for mRNAsi corresponding to module membership in the pink module, with their correlation coefficients and P-values.
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FIGURE 6 | Weighted gene co-expression network of MM of the GSE4204 cohort. (A) Sample dendrogram and trait heatmap. The colors represent the proportion
to clinical traits. (B) Left panel: the scale-free topology fit index for soft-thresholding powers. Right panel: mean connectivity for soft-thresholding powers.
(C) Scale-free R2 (R2 = 0.92). (D) Clustering dendrogram of gene in patients with MM. (E) Pertinence between clinical traits and gene modules. (F,G) Scatter plots of
GS for mRNAsi corresponding to module membership in green and tan modules, with their correlation coefficients and P-values.
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FIGURE 7 | Functional annotation and pathway enrichment analysis of key prognostic genes that were identified by weighted gene co-expression network analysis
(WGCNA) and differential expression analysis. (A) Venn diagram of genes identified by WGCNA in the GSE24080 and GSE4204 cohorts. (B) Venn diagram of genes
identified by WGCNA and differential expression analysis. (C) Bar graph of enriched terms of stemness-related genes, colored by P-values. (D) Network of enriched
terms: (left panel) colored by cluster ID, where nodes that share the same cluster ID are typically close to each other; (right panel) colored by P-value, where terms
containing more genes tend to have more significant P-values. (E) Protein–protein interaction network and molecular complex detection components identified in the
gene lists of the 127 stemness-related signatures.

Frontiers in Genetics | www.frontiersin.org 10 August 2021 | Volume 12 | Article 666561

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-666561 August 10, 2021 Time: 12:25 # 11

Ban et al. Stemness Features in Multiple Myeloma

Consensus Clustering to Distinguish
Different Stemness Prognostic Subtypes
First, we identified different stemness prognostic subgroups
in the GSE24080 cohort. We utilized the 34 stemness-related
signatures of MCODE 1–4 to conduct unsupervised clustering
and identified the stemness molecular subtypes of MM for
prognostic analysis. The R package of ConsensusClusterPlus was
used to iterate 1,000 times for the stabilization of classification
categories (parameters: pItem = 0.8, reps = 1,000, pFeature = 1),
and three distinct stemness molecular subgroups were eventually
identified using unsupervised clustering (Figures 8A,B).
Unsupervised clustering is a useful technique in tumor research,
where intrinsic groups sharing biological characteristics may
exist but are unknown. A Kaplan–Meier analysis was conducted
across the three clusters, where MMS-cluster3 had the worst OS
prognosis and MMS-cluster2 had the most favorable prognosis
(Figure 8C, log-rank test P < 0.0001). In agreement with
these results, MMS-cluster3 had the highest mRNAsi, and
MMS-cluster2 had the lowest mRNAsi (Figure 8D). In addition,
to verify our stemness prognostic subgroups, based on the 34
stemness-related signatures, we also performed unsupervised
clustering and prognostic analysis on the GSE4204 cohort.
Consistent with the above results, the MM samples could be
classified into three clusters with different prognoses (Figure 8F);
MMS-cluster3 had the worst prognosis with the highest mRNAsi,
while MMS-cluster2 had the most favorable prognosis with
the lowest mRNAsi (Figure 8G). We also investigated whether
there were any differences in immune and stromal scores among
the three clusters. The results showed that MMS-cluster2 had
higher stromal and immune scores, while MMS-cluster3 had
lower stromal and immune scores (Figures 8E,H). In total, these
analyses indicated that the 34 MMS-related signature could
guide molecular classifications, by which the MMS clusters
possessed different immune infiltration and had different
prognostic outcomes.

Development and Validation of a
Nomogram
Based on the multivariate Cox regression analysis, a nomogram
was built to determine MM prognosis (Figure 9A), and a time-
dependent ROC curve was used to evaluate the effect of the
nomogram. As the data with complete clinical information
was limited, we used the GSE24080 cohort as the whole
dataset (training set) to construct the nomogram. To verify our
nomogram, we set the random seed to 123 and used the caret R
package to randomly cut the whole set and divided the samples
into two different data sets (50%/50%) to verify the nomogram.
In the whole dataset, the area under the curve was 0.759 and
0.740 for the 3- and 5-year survival, respectively (Figures 9B,C).
The performance of the nomogram was far superior to that
of mRNAsi, cytogenetic abnormalities, ALB, B2M, and LDH
alone for assessing patient prognosis (Figures 9B,C). In addition,
the nomogram showed good prediction performance in the
verification cohorts, and the 3- and 5-year ROC curves of test sets
1 and 2, respectively, are shown in Figures 9D–G (Figures 9D,E,
test set 1; Figures 9F,G, test set 2). A calibration curve was

constructed to assess the accuracy of the nomogram. As shown in
Figures 9H,I (training set) and Figures 9J–M (Figures 9J,K, test
set 1; Figures 9L,M, test set 2), the combined nomogram showed
good performance in predicting the 3- and 5-year survival rates
of patients, and the prediction probability was close to the actual
observed situation.

DISCUSSION

Cancer stem cells are commonly considered to be responsible
for tumor persistence and progression, tumor recurrence, and
resistance to traditional therapies (Seguin et al., 2015; Prasetyanti
and Medema, 2017; Saygin et al., 2019). We comprehensively
analyzed data from large cohorts to determine the cancer
stemness of MM and found that mRNAsi was tightly associated
with OS and EFS, possessing good fitness and quantification
of stemness in MM. In addition, low- and high-mRNAsi
groups had different features, including B2M, cytogenetic
abnormalities, ALB, subgroups, and immune infiltration. This
evidence indicates that stemness, as a yardstick to assess
the degree of gradual loss of a differentiated phenotype and
gain of progenitor and stem cell-like characteristics, strongly
affects the prognosis of MM. Our researches showed that
mRNAsi could effectively classify patients with MM into groups
with low and high risks of poor prognosis. Additionally,
the proposed mRNAsi provided additional prognostic value
to existing clinicopathological prognosticators for MM. Of
particular importance, this is the first study to demonstrate
the clinical utility of the stemness signature as a prognostic
tool in patients with MM. We observed that the prognoses of
patients with MM who received different therapies (TT2 or
TT3) were not significantly different. Similarly, mRNAsi did
not differ significantly; however, in both the TT2 and TT3
groups, patients with high mRNAsi had shorter OS than patients
with low mRNAsi. This suggests that the TT3 regimen did not
significantly improve the prognosis of patients compared with
the TT2 regimen. This might be because the TT3 regimen failed
to remove the stemness, thus failing to influence the degree
of oncogenic dedifferentiation, which might provide valuable
insights for targeted therapies aimed at tumor differentiation
of MM. Moreover, the stemness index-related modules and
genes were identified using WGCNA and differential expression
analysis. A total of 127 hub prognostic genes were found to be
most significantly associated with stemness index. Pathway and
process enrichment analysis revealed that these hub prognostic
genes were involved in various biological functions related to the
initiation and progression of MM, including the cell cycle, cell
differentiation, and DNA replication and repair. Interestingly,
these hub prognostic genes allowed for the discovery of
innovative targets and possible targeted therapies aimed at
tumor differentiation. Based on the MCODE algorithm, the most
important connected network components were identified from
these hub prognostic genes. We considered tumor heterogeneity
and classified the MM cohorts into three MMS clusters based
on the 34 stemness-related signatures. We observed distinct
survival outcomes across the three MMS clusters and compared
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FIGURE 8 | Consensus clustering identified distinct multiple myeloma stemness (MMS) clusters with different prognoses. (A) Consensus score matrix for MM
samples when k = 3. (B) The cumulative distribution function (CDF) describes a real random variable of its probability distribution based on consensus scores for
different subtype numbers (k = 2–9). (C) The Kaplan–Meier curve was used to determine the OS of patients of different MMS clusters in the GSE24080 cohort.
(D) Difference in mRNAsi among distinct MMS clusters in patients of the GSE24080 cohort. (E) Difference in stromalscore and immunescore among distinct MMS
clusters in patients of the GSE24080 cohort. (F) The Kaplan–Meier curve was used to determine the OS of patients of different MMS clusters in the GSE4204
cohort. (G) Difference in mRNAsi among distinct MMS clusters in patients of the GSE4204 cohort. (H) Difference in stromalscore and immunescore among distinct
MMS clusters in patients of the GSE4204 cohort.
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FIGURE 9 | Development and validation of a nomogram. (A) A nomogram combining mRNAsi and other clinicopathologic covariates. (B,C) Receiver operating
characteristic (ROC) curve to evaluate the accuracy of the 3-year (B) and 5-year (C) OS nomogram in the training cohort. (D,E) ROC curve to evaluate the accuracy
of the 3-year (D) and 5-year (E) OS nomogram in test set 1. (F,G) ROC curve to evaluate the accuracy of the 3-year (F) and 5-year (G) OS nomogram in test set 2.
(H,I) Calibration plots indicating that nomogram-predicted 3- (H) and 5-year (I) survival probabilities of the training set corresponded closely to the observed
proportions. (J,K) Calibration plots indicating that nomogram-predicted 3- (J) and 5-year (K) survival probabilities of test set 1 corresponded closely to the observed
proportions. (L,M) Calibration plots indicating that nomogram-predicted 3- (L) and 5-year (M) survival probabilities of test set 2 corresponded closely to the
observed proportions.
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the differential mRNAsi among the three MMS clusters. In
particular, MMS-cluster3 samples possessed the highest mRNAsi
and had the worst OS outcomes compared with other clusters.
We also applied the ESTIMATE method to evaluate the level of
immune infiltrating cells in the TME of MM and found different
infiltration patterns across the three clusters. These findings
revealed the patterns of intra-tumor molecular heterogeneity
and the different patterns of TME infiltration within MM and
supported the negative regulation of the stemness index and
anticancer immunity. Lastly, by integrating mRNAsi and other
clinical characteristics, we proposed a prognostic nomogram that
allows for individualized estimations of the 3- and 5-year OS
probabilities among MM patients.

Stemness signatures have been identified in many
malignancies and have different prognostic values in gastric
cancer, acute myeloid leukemia, prostate cancer, and breast
cancer (Ng et al., 2016; Malta et al., 2018; Wang et al., 2018;
Miranda et al., 2019; Chang et al., 2020; Zhang et al., 2020).
However, there are few studies on the stemness of MM and its
prognostic value in MM patients. In our study, mRNAsi could
stratify MM patients into two groups with notably different
prognoses, which was convenient for risk stratification of MM
in clinical practice. Integrated analyses also confirmed that
mRNAsi is an independent prognostic biomarker in MM. In
our screening in multiple cohorts, some of the stemness-related
genes have never been reported in other previous researches
that could predict the outcomes of MM, which was convenient
to implement in clinical practice. BUB1B encodes a kinase
involved in spindle checkpoint function. The protein is localized
to the kinetochore and plays a role in the inhibition of the
anaphase-promoting complex/cyclosome. An increasing body
of literature has verified that aberrant expression of BUB1B is
highly involved in the tumorigenesis and the development of
various tumors (Wan et al., 2012; Qiu et al., 2020). A previous
study revealed that BUB1B could promote MM cell proliferation
through the CDC20/CCNB axis (Yang et al., 2015). MCM2,
MCM3, MCM5, and MCM6, members of the minichromosome
maintenance (MCM) family, are highly involved in DNA
replication and are vital in limiting replication in the cell cycle
(Freeman et al., 1999; Forsburg, 2004). Some investigations
have shown that the expression of MCM family plays an
important role in the prognosis of MM, and MCM2 is an
independent risk factor for MM (Quan et al., 2020). Additionally,
MCM2 is associated with many types of cancer, including acute
lymphocytic leukemia, gallbladder cancer, and glioma (Hua
et al., 2014; Liu et al., 2016; Li et al., 2018). Trichostatin A, a
classical histone deacetylase inhibitor, could downregulate the
expression of MCM2, and the silencing of MCM2 in colon
cancer cells could induce cell cycle arrest and apoptosis as
reported in a previous study (Liu et al., 2013). Therefore, MCM2
could be a potential therapeutic target for the treatment of
MM. ZWILCH kinetochore protein is an essential part of the
Rod–Zw10–Zwilch complex and is important in maintaining
the normal function of mitotic checkpoints (Karess, 2005; Gama
et al., 2017). The abnormal function of mitotic checkpoints
is related to the appearance of chromosomal instability, a
consensus sign of many human cancers. In MM, chromosomal

instability contributes to the acquisition of tumor heterogeneity
and thereby to drug resistance, disease progression, and eventual
treatment failure (Fujibayashi et al., 2020; Neuse et al., 2020).
Aberrant BUB1 overexpression promotes mitotic segregation
errors and chromosomal instability in MM (Fujibayashi
et al., 2020), and the synergistic mechanism of BUB1B and
ZWILCH in the occurrence and development of MM requires
further investigation.

Moreover, we proposed prognostic nomogram that contribute
to individualized evaluations of the 3- and 5-year OS probabilities
among patients with MM. Taken together, mRNAsi and the
associated nomogram might serve as a clinically helpful tool to
improve surveillance and guide decision-making regarding the
administration of adjuvant chemotherapy.

Collectively, mRNAsi could effectively classify patients with
MM into groups with different risks of outcomes, thereby raising
the possibility that stemness might be supplementary to the
conventional clinicopathological risk factors as a prognostic
scheme. The 34-gene based MMS-related signature could be
a good molecular classifier for uncovering distinct stemness
clusters. Additionally, the proposed nomogram incorporating
mRNAsi and existing clinical prognosticators might facilitate
personalized surveillance and management of patients with MM.
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